libc.a reference

Copyright 00 1996 DJ Delorie
- Page 2 -

| ntroduction

The standard C library, | i bc. a, is automatically linked into your programs by the gcc control program. It
provides many of the functions that are normally associated with C programs. This document gives the proper
usage information about each of the functions and variables found in | i bc. a.

For each function or variable that the library provides, the definition of that symbol will include information on
which header files to include in your source to obtain prototypes and type definitions relevant to the use of that
symbol.

Note that many of the functions in | i bm a (the math library) are defined in mat h. h but are not present in libc.a
Some are, which may get confusing, but the rule of thumb is this---the C library contains those functions that ANSI
dictates must exist, so that you don’'t need the - | mif you only use ANSI functions. In contrast, | i bm a contains
more functions and supports additional functionality such as the mat herr call-back and compliance to severa
alternative standards of behavior in case of FP errors. See libm, for more details.

Debugging support functions are in the library | i bdbg. a; link your program with - | dbg to use them.

- Page 3 -

Functional Categories

bios functions
conio functions

cpu functions

ctype functions
debugging functions
dos functions

dpmi functions
environment functions
file system functions
go32 functions

10 functions

locale functions
math functions
memory functions
misc functions
mono functions
posix functions
process functions
profiling functions
random number functions
shell functions
signal functions
sound functions
startup functions
stdio functions
string functions

sys functions
termios functions
time functions
unistd functions
unix functions

- Page 4 -

Alphabetical List
8087
Syntax

#i ncl ude <dos. h>
externint 8087,

Description

This variable is provided for compatibility with other DOS compilers. It contains 3 if a numeric coprocessor is
installed, otherwise 0. If the environment variable 387 is set to either y or n, the value of _8087 reflects the
override (i.e., 8087 is unconditionally assigned the value 3 if 387 is set toy, O if it is set to n).

Portability
{ANSI/ISO C

- Page5 -

{ XXXHXXXXXXKEXXHXXXXXEXKEXXKXKXKEXKKXKXXXXEXKKXXXKXXXKXXXXXXXXXXXXXX NO NO

ab4l
Syntax

#i ncl ude <stdlib. h>

| ong a64l (const char *string);

Description

This function takes a pointer to a radix-64 representation, with the first digit the least significant, and returns the
corresponding | ong value.

If string contains more than six characters, only the first six are used. If the first six characters of string contain a
null terminator, only those characters before the null terminator are used. a64l will scan the string from left to
right, with the least significant digit on the left, decoding each character as a 6-bit radix-64 number.

The radix-64 representation used by this function is described in the documentation for the | 64a function (See
164a).

Return Vaue

Returns the | ong value resulting from the conversion of the contents of string, or OL if string is NULL, points to an
empty string, or points to an invalid string (i.e. one not generated by a previous cal to | 64a). If the result would
overflow a | ong, the conversion of / 2Bl G (1144341633L) is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXIXEXXXXIXEXKXIIXHXKKIEXHXXXXKHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. This function is new to the Posix 1003.1-200x draft

abort
Syntax

#i ncl ude <stdlib. h>

voi d abort(void);

Description

When you call abort, the message "Abort!" is printed on stdout and the program is aborted by calling r ai se

(S| GABRT) (See signal, SIGABRT). By default, this causes the CPU registers and the call frame stack dump to be
printed, and the program then exits with an exit code of -1 (255). If the SI GABRT signal is caught by a handler
that returns, the program exits with an exit code of 1.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

if ((g=malloc(100)) == NULL)
abort ();

abs
Syntax

#i ncl ude <stdlib. h>

- Page 6 -

i nt abs(int val ue);

Return Vaue

The absolute value of val ue is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

int sq=7;

sq =sq * abs(sq) + 1;
access
Syntax

#i ncl ude <uni std. h>

i nt access(const char *fil enane, int flags);

Description

This function determines what kind of access modes a given file allows. The parameter flags is the logical or of
one or more of the following flags:

R &K
"~ Request if the file is readable. Since all files are readable under MS-DOS, this access mode aways exists.

W K
Request if the file is writable.

X XK
Request if the file is executable.

F_OK
Request if the file exists.

D &K
Request if the file is really a directory.

Return Vaue

Zero if the requested access mode is allowed, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
if (access("file.ext", WK))
return ERROR_CANNOT_WRI TE;
open("file.ext", O RDWR);
acos

Syntax

#i ncl ude <mat h. h>

doubl e acos(doubl e x);

Description

This function returns the angle in the range [0. . Pi] radians whose cosine is x. If the absolute value of x is
greater than 1, a domain error occurs, and errno is set to EDOM

- Page 7 -

Return Vaue

The arc cosing, in radians, of x. If the absolute value of x is greater than 1, the function returns a NaN

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXIXHKIXKXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

acosh
Syntax

#i ncl ude <mat h. h>

doubl e acosh(doubl e x);

Description
This function returns the inverse hyperbolic cosine of x.

Return Vaue

The inverse hyperbolic cosine of x. If the value of x is less than 1, the return value is NaN and er r no is set to
EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

addmntent
Syntax

#i ncl ude <mtent. h>
i nt addmtent(FILE *filep, const struct mtent *mt);

Description
This function is a no-op for MS-DOS, but is provided to assist in Unix ports. See getmntent.

Return Vaue

This function always returns nonzero to signify an error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

alarm
Syntax

#i ncl ude <uni std. h>

unsi gned al arn{unsi gned seconds) ;

Description

This function causes the signal SI GALRMto be raised in seconds seconds. A value of zero for seconds cancels any
pending alarm. |f an alarm has previously been set, the new aarm delay will supercede the prior call.

Note that signals in DJGPP are deferred when the program is inside a real-mode (e.g., DOS) call or isn't touching
its data; see See signal, for more details.

A misfeature of Windows 9X prevents the timer tick interrupt from being delivered to programs that are in the
background (i.e. don’t have the focus), even though the program itself might continue to run, if you uncheck the
Background: Always suspend property in the Property Sheets. Therefore, al ar mwill not work in background
programs on Windows 9X.

- Page 8 -

Return Vaue

The number of seconds remaining on the timer (i.e. always seconds).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXEXHXXXXIXHHXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

signal (SI GALRM nmy_al arm routi ne);
al arm(5);

aloca
Syntax

#i ncl ude <stdlib. h>

void *al | oca(size_t _size)

Description

Allocate memory that will be automatically released when the current procedure exits. Note that, when compiling
with gcc, dloca is a built-in function and not a library call.

Return Vaue
A pointer to the memory, else NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
g = alloca(strlen(x)+1);
strepy(a, x);

asctime
Syntax

#i ncl ude <ti ne. h>

char *asctime(const struct tm*tptr);

Description

This function returns an ASCII representation of the time represented by tptr. The string returned is always 26
characters and has this format:

Sun Jan 01 12: 34:56 1993\n\ 0

The string pointed to is in a static buffer and will be overwritten with each call to asctime. The data should be
copied if it needs to be preserved.

The layout of the st ruct t mstructure is like this:

struct tm¢{

int tmsec; /* seconds after the m nute [0-60] */
inttmmn; /* minutes after the hour [0-59] */
int tmhour; /* hours since mdnight [0-23] */
int tmnday; /* day of the nonth [1-31] */

int tmnmon; /* nonths since January [0-11] */
int tmyear; /* years since 1900 */

i nt tmwday; /* days since Sunday [0-6] */

i nt tmyday; /* days since January 1 [0-365] */
int tmisdst; /* Daylight Savings Tine flag */
long tmgntoff; /* offset fromGMI i n seconds */

- Page9 -

char * tm zone; /* tinmezone abbreviation */

}s

Return Vaue
A pointer to the string.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXKXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

time_t now;

ti me(&ow);

printf("The current timeis %", asctine(localtine(&ow)));
asin
Syntax

#i ncl ude <mat h. h>

doubl e asi n(doubl e x);

Description
This function returns the angle in the range [- Pi / 2. . Pi / 2] whose sine is X.

Return Vaue

The inverse sing, in radians, of x. If the absolute value of x is greater than 1, the return value is NaN and er r no
is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

asinh

Syntax

#i ncl ude <mat h. h>
doubl e asi nh(doubl e x);

Description
This function returns the inverse hyperbolic sine of the argument x.

Return Vaue

The inverse hyperbolic sine of x. If the argument x is a NaN the return value is NaN and er r no is set to EDOM
If X is a positive or negative | nf, the return value is equal to the value of x, and err no is left unchanged.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

assert
Syntax

#def i ne NDEBUG
#i ncl ude <assert. h>

assert (expression);
assertval (expression);

- Page 10 -

Description

These macros are used to assist in debugging. The source code includes references to assert or assertval,
passing them expressions that should be t r ue (non-zero). When the expression yields f al se (zero), a diagnostic
message is printed to the standard error stream, and the program aborts.

If you define the macro NDEBUG before including assert . h, then these assert and assertval expand to
nothing to reduce code size after debugging is done.

Return Vaue

assert returns 1 if its argument is non-zero, else it aborts.

assertval returns the value of its expression argument, if non-zero, else it aborts.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXHXXKXIXHHIXHXXXKXXXKXXXKXXXXXXXXXXXXXX C89; C99 (see note 1)
1003.2-1992; 1003.1-2001 (see note 2)

Notes:

1. assert is ANSI, assertval is not.
2. assert is Posix, assertval is not.

Example

/* Like *strdup’, but doesn't crashif the argunent is NULL. */
char * safe_strdup(const char *s)

{

assert(s !'=0);
return strdup(s);

}

atan
Syntax

#i ncl ude <mat h. h>
doubl e at an(doubl e x);

Description
This function computes the angle, in the range [- Pi / 2. . Pi / 2] radians, whose tangent is x.

Return Vaue

The arc tangent, in radians, of x. If x is a NaN the return value is NaN and errno is set to EDOM If x is a
positive or negative | nf, the return value is equal to positive or negative Pi / 2, respectively, and errno is left
unchanged.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

atan?2
Syntax

#i ncl ude <mat h. h>

doubl e at an2(doubl e y, doubl e x);

Description
This function computes the angle, in the range [- Pi . . Pi] radians, whose tangent is y/x. In other words, it

- Page 11 -

computes the angle, in radians, of the vector (x,y) with respect to the +x axis, reckoning the counterclockwise
direction as positive, and returning the value in the range [-Pi, Pi].

Return Vaue

The arc tangent, in radians, of y/x. Pi is returned if x is negative and y is a negative zero, - 0. 0. - Pi is
returned, if x is negative, and y is a positive zero, +0. 0.

If either x or y is infinite, at an2 returns, respectively, Pi with the sign of y or zero, and errno is left
unchanged. However, if both arguments are infinite, the return value is NaN and er r no is set to EDOM

A NaN is returned, and errno is set to EDOV if either x and y are both zero, or if either one of the arguments is
a NaN

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXIXHXIXHHXHXXXKXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

atanh
Syntax

#i ncl ude <mat h. h>
doubl e at anh(doubl e x);

Description
This function computes the inverse hyperbolic tangent of x.

Return Vaue

The inverse hyperbolic tangent of x. If the the value of x is plus or minus 1, the return value is an | nf with the
same sign as the argument X, and errno is set to ERANGE If the absolute value of x is greater than 1, the return
value is NaN and errno is set to EDOM

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
atexit

Syntax

#i ncl ude <stdlib. h>
int atexit(void (*func)(void));

Description

This function places the specified function func on a list of functions to be called when exi t is called. These
functions are cdled as if a last-in-first-out queue is used, that is, the last function registered with at exi t will be
the first function called by exi t.

At least 32 functions can be registered this way.

Return Vaue

Zero on success, Non-zero on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

voi d exit_func()

{

- Page 12 -

renove("file.tmp");

}
at exi t (exit_func);

atof
Syntax

#i ncl ude <stdlib. h>
doubl e at of (const char *string);
Description
Convert as much of the string as possible to an equivalent double precision real number.

This function is amost like strtod(string, NULL) (See strtod).

Return Vaue

The equivalent value, or zero if the string does not represent a number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXIXHHXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

mai n(i nt argc, char **argv)

doubl e d = atof (argv[1]);

atoi
Syntax

#i ncl ude <stdlib. h>

int atoi (const char *string);

Description
Convert as much of the string as possible to an equivalent integer value.

This function is amost like (i nt)strtol (string, NULL, 10) (See strtol).

Return Vaue

The equivaent value, or zero if the string does not represent a number.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXXXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

mai n(i nt argc, char **argv)

int i =atoi(argv[1]);

- Page 13 -

atol
Syntax

#i ncl ude <stdlib. h>

I ong atol (const char *string);
Description
Convert as much of the string as possible to an equivalent long integer value.
This function is amost like strtol (string, NULL, 10) (See strtol).
Return Value

The equivaent value, or zero if the string does not represent a number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

mai n(i nt argc, char **argv)

{
long | =atol (argv[1]);

_atold
Syntax

#i ncl ude <stdlib. h>
| ong doubl e _at ol d(const char *string);
Description
Convert as much of the string as possible to an equivalent long double precision real number.

This function is amost like _strtol d(string, NULL) (See _strtold).

Return Vaue

The equivalent value, or zero if the string does not represent a number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

mai n(i nt argc, char **argv)

{
| ong double d = _atold(argv|[1]);

atol|
Syntax

#i ncl ude <stdlib. h>

long long int atoll (const char *string);

Description

- Page 14 -

Convert as much of the string as possible to an equivalent long long integer value.
This function is aimost like strtol | (string, NULL, 10) (See strtoll).
Return Vaue

The equivalent value, or zero if the string does not represent a number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHXXXXXXXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example
?ai n(int argc, char **argv)
longlongint | =atoll (argv[1]);
basename

Syntax

#i ncl ude <uni std. h>

char * basenane (const char *fnane);

Description

This function returns the basename of the file, which is the last part of its full name given by fname with the drive
letter and leading directories stripped off. For example, the basename of c:/foo/ bar/file.ext isfile. ext,
and the basename of a: f 0o is f 00. Trailing slashes and backslashes are significant: the basename of

c:/fool bar/ is an empty string after the rightmost slash.

This function treats both forward- and backslashes like directory separators, so it can handle file names with mixed
styles of slashes.

Return Vaue

A pointer into the original file name where the basename starts. Note that this is not a new buffer alocated with
mal | oc. If fname is a NULL pointer, the function will return a NULL pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXXXXKXXKXXXXXXXX NO No

Example

if (strcnp (basenane (file_nane), "gcc.exe") == 0)
printf ("Thefile % is the GNUC/ C++ conpiler\n", file_nane);

bcmp
Syntax

#i ncl ude <string. h>

i nt bcmp(const void *ptrl, const void *ptr2, int | ength);

Description
Compare memory pointed to by ptrl and ptr2 for at most length bytes.

Return Vaue

The number of bytes remaining when the first mismatch occurred, or zero if al bytes were equal.

- Page 15 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXX NO No

Example

voi d f(char *sl1, char *s2)

{

int | =bcmp(sl, s2, strlen(sl));
printf("Dfference: %, %\n", sl+strlen(sl)-l, s2+strlen(sl)-1);

bcopy
Syntax

#i ncl ude <string. h>

voi d bcopy(const void *source, void *dest, int | ength);

Description

Copy length bytes from source to dest. Overlapping regions are handled properly, athough this behavior is not
portable.

Return Vaue

No value is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

struct s a, b;
bcopy(a, b, sizeof (struct s));

bdos
Syntax

#i ncl ude <dos. h>
i nt bdos(int func, unsigned dx, unsigned al);

Description

Calls function func of the software interrupt 0x21, passing it a as the subfunction and (the lower 16 bit of) dx in
the DX register. This function will only work for a subset of DOS functions which require no arguments at all, or
take non-pointer arguments in the AL and DX registers only. For functions which require a pointer in the DX
register, use bdospt r (See bdosptr).

Return Value
Whatever the called function returns in the AX register.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
Example

/* read a character */
int ch =bdos(1, 0, 0) & Oxff;

bdosptr

- Page 16 -

Syntax

#i ncl ude <dos. h>

i nt bdosptr(int func, void *ptr, unsigned al);

Description

Calls function func of the software interrupt 0x21, passing it al as the subfunction and a pointer to a copy of the
buffer contents whose address is in ptr through the DX register. This function will only work for a subset of DOS
which require an argument in the AL register and a pointer in DX register. For functions which require non-pointer
arguments in the DX register, use bdos (See bdog. To make the contents of ptr available to DOS, bdosptr
copies it to the transfer buffer located in the low (below 1 Meg mark) memory.

Currently, some of the functions which take a pointer to a buffer in DX are NOT supported (notably, most of the
FCB-based functions). See int86, for the list of supported functions.

Return Value
Whatever the called function returns in the AX register.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

/[* print astring*/
bdosptr(9, "Hello, there$", 0);

_bios disk
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_di sk(unsi gned cnd, struct diskinfo t *di)

Description

This function interfaces with the BIOS disk sevice (interrupt 0x13). The parameter cmd select the corresponding disk
service and the structure di holds the disk parameters.

struct diskinfo_t {

unsi gned drive; /* Drive nunber. */

unsi gned head; /* Head nunber. */

unsi gned track; /* Track nunber. */

unsi gned sector; /* Sector nunber. (1-63) */

unsi gned nsectors; /* Nunber of sectorstoread/wite/verify. */
void *buffer; /* Buffer for reading/witing/verifying. */

}

The following services are available based on value of cmd:

_DI SK_RESET
Forces the disk controller to do a hard reset, preparing for floppy-disk I/0O. This is useful after an error
occurs in another operation, such as a read. If this service is specified, the di argument is ignored. Status is
returned in the 8 high-order bits (AH) of the return value. If there is an error, the high-order byte will
contain a set of status flags, as defined below under Return Value.

Dl SK_STATUS
Obtains the status of the last disk operation. If this service is specified, the <diskinfo> argument is ignored.
Status is returned in the 8 low-order bits (AL) of the return value. If there is an error, the low-order byte
(AL) will contain a set of status flags, as defined below under Return Value.

DI SK_READ
Reads one or more disk sectors into memory. This service uses al fields of the structure pointed to by
diskinfo. If no error occurs, the function returns O in the high-order byte and the number of sectors read in
the low-order byte. If there is an error, the high-order byte (AH) will contain a set of status flags, as defined

- Page 17 -

below under Return Value.

DI SK WRI TE
Writes data from memory to one or more disk sectors. This service uses all fields of the structure pointed to
by <diskinfo>. If no error occurs, the function returns O in the high-order byte (AH) and the number of
sectors written in the low-order byte (AL). If there is an error, the high-order byte will contain a set of
status flags, as defined below under Return Value.

DI SK_FORMAT
Formats the track specified by diskinfo. The head and track fields indicate the track to format. Only one
track can be formatted in a single call. The buffer field points to a set of sector markers. The format of the
markers depends on the type of disk drive (see a technica reference to the PC BIOS to determine the
marker format). The high-order byte (AH) of the return value contains the status of the call; 0 equals
success. If there is an error, the high-order byte will contain a set of status flags, as defined below under
Return Vaue.

Dl SK_VERI FY
Checks the disk to be sure the specified sectors exist and can be read. It aso runs a CRC (cyclic
redundancy check) test. This service uses all fields (except buffer) of the structure pointed to by diskinfo. If
no error occurs, the function returns O in the high-order byte (AH) and the number of sectors compared in
the low-order byte (AL), as defined below under Return Vaue.

Return Vaue

Return @=ll@ db A&Xrregister. The meaning of high-order byte (AH):
0x01 I nval i d request or a bad conmand
0x02 Addr ess mark not found
0x03 Disk wite protected
0x04 Sect or not found
0x05 Reset failed
0x06 Fl oppy di sk renpved
0x07 Drive paraneter activity fail ed
0x08 Direct Menory Access (DMVA) overrun
0x09 DMVA crossed 64K boundary
O0x0A Bad sector flag detected
0x0B Bad track fl ag det ected
0x0C Medi a type not found
0xOD I nval i d nunber of sectors on f or mat
OxO0E Control data access mark det ect ed
OxOF DMA arbitration | evel out of range
0x10 Dat a read (CRC or ECC) error
0x11 Corrected data read (ECC) error
0x20 Controller failure
0x40 Seek error
0x80 Di sk timed out or failedto respond
OxXAA Drive not ready
0xBB Undefi ned error
OxCCWite fault ondrive
OxXEO Status error
OxFF Sense operation fail ed

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

char record_buffer[512];
struct diskinfo_ t di;

di .drive = 0x80;

di . head = 0;

di.track =0;

di . sector =1;

di . nsectors =1;

di . buffer = & ecord_buffer;

if (_bios_disk(_Dl SK READ, &di))
puts("Di sk error.");

- Page 18 -

_bios _equiplist
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_equi pli st (void)

Description
This function returns the equipment word from BIOS request Ox11. The bits correspond to the following values:

Bi t s Meani ng

O True (1) if disk drive(s) installed

1 True (1) if math coprocessor installed

2-3 SystemRAMi n 16K bl ocks (16- 64K)

4-5 | nitial video node:

= Reserved

01 =40 x 25 col or

10 = 80 x 25 col or

11 = 80 x 25 nonochr one

6- 7 Nunber of fl oppy-di sk drives installed

(00=1, 01 =2, etc.)

8 se (0) if andonly if a Direct Menory Access (DMA)
c isinstalled

9- 11 Nunber of RS232 serial ports installed

12 True (1) if andonly if a gane adapter is installed
13 True (1) if andonly if aninternal nodemisinstalled
14- 15 Nunber of printersinstalled

Return Vaue
The equipment word.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

=
°

Example
if (_bios_equiplist() & 0xc000)
do_printing();

_bios _keybrd

Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_keybrd(unsi gned cnd) ;

Description

The _bi os_keybrd function uses INT 0x16 to access the keyboard services. The cmd argument can be any of
the following manifest constants:

_KEYBRD_READ
read the next key pressed.

_NKEYBRD_READ
read the next extended key pressed. Unlike _ KEYBRD_READ, this command knows about keys introduced
with the AT-style 101-key keyboards, such as F11 and F12, and can distinguish between the editing keys on
the numeric pad and the grey keys of the edit pad. On the other hand, some of the extended keys return
two-byte sequences which typically begin with the EOh (224 decimal) prefix, so code that uses
_NKEYBRD_READ should deal with this complexity.

_KEYBRD_READY
check if a key is waiting in the keyboard buffer.

_NKEYBRD_READY
check if an extended key is waiting in the keyboard buffer. Like _KEYBRD_ READY, but recognizes extended

- Page 19 -

keys such as F12, which _ KEYBRD_READY ignores.

_KEYBRD_SHI FTSTATUS
read keyboard shift state (the byte at the address 40h: 17h in the BIOS data area):

7654 3210 Meani ng

------- X Right SH FT is pressed
—————— X- Left SHIFTis pressed
---- -X-- CTRL i s pressed

---- X--- ALT i s pressed
---X---- Scroll Lock | ocked
--X- ---- NumLock | ocked

- X-- - Caps Lock | ocked

D I nsert | ocked

_NKEYBRD_SHI FTSTATUS
read keyboard shift and extended shift state (the byte at the address 40h: 17h in the BIOS data area
combined with the extended shift flags from the bytes at addresses 40h: 18h and 40h: 96h):

FEDC BA98 7654 3210 Meani ng
--------------- X Right SH FT i s pressed
-------------- X- Left SHIFTis pressed
———————————— -X-- CTRL i s pressed
------------ X--- ALT i s pressed
----------- X---- Scroll Lock I ocked
—————————— X- ---- NumLock | ocked
-------- -X-- ---- Caps Lock | ocked
-------- X--- ---- Insert | ocked

------- X-------- Left CTRLis pressed
------ X- ---- ---- Left ALT i s pressed
D R L Ri ght CTRL i s pressed
D R L Ri ght ALT i s pressed
D Scrol |l Lock is pressed
D L NumLock i s pressed

R S Caps Lock i s pressed
D O SysReq i s pressed

Return Vaue

With the * READ and * _SHI FTSTATUS arguments, the _bi os_keybr d function returns the contents of the Ax
register after the BIOS call. For the * READ arguments, this is the combination of scan code and ASCII code for
alphanumeric keys, or a scan code and either zero or the EOh prefix for special keys.

With the * READY arguments, _bi os_keybr d returns 0 if no key is waiting in the BIOS keyboard buffer. If
there is a key, _bi os_keybr d returns the key waiting to be read (that is, the same value as the corresponding
* READ would return).

With the * _READ and * _READY arguments, the _bi os_keybr d function returns -1 if Ctrl4BREAK has been
pressed and is the next keystroke to be read.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

whi | e(! _bi os_keybr d(_KEYBRD_READY))
try _to_do_sonet hing();

_bios memsize
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_nensi ze(voi d) ;
Description

- Page 20 -

This function returns the amount of system memory in 1K blocks (up to 640K).

Return Vaue

Size of memory (in K).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

printf("This systemhas %d bytes of nenory\n", _bios_nensize() * 1024);
_bios_printer
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_printer(unsigned cnd, unsi gned printer, unsigned data);

Description

The _bios printer routine uses INT 0x17 to perform printer output services for paralel printers. The printer
argument specifies the affected printer, where 0 is LPT1, 1 is LPT2, and so on. The cmd argument can be any of
the following manifest constants:

_PRINTER INIT
Reset and initializethe specifiedprinter port
_PRI NTER_STATUS

Return the status of the specified printer port

_PRI NTER_WRI TE
Print the data argument to the specified printer port

Return Vaue

The _bios printer function returns the value in the AX register after the BIOS interrupt. The high-order byte (AH)
of the return value indicates the printer status after the operation, as defined below:

Bit Meaning if True

O Printer tined out
1 Not used

2 Not used
31/0error

4 Printer sel ected
5 Qut of paper

6 Acknowl edge

7 Printer not busy

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Example

while (*c)
_bios_printer(_PRINTER WRI TE, *c++, 0);

_bios _seridlcom
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_seri al con{unsi gned cnd, unsi ngned seri al port,
unsi gned dat a) ;

Description

- Page 21 -

The _bios_serialcom routine uses INT Ox14 to provide serial communications services. The serialport argument is set
to 0 for COM1, to 1 for COM2, and so on. The cmd argument can be set to one of the following manifest
constants:

_COMINT
Initialize com port (data is the settings)

_COM _RECEI VE
Read a byte from port

_COM_SEND
Write a byte to port

_COM_STATUS
Get the port status

The data argument is ignored if cmd is set to _COM_RECEIVE or _COM_STATUS. The data argument for
_COM_INIT is created by combining one or more of the following constants (with the OR operator):

_COM CHR? 7 bits/character
_COM CHR8 8 bits/character
_COM STOP1 1 stop bit

_COM STOP2 2 stop hits
_COM NOPARI TY no parity
_COM EVENPARI TY even parity
_COM ODDPARI TY odd parity
~COM 110 110 baud

_COM 150 150 baud

_COM 300 300 baud

_COM 600 600 baud

_COM 1200 1200 baud

_COM 2400 2400 baud

_COM 4800 4800 baud

_COM 9600 9600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

Return Vaue

The function returns a 16-bit integer whose high-order byte contains status bits. The meaning of the low-order byte
varies, depending on the cmd value. The high-order bits are as follows:

Bit Meaning if Set

15 Ti med out

14 Transmi ssion-shift regi ster enpty
13 Transni ssi on-hol d regi ster enmpty
12 Break det ect ed

11 Fram ng error

10 Parity error

9 Overrun error

8 Dat a r eady

When service is _COM_SEND, bit 15 is set if data cannot be sent.

When service is _COM_RECEIVE, the byte read is returned in the low-order bits if the call is successful. If an
error occurs, any of the bits 9, 10, 11, or 15 is set.

When service is _COM_INIT or _COM_STATUS, the low-order hits are defined as follows:
Bit Meaning if Set

7 Receive-line signal detected

6 Ri ng i ndi cat or

5 Dat a- set - r eady

4 Cl ear-to-send

3 Change i n recei ve-line signal detected
2 Trailing-edge ringindicator

- Page 22 -

1 Change i n dat a- set - ready st at us
0 Change i n cl ear-to-send st atus

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
/* 9600 baud, no parity, one stop, 8 bits */
_bios_serialcom(_COMINT, O,
_COM 9600| _COM NOPARI TY| _COM _STOP1| _COM CHR8) ;
for(i=0; buf[i]; i++)
_bios_serial com(_COM SEND, 0, buf[i]);
_bios_timeofday
Syntax

#i ncl ude <bi os. h>

unsi gned _bi os_ti meof day(unsi gned cnd, unsi gned | ong *ti neval);

Description

The _bios timeofday routine uses INT Ox1A to get or set the clock count (which is the number of 18.2 Hz ticks
since midnight). The cmd argument can be either the TIME_GETCLOCK or _TIME_SETCLOCK manifest
constant.

Return Vaue

If the argument is _TIME_GETCLOCK, the routine returns a nonzero value if midnight was passed since last read,
or zero if midnight was not passed. If the argument is _TIME_SETCLOCK, the return value is undefined.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

Example

unsi gned hour, min, sec, hsec;
unsi gned | ong ti cks;

ticks = (unsi gned | ong) (hour * 65543.33) + (nmin* 1092.38) +
(sec * 18.21) + (hsec * 0.182);
_bios_tinmeofday(_TIME_SETCLOCK, &ticks);

bioscom
Syntax

#i ncl ude <bi os. h>
i nt biosconm(int cnd, char data, int port);

Description

This function accesses the BIOS interrupt Ox14 function, serial communication services. port should be the COM
port (0=COM1, 1=COM2, etc).

The valid values of cmd are:
0 - initialize com port (data is the settings)
1 - write byte to port
2 - read byte from port (data is ignored)
3 - get port status
For initialization, the byte is made up of the following hits:
0000 0000
7654 3210 Meani ng

- Page 23 -

------ 10 7 bits/character
------ 11 8 bits/character
---- -0-- 1stopbhit
-----1-- 2stop bits
---X0--- noparity
---01--- odd parity
---11--- even parity

000- ---- 110 baud
001- ---- 150 baud
010- ---- 300 baud
011- ---- 600 baud
100- ---- 1200 baud
101- ---- 2400 baud
110- ---- 4800 baud
111- ---- 9600 baud

For writing a character out to the port, the return value's lower 8 bits contain the same byte as passed as the data
argument.

For reading a character from the port, the value of data is ignored, and the lower 8 hits of the return value contain
the byte read. Also, the "timeout" bit in the upper 8 bhits is used as an error indicator in this case (O=success,
1=error). If it indicates an error, you should call the "get port status' variant to get the detailed error bits.

Return Vaue

The return value is a sequence of bits that indicate the port status and, for cmd=0 and 3, the modem status. For
read/write operations, the lower eight bits are the character read.

1111 1100 0000 0000
5432 1098 7654 3210 Meani ng

_______________ 1 CTS change

.............. 1- DSR change

____________ -1-- ring change

____________ 1--- carrier detect change
........... 1---- CTS present

__________ 1- ---- DSR present

________ -1-- ---- ring present

........ 1--- ---- carrier detect

_______ 1---- ---- data ready

______ 1- ---- ---- overrun error

TN IS parity error

ceem e mme a o fram ng error

cee] e e e br eak det ect ed

co e e me eeee oo transmt hol ding regi ster enpty
e Qe e meee aoas transmt shift register enpty
1o e e timeout (=1if error present for cnd=1, 2)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

Example
bi oscom(0, Oxe3, 0); /* 9600 baud, no parity, one stop, 8 bits */
for (i=0; buf[i]; i++)
bi oscom(1, buf[i], 0);
bi osdisk
Syntax
#i ncl ude <bi os. h>
i nt biosdisk(int cnd, int drive, int head, int track,
i nt sector, int nsects, void *buffer);
Description

- Page 24 -

This function interfaces with the BIOS disk service (interrupt 0x13). Please refer to a BIOS reference manual for
detailed information about the parameters of this call. The function assumes a sector size of 512 bytes.

The following functions of Int 13h are currently supported:

0 - reset disk subsystem

1 - get status of last operation (see See _bios disk, for possible values)
2 - read one or more sectors

3 - write one or more sectors

5 - format a track

6 - format a cylinder and set bad sector flag
7 - format drive from specified cylinder

8 - get drive parameters

9 - initidize drive parameters

10 - read long sectors

11 - write long sectors

12 - seek to cylinder

13 - aternate fixed disk reset

14 - read sector buffer

15 - write sector buffer

16 - test for drive ready

17 - recalibrate drive

18 - controller RAM diagnostic

19 - controller drive diagnostic

20 - controller internal diagnostic

21 - get DASD type

22 - read disk change line status

23 - set DASD type (pass DASD code in nsects)
24 - set media type for format

The first request with more sectors than will fit in the transfer buffer will cause a DOS buffer to be allocated. This
buffer is automatically freed when your application exits. Requests for more sectors than 18 sectors (9K) will fail.

Function 8 returns values in buffer as follows:

byte 0 = sectors per track (bits 0..5), top two bits of cylinder (in bits 6..7)

byte 1 = cylinders (bits 0..7)

byte 2 = number of drives

byte 3 = number of heads
Return Value
The value of AH returned by the BIOS. See See bios disk, for a detailed list of possible status and error codes.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

char buffer[512];
i f (biosdisk(2, 0x80, 0, 0, 0, 1, buffer))
error("disk");

biosequip
Syntax

#i ncl ude <bi os. h>
i nt bi osequi p(void);
Description
This function returns the equipment word from BIOS request Ox11. The bits correspond to the following values:
1111 1100 0000 0000
5432 1098 7654 3210 Meani ng

- Page 25 -

--------------- X1 =diskdrive(s) installed
-------------- X- 1 =math coprocessor installed
------------ XX-- Systemnenory: 00=16k, 01=32k, 10=48k,
11=64k (non PS/ 2)

------------ -X-- 1 =pointing device installed (PS/2)
------------ X--- not used on PS/ 2

---------- XX ----initial video node: 01=CO40 10=C080 11=MONO
-------- XX-- ---- disk drives 00=1 01=2 10=3 11=4 (zero if bit 1=0)
_______ X--------1=no DVA avai l abl e
D ¢ G nunber of serial portsinstalled (000=0 001=1 etc)
T 1 = gane port adapter installed
D L 1 =internal nodeminstalled (PS/ 2)
. 1 =serial printer attached (non PS/ 2)
D G nunber of printersinstalled (00=0 01=1 10=2 11=3)
Return Value
The equipment word.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

i f (biosequip() &0xc000)
do_printing();

bioskey
Syntax

#i ncl ude <bi os. h>

i nt bi oskey(int comand)

Description
This function issues the BIOS keyboard interrupt 16h with command in the AH register, and returns the results of
that call. The argument command can accept the following values:

command = 00h
Returns the next key pressed. The value returned is a combination of the key's scan code in the high 8 bits

and its ASCII code in the low 8 bits. For non-alphanumeric keys, such as the arrow keys, the low 8 bits are
zeroed.

command = Olh
Checks the keyboard, returns zero if no key pressed, else the key. Does not dequeue the key from the
keyboard buffer. The value returned when a key was pressed is a combination of the key's scan code in the
high 8 bits and either its ASCII code or zero in the low 8 hits.

If the CtrIBREAK key was pressed, returns -1.

command = 02h
Returns the keyboard shift state:

7654 3210 Meani ng

——————— X Ri ght shift key down
------ X- Left shift key down
---- -X-- Crl key down

---- X--- Al't key down
---X----Scroll |ock on

--X- ---- Numl ock on

ED CENEERE Caps | ock on

Xomm mmm- I nsert on

command = 10h
Returns the next extended key pressed. This works like the case of command = 0, but it recognizes

- Page 26 -

additional keys from the AT-style extended 101-key keyboard, like the second Alt key and F12. If a key was
pressed, returns the scan code and ASCII code packed in same way as for command = 0, except that the
extended keys have the EOh prefix in the low 8 bits.

Almost every PC nowadays has an extended 101-key keyboard.

command = 11h
Like the case of command = 1, but recognizes the additional keys of the extended keyboard.

command = 12h
Returns the two status bytes of the enhanced keyboard, packed in the low 16 bits of the return value. The
individual bits of the return value are defined in the following table:

FEDC BA98 7654 3210 Meani ng
--------------- X Right SH FT i s pressed
-------------- X- Left SHIFTis pressed
———————————— -X-- CTRL i s pressed
------------ X--- ALT i s pressed

........... X---- Scroll Lock | ocked
__________ X- ---- NumLock | ocked
________ -X-- ---- Caps Lock I ocked
........ X--- ----Insert | ocked
_______ X---- ---- Left CTRL i s pressed
...... X- ---- ---- Left ALTis pressed
D Ri ght CTRL i s pressed
. Right ALT i s pressed
S ¥ Scrol | Lock i s pressed
. NumLock i s pressed
. Caps Lock i s pressed
Xomm mmme e - SysReq i s pressed

Return Value

Depends on command.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

whi |l e (! bi oskey(1))
do_stuff();
biosmemory
Syntax

#i ncl ude <bi os. h>

unsi gned bi osmenory(voi d);

Description
This function returns the amount of system memory in 1k blocks.

Note that this function doesn't know about extended memory above the 640K mark, so it will report 640K at most.
This is a limitation of the BIOS.

Return Vaue
Bytes of memory / 1024.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

- Page 27 -

printf("This systemhas %d bytes of nenory\n", bi osmenory()*1024);

biosprint
Syntax

#i ncl ude <bi os. h>

int biosprint(int cnd, int byte, int port)
Description

command = 0
byt e is sent to parallel port port.

command = 1
Parallel port port is reset and initialized.

command = 2
The status of parallel port port is returned.

7654 3210 Meani ng

....... X Ti meout
---- -XX- Unused
---- X---1/OFError
---X---- Sel ected
--X- ---- Qut of paper
Xem oo Acknowl edged
) CHEREE—— Idle

Return Value

The printer status.

Portability

{ANSI/ISO C {XX NO No

Example

while (*c)

bi osprint (0, *c++, 0);

biostime
Syntax

#i ncl ude <bi os. h>

| ong bi ostime(int cnd, | ong newtine);

Description

This function reads (cmd=0) or sets (cmd=1) the internal tick counter, which is the number of 18.2 Hz ticks since
midnight.

Return Vaue

When reading, the number of ticks since midnight.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
long ticks = biostine(0, 0);

- Page 28 -

blinkvideo
Syntax

#i ncl ude <coni o. h>

voi d bl i nkvi deo(voi d);

Description

Bit 7 (MSB) of the character attribute byte has two possible effects on EGA and VGA displays. it can either make

the character blink or change the background color to bright (thus alowing for 16 background colors as opposed to
the usual 8). This function sets that bit to display blinking characters. After a call to this function, every character
written to the screen with bit 7 of the attribute byte set, will blink. The companion function i nt ensevi deo (See
intensevideo) has the opposite effect.

Note that there is no BIOS function to get the current status of this bit, but bit 5 of the byte at 0040h: 0065h in
the BIOS area indicates the current state: if it's 1 (the default), blinking characters will be displayed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

brk
Syntax

#i ncl ude <uni std. h>

int brk(void *ptr);

Description

This function changes the break for the program. This is the first address that, if referenced, will cause a fault to
occur. The program asks for more memory by specifying larger values for ptr. Normally, this is done transparently
through the mal | oc function.

Return Vaue

Zero if the break was changed, -1 if not. errno is set to the error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

i f (brk(ol d_brk+1000))
printf("no menory\n");

bsearch
Syntax

#i ncl ude <stdlib. h>

voi d *bsearch (const voi d *key, const void *base, size_t num
size_ t size, int (*ptf)(const void *ckey, const void *celem);

Description

Given an array of values, perform a binary search on the values looking for value that "matches' the given key. A

match is determined by calling the provided function ptf and passing it the key as ckey and a pointer to one of the
elements of the array as celem. This function must return a negative number if the key is closer than the element to
the beginning of the array, positive if it is closer to the end, and zero if the element matches the key.

The array begins at address base and contains hum elements, each of size size

Return Vaue

- Page 29 -

Returns a pointer to the element that matches the key, else NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

t ypedef struct {
int a, b;

}oa

i nt compare(void *key, void *el em

;eturn*(int *Ykey - ((qg *)el en)->a;

g qglist[100];

('q“*match = bsearch(4, glist, 100, sizeof(q), conpare);
printf("4->%l=n", match->b);

bzero
Syntax

#i ncl ude <string. h>
voi d bzero(void *pointer, int | ength);

Description
The data at pointer is filled with length zeros.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
char foo[100];

bzer o(f oo, 100);
calloc
Syntax

#i ncl ude <stdlib. h>
voi d *cal | oc(size_t num el enents, size_t size);

Description

This function allocates enough memory for num_elements objects of size size The memory returned is initialized to
al zeros. The pointer returned should later be passed to free (See free) so that the memory can be returned to the

heap.
You may use cfree (See cfree to free the pointer also; it just calls free.

Return Vaue

- Page 30 -

A pointer to the memory, or NULL if no more memory is available.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

Conpl ex *x = cal l oc(12, si zeof (Conpl ex));
cfree(x);

cbrt
Syntax

#i ncl ude <mat h. h>
doubl e cbrt (doubl e x);

Description

This function computes the cube root of x. It is faster and more accurate to call cbrt (x) than to call pow(x,
1./3.).

Return Vaue

The cube root of x. If the value of x is NaN the return value is NaN and err no is set to EDOM Infinite
arguments are returned unchanged, without setting er r no.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
cell
Syntax

#i ncl ude <mat h. h>

doubl e cei | (doubl e x);

Description
This function computes the smallest integer greater than or equal to x.

Return Vaue
The smallest integer value greater than or equal to x.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

cfgetispeed
Syntax

#i ncl ude <term os. h>
speed_t cfgetispeed (const struct term os *term osp);

Description

This function gets the input line speed stored in the structure termiosp. See Termios functions, for more details
about this structure and the baudrate values it supports.

Note that the termios emulation handles console only, and that the input baudrate value is ignored by this
implementation.

- Page 31 -

Return Value
The input line speed on success, (speed t) -1 for error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXEXHXXXXIXHHXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001
cfgetospeed

Syntax

#i ncl ude <term os. h>
speed_t cfgetospeed (const struct term os *term osp);

Description

This function gets the output line speed stored in the structure termiosp. See Termios functions, for more details
about this structure and the baudrate values it supports.

Note that the termios emulation handles console only, and that the baudrate value has no effect in this
implementation.

Return Vaue
The output line speed on success, (speed_t) -1 for error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIXIXHXKKIEXHXHXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

cfmakeraw
Syntax

#i ncl ude <term os. h>
voi d cf makeraw (struct term os *term osp);

Description

This function sets the structure specified by termiosp for raw mode. It is provided for compatibility only. Note that
the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

cfree
Syntax

#i ncl ude <stdlib. h>

voi d cfree(void *pointer);

Description
This function returns the memory alocated by calloc (See calloc) to the heap.

Return Vaue

None.
Portability

- Page 32 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

Conpl ex *x = cal l oc(12, si zeof (Conpl ex));
cfree(x);

cf setispeed
Syntax

#i ncl ude <term os. h>
int cfsetispeed (struct ternios *tern osp, speed_t speed);

Description

This function sets the input line speed stored in the structure termiosp to speed. See Termios functions, for more
details about this structure and the baudrate values it supports.

Note that the termios emulation handles console only, and that the baudrate values have no effect in this
implementation.

Return Vaue

Zero on success, nonzero on failure.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXKXXXIIXHXKKIEXHXHXXEXHXXIXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

cfsetospeed
Syntax

#i ncl ude <term os. h>
i nt cfsetospeed (struct ternios *term osp, speed_t speed);

Description

This function sets the output line speed stored in the structure termiosp to speed See Termios functions, for more
details about this structure and the baudrate values it supports.

Note that the termios emulation handles console only, and that the baudrate values have no effect in this
implementation.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
cfsetspeed

Syntax

#i ncl ude <t erm os. h>
int cfsetspeed (struct term os *terni osp, speed_t speed);

Description

This function sets the input and output line speed stored in the structure termiosp to speed. It is provided for
compatibility only. Note that the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

- Page 33 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

cgets
Syntax

#i ncl ude <coni o. h>

char *cgets(char *_str);

Description

Get a string from the console. This will take advantage of any command-line editing TSRs. To use, you must
pre-fill the first character of the buffer. The first character is the size of the buffer. On return, the second character
is the number of characters read. The third character is the first character read.

Return Value
A pointer to the first character read.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXEXKIIXXXXXXXKXXXXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

chdir
Syntax

#i ncl ude <uni std. h>
i nt chdir(const char *new directory);

Description

This function changes the current directory to new_directory. If a drive letter is specified, the current directory for
that drive is changed and the current disk is set to that drive, else the current directory for the current drive is
changed.

Return Vaue

Zero if the new directory exists, else nonzero and er r no set if error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXKXXIXHXIXHXXIXHXXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

if (chdir("/tnp"))
perror("/tmp");

_check v2 prog
Syntax

#i ncl ude <sys/system h>

const _v2 prog type * check v2 prog(const char *program int fd);

- Page 34 -

Description

This function checks a given program for various known types of executables and/or other things. This function
povides two differnt entry points. One is to cal the function with a not NULL pointer as pr ogr am (in this case f d
is ignored), then the file named by pr ogr amis opened and closed by _check_v2_ prog.

When you pass NULL as pr ogr am then you have to pass a valid file handle in fd and _check_v2_prog uses
that handle and does also not close the file on return.

Return Value
_v2_prog_type is defined in sys/ syst em h like the following:

t ypedef struct {

char magi c[16] ;

i nt struct | ength;

char go32[16];

unsi gned char buffer[O0];
} vl stubinfo;

t ypedef struct {

uni on {

unsi gned version: 8; /* The versi on of DIGPP creat ed t hat COFF exe */
struct {

unsi gned minor: 4; /* The m nor version of DIGPP */

unsi gned maj or: 4; /* The maj or version of DIGPP */

} v,

} version;

unsi gned obj ect _format: 4; /* Wat an obj ect format */

define _V2_OBJECT_FORVAT_UNKNOMN 0x00

define _V2_OBJECT_FORMAT _COFF 0x01

define _V2_OBJECT_FORVAT_PE_COFF 0x02

unsi gned exec_format: 4; /* \What an executabl e format */

define _V2_EXEC FORMAT_UNKNOWN 0x00

define _V2_EXEC FORVAT_COFF 0x01

define _V2_EXEC FORMAT_STUBCOFF 0x02

define _V2_EXEC FORMAT_EXE 0x03

define _V2_EXEC FORMAT_UNI XSCRI PT 0x04

unsigned valid:1; /* Only when nonzero all theinformationis valid*/

unsi gned has_stubinfo:1; /* Wien nonzero the stubinfoinfoisvalid*/

unsi gned unused: 14;

_v1 stubinfo *stubinfo;

} _v2_prog_type;
The macros shown above can be used to test the different members of that structure for known values.
Warning: Do not modify any of the data in this structure.

After calling _check_v2_prog you should check at first the member val i d. Only if this is nonzero you can be
sure that all the other information in the struct is valid.

The same is for the st ubi nf o member of the above struct, it is valid only, when has_st ubi nf o is nonzero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

- Page 35 -

To use the information returned in the struct you can use code like the following:
#i ncl ude <stdi o. h>
#i ncl ude <sys/system h>
i nt mai n()
const _v2_prog_type *type;
/* Since we pass a valid nane, we can use -1 as the second argunent */
type = _check v2 prog ("foo", -1);

/* There was sonet hi ng wong */
if (!type->valid)

fprintf(stderr, "Could not check thefile 'foo'. Gvingup.\\n");

return 1;

}

/* Currently only the COFF format is validto be a V2 executabl e */
if (type->object _format !=_V2 OBJECT_FORMAT_COFF)
fprintf(stderr, "File’'foo is not in COFF format\\n");

return 2;

}

/* The maj or versionis not 2 */

if (type->version.v.mjor ! =2)

fprintf(stderr, "File’'foo is not fromDIJGPP 2. xx\\n");
return 3;

fprintf(stdout, "File 'foo is avalidDIGPP 2. xx executabl e\\n");

i f (type->exec_format == V2 EXEC FORVAT_STUBCOFF)

fprintf(stdout, "File ' foo' has a stub | oader prepended\\n");

return O;

chmod
Syntax

#i ncl ude <sys/stat. h>

i nt chmod(const char *path, node_t node);

Description

This function changes the mode (writable or write-only) of the specified file. The value of mode can be a
combination of one or more of the following:

S | RUSR
Make the file readable for the owner.

S | WUSR
Make the file writable for the owner.

S | RCRP
Make the file readable for the group.

S | WGRP
- Page 36 -

Make the file writeable for the group.

S | ROTH
Make the file readable for the world.

S | WOTH
Make the file writeable for the world.

Some S_| * constants are ignored for regular files:

e S |I*GRPand S | *OTH are ignored, because DOS/Windows has no concept of ownership, so all files are
considered to belong to the user;

e S | R* are ignored, because files are always readable on DOS/Windows.
This function can be hooked by File System Extensions (See File System Extensions.

Return Vaue

Zero if the file exists and the mode was changed, else nonzero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXKEXXXIXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
chnod("/tnp/dj.dat", S |WSR S_| RUSR);

_chmod
Syntax

#i ncl ude <i 0. h>
i nt _chrmod(const char *fil enane, int func, node_t node);

Description

This is a direct connection to the MS-DOS chmod function call, int 0x21, %ax = 0x4300/0x4301. If func is O, then
DOS is caled with AX = 0x4300, which returns an attribute byte of a file. If func is 1, then the attributes of a file
are set as specified in mode. Note that the directory and volume attribute bits must always be 0 when _chnod()
is called with func = 1, or else the cal will fail. The third argument is optional when getting attributes. The
attribut@ibitavirandefigied as follows:

76543210

....... 1 Read-only

. Hi dden

..... 1.. System
....1... Vol une Label
...1.... Directory
S Archi ve
XX.oon Reserved (used by sonme network redirectors)

On platforms where the LFN APl (See _use Ifn, LFN) is available, _chnod calls function 0x7143 of Interrupt 21h,
to support long file names.

Return Vaue

If the file exists, _chnod() returns its attribute byte in case it succeded, or -1 in case of failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

chown
Syntax

#i ncl ude <uni std. h>
i nt chown(const char *file, i nt owner, int group);

Description
- Page 37 -

This function changes the ownership of the open file specified by file to the user ID owner and group ID group.

This function does nothing under MS-DOS. This function can be hooked by File System Extensions (See File
System Extensions).

Return Value
This function aways returns zero if the file exists, else it returns -1 and sets er r no to ENOENT.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXIXXXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

chsize
Syntax

#i ncl ude <i 0. h>
int chsize(int handl e, |ong size);

Description
Just calls ftruncate (See ftruncate).

Return Vaue

Zero on success, -1 on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

cleanup_client

Syntax
#i ncl ude <debug/ dbgcom h>
voi d cl eanup_client (void);

Description

This function is typically called when the debugged process exits or is aborted. It restores segment descriptors,
closes file handles that were left open by the debuggee, frees protected-mode and conventional memory and any
segment descriptors allocated by the debuggee, and restores the debugger's original signal handlers.

_cClear87
Syntax

#i ncl ude <fl oat. h>

unsi gned int _cl ear87(void);

Description

Clears the floating point processor’'s exception flags.
Return Value

The previous status word.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__cClear_fd flags
Syntax

- Page 38 -

#i ncl ude <li bc/fd_props. h>
void clear _fd flags(int fd, unsigned | ong flags);

Description

This internal function clears the combination of flags flags from the flags associated with the file descriptor fd. The
flags are some properties that may be associated with a file descriptor (See set fd_properties).

The caller should first check that fd has properties associated with it, by calling __has_fd_properties (See
__has fd_properties).

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__Clear_fd properties
Syntax

#i ncl ude <li bc/fd_props. h>

int _clear _fd properties(int fd);

Description

This internal function is called when the file descriptor fd is no longer valid. The usage count of the associated
fd_properties struct is decremented. And if it becomes zero, this function performs cleanup and releases the
memory used by the f d_properti es struct.

For more information, see __set _fd _properties (See set fd properties) and __dup_fd_properties (See
__dup_fd_properties).

Return Vaue

Always returns O for success.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXKXXKXXKXXXKXXKXXXXXXXX NO No

clearerr
Syntax

#i ncl ude <stdi 0. h>
voi d cl earerr (FILE *strean);

Description
This function clears the EOF and error indicators for the file stream.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

cl earerr(stdout);

- Page 39 -

clock
Syntax

#i ncl ude <ti ne. h>
cl ock _t cl ock(void);

Description

This function returns the number of clock ticks since an arbitrary time, actually, since the first call to cl ock, which
itself returns zero. The number of tics per second is CLOCKS_PER_SEC.

Return Vaue

The number of tics.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
printf ("%l seconds have el apsed\n", cl ock()/CLOCKS PER SEC);

close
Syntax

#i ncl ude <uni std. h>

int close(int fd);

Description
The open file associated with fd is closed.
Return Value
Zero if the file was closed, nonzero if fd was invalid or aready closed.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXIXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
Example
int fd =open("data", O RDONLY);
cl ose(fd);
_close

Syntax

#i ncl ude <i 0. h>
int _close(int fd);

Description

This is a direct connection to the MS-DOS close function call, int 0x21, %ah = 0x3e. This function can be hooked
by the See File System Extensions If you don't want this, you should use See dos close

Return Vaue

Zero if the file was closed, else nonzero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

- Page 40 -

closedir
Syntax

#i ncl ude <di rent. h>

int closedir(DIR*dir);

Description
This function closes a directory opened by opendir (See opendir).

Return Vaue

Zero on success, nonzero if dir is invalid.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXIXEXXXXIXEXKXIEXHXKKIEXHXXKIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

clreol
Syntax

#i ncl ude <coni o. h>

voi d cl reol (voi d);

Description
Clear to end of line.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

clrscr
Syntax

#i ncl ude <coni o. h>

void clrscr(void);

Description
Clear the entire screen.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NOo No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

- Page 41 -

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

confstr
Syntax

#i ncl ude <uni std. h>

size_t confstr(int name, char *buf, size_t len);

Description
This function stores various system-dependent configuration values in buf. name is one of the following:

_CS_PATH
Returns a path to the standard POSIX utilities.

_CS_PCSI X_V6_| LP32_OFF32_CFLAGS
Returns the compile-time flags required to build an application using 32-bit i nt, | ong, pointer, and of f _t

types.

_CS _POsI X_V6_| LP32_OFF32_LDFLAGS
Returns the link-time flags required to build an application using 32-bit i nt, | ong, pointer, and of f _t

types.

_CS _PCSI X _V6_| LP32_OFF32_LI BS
Returns the set of libraries required to build an application using 32-bit i nt, | ong, pointer, and of f _t

types.

If len is not zero and name has a defined value, that value is copied into buf and null terminated. If the length of
the string to be copied plus the null terminator is greater than len bytes, the string is truncated to len-1 bytes and
the result is null terminated.

If len is zero, nothing is copied into buf and the size of the buffer required to store the string is returned.

Return Vaue

If name has a defined value, the minimum size of the buffer required to hold the string including the terminating
null is returned. If this value is greater than len, then buf is truncated.

If name is valid but does not have a defined value, zero is returned.
If name is invalid, zero is returned and err no is set to El NVAL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXKXXXIXEXHXHKIEXHXHKIXEKHXXIXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example

char *path;
size_t path_len;

path_| en = confstr (_CS PATH, NULL, 0);

path = mal | oc(path_I en);
confstr(_CS _PATH, path, path_len);

_conio_gettext
Syntax

#i ncl ude <coni 0. h>
int _conio _gettext(int left, int top, int right, int bottom void* _destin);

Description
Retrieve a block of screen characters into a buffer.

- Page 42 -

Return Vaue
1

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

_conio_kbhit
Syntax

#i ncl ude <coni 0. h>

int _conio_kbhit(void);

Description

Determines whether or not a character is waiting at the keyboard. If there is an ungetch’d character, this function
returns true. Note that if you include coni o. h, the kbhi t (See kbhit) function is redefined to be this function
instead.

Return Value
Nonzero if a key is waiting, else zero.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function called
by a static constructor).

_control87
Syntax

#i ncl ude <fl oat. h>

unsi gned i nt _control 87(unsi gned i nt newcw, unsigned i nt mask);

Description
This function sets and retrieves the FPU’s control word.

The control word is a special 16-bit register maintained by the math coprocessor. By setting and clearing bit fields
in the control word, you can exercise control of certain aspects of coprocessor operation. The individua bits of the
x87 control word are defined by macros in float.h, and shown in this table:

—————————— XX XXXX = MCW EM - excepti on masks (1=handl e excepti on
——————————————— EM INVALID- invalid operation

EM _DENORMAL - denor mal oper and

EM ZERODI VI DE - di vi de by zero

EM OVERFLOW- overfl ow
EM_UNDERFLOW- under f | ow

EM | NEXACT - roundi ng was required
—————— XX ---- ---- = MCWPC - precisioncontrol

x
IR

x
I

------ 00---- ---- =PC 24 - singl e precision
------ 10 ---- ---- = PC 53 - doubl e precision
—————— 11 ---- ---- = PC 64 - extended precision
- XX-- ---- ---- = MCWRC - roundi ng control

RC NEAR - round t o near est

- Page 43 -

----01-- ---- ---- = RC_DOMN - round towards - I nf

----10-- ---- ---- = RC_UP - round towards +I nf

----11-- ---- ---- = RC_ CHOP - round towards zero

D G =MWIC- infinity control (obsolete,

| C_AFFINE - -1 nf <+l nf
. = | C_PRQJECTI VE - -Inf == +Inf

_control 87 uses the value of newcw and mask variables together to determine which bits of the FPU’s control
word should be set, and to what values. For each bit in mask that is set (equals to 1), the corresponding bit in
newcw specifies the new value of the same hit in the FPU’s control word, which _cont r ol 87 should set. Bits
which correspond to reset (zero) bits in mask are not changed in the FPU’s control word. Thus, using a zero value
for mask retrieves the current value of the control word without changing it.

The exception bits MCW EM (the low-order 6 bits) of the control word define the exception mask. That is, if a
certain bit is set, the corresponding exception will be masked, i.e., it will not generate an FP exception (which
normally causes signal SI GFPE to be delivered). A masked exception will be handled internally by the coprocessor.
In general, that means that it will generate specia results, such as NaN, Not-aNumber (e.g., when you attempt to
compute a sguare root of a negative number), denormalized result (in case of underflow), or infinity (e.g., in the
case of divison by zero, or when the result overflows).

By default, DJGPP startup code masks all FP exceptions.

The precision-control field MCW PC (bits 8 and 9) controls the interna precision of the coprocessor by selecting the
number of precision bits in the mantissa of the FP numbers. The values PC 24, PC 53, and PC_64 set the
precision to 24, 53, and 64-bit mantissa, respectively. This feature of the coprocessor is for compatibility with the
IEEE 745 standard and only affect the FADD, FSUB FSUBR FMUL, FDI V, FDI VR and FSQRT instructions.
Lowering the precision will not decrease the execution time of FP instructions.

The MCW PC field is set to use the full-precision 64-bit mantissa by the DJGPP startup code.

The rounding-control field MCW RC (bits 10 and 11) controls the type (round or chop) and direction (-Inf or +Inf)
of the rounding. It only affects arithmetic instructions. Set to round-to-nearest state by the DJGPP startup code.

The infinity-control bit MCW | C has no effect on 80387 and later coprocessors.
Return Value
The previous control word.

(Note that this is different from what _contr ol 87 from the Borland C library which returns the new control
word.)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

/* mask al | exceptions, except invalid operation */
_control 87 (0x033e, Oxffff);

COS
Syntax

#i ncl ude <mat h. h>
doubl e cos(doubl e x);

Description
This function computes the cosine of x (which should be given in radians).

Return Vaue

The cosine of x. If the absolute value of x is finite but greater than or equal to 263, the value is 1 (since for
arguments that large each bit of the mantissa is more than Pi). If the value of x is infinite or NaN the return value
is NaN and errno is set to EDOV

- Page 44 -

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Accuracy

In general, this function's relative accuracy is about 1.7*107(-16), which is close to the machine precision for a
doubl e. However, for arguments very close to Pi / 2 and its odd multiples, the relative accuracy can be many
times worse, due to loss of precision in the internal FPU computations. Since cos(Pi/2) is zero, the absolute
accuracy is till very good; but if your program needs to preserve high relative accuracy for such arguments, link
with -1 mand use the version of cos from | i bm a which does elaborate argument reduction, but is about three
times slower.

cosh
Syntax

#i ncl ude <mat h. h>

doubl e cosh(doubl e x);

Description
This function computes the hyperbolic cosine of x.

Return Vaue

The hyperbolic cosine of x. If the value of x is a NaN the return value is NaN and errno is set to EDOM If the
value of x is so large that the result would overflow a doubl e, the return value is | nf and errno is set to
ERANGE. If x is either a positive or a negative infinity, the result is +I nf, and err no is not changed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEKHXIXHKXIXHKHIXKXXKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

cprintf
Syntax

#i ncl ude <coni 0. h>

int cprintf(const char * format, ...);

Description

Like pri ntf (See printf), but prints through the console, taking into consideration window borders and text
attributes. There is currently a 2048-byte limit on the size of each individua cprintf call.

Return Vaue

The number of characters written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

cputs
Syntax

- Page 45 -

#i ncl ude <coni o. h>

int cputs(const char *_str);

Description
Puts the string onto the console. The cursor position is updated.

Return Vaue

Z€ero on SUCCess.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXKXIEKHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

creat
Syntax

#i ncl ude <fcntl . h>
#i ncl ude <sys/stat.h>/* for node definitions */

i nt creat(const char *fil ename, node_t node);

Description

This function creates the given file and opens it for writing. If the file exists, it is truncated to zero size, unless it
is read-only, in which case the function fails. If the file does not exist, it will be created read-only if mode does
not have S_| WUSR set.

Return Vaue

A file descriptor >= 0, or a negative number on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXXXIIXHXHKIEXHXHXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example
int fd =creat("data", S_|IRUSR S_| WSR);
wite(fd, buf, 1024);
cl ose(fd);

_creat

Syntax

#i ncl ude <i 0. h>

int creat(const char *path, int attrib);

Description

This is a direct connection to the MS-DOS creat function call, int 0x21, %ah = 0x3c, on versions of DOS earlier
than 7.0. On DOS version 7.0 or later _creat cals function int 0x21, %ax = 0x6c00

On platforms where the LFN APl (See _use Ifn, LFN) is available, _creat calls function 0x716C of Interrupt 21h,
to support long file names.

- Page 46 -

On FAT32 file systems file sizes up to 2*32-2 are supported. Note that WINDOWS 98 has a bug which only lets
you create these big files if LFN is enabled. In plain DOS mode it plainly works.

The file is set to binary mode.

This function can be hooked by File System Extensions (See File System Extensions). If you don't want this, you
should use _dos_creat (See _dos creat) or _dos_cr eat new (See _dos_creatnew).

Return Value
The new file descriptor, else -1 on error.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

_Creatnew
Syntax

#i ncl ude <fcntl . h>
#i ncl ude <dir. h>
#i ncl ude <i 0. h>

int creatnew(const char *path, int attrib, int flags);

Description

This function creates a file given by path and opens it, like _creat does, but only if it didn't already exist. If the
named file exists, _cr eat new fails. (In contrast, _creat opens existing files and overwrites their contents, see
See creat)

The attributes of the created file are determined by attrib. The file is usualy given the normal attribute (O0H). If
attrib is non-zero, additional attributes will be set. The following macros, defined on <di r. h>, can be used to
control the attributes of the created file (the associated numeric values appear in parentheses):

FA _RDONLY (1)
The file is created with the read-only bit set.

FA_Hl DDEN (2)
The file is created with the hidden bit set. Such files will not appear in directory listings unless you use
specia options to the commands which list files.

FA SYSTEM (4)
The file is created with the system hit set. Such files will not appear in directory listings unless you use
specia options to the commands which list files.

Other bits (FA_LABEL and FA DI REQ are ignored by DOS.

The argument flags controls the sharing mode and the fine details of how the file is handled by the operating
system. The following macros, defined on <f cnt | . h>, can be used for this (associated numeric values are given in
parentheses):

SH_COWPAT (00h)
Opens the file in compatibility mode, which allows any other process to open the file and read from the file
any number of times.

SH_DENYRW(10h)
Denies both read and write access by other processes.

SH_DENYWR (20h)
Denies write access by other processes.

SH_DENYRD (30h)
Denies read access by other processes.

SH_DENYNO (40h)
Allows read and write access by other processes, but prevents other processes from opening the file in
compatibility mode.

- Page 47 -

Note that the file is always open for both reading and writing; _cr eat new ignores any bits in the lower nibble of
flags (O_RDONLY, O WRONLY, etc.).

_creat new cals DOS function 716Ch when long file names are supported, 6C00h otherwise. (On DOS version
3.x, function 5B00h is called which ignores the value of flags, since function 6C00h is only supported by DOS 4.0
and later.)

The file handle returned by _cr eat new is set to binary mode.

This function can be hooked by the Filesystem Extensions handlers, as described in See File System Extensions |If
you don’'t want this, you should use _dos_cr eat new (See _dos creatnew) instead.

Return Vaue
The new file descriptor, else -1 on error.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

crlf2nl
Syntax

#i ncl ude <i 0. h>
size_t crlf2nl (char *buf, ssize_t len);

Description
This function removes Ctrl-M characters from the given buf.

Return Vaue

The number of characters remaining in the buffer are returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

__crt0_glob function
Syntax

#i ncl ude <crt 0. h>
char ** __crt0_glob_function(char *_argunent);

Description

If the application wishes to provide a wildcard expansion function, it should definea __crt 0_gl ob_functi on
function. It should return a list of the expanded values, or 0 if no expansion will occur. The startup code will free
the returned pointer if it is nonzero.

If no expander function is provided, wildcards will be expanded in the POSIX.1 style by the default

_crt0_glob_function from the C library. To disable expansion, provide a __crt0_gl ob_functi on that
always returns O.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

__crt0_load _environment_file
Syntax

#i ncl ude <crt 0. h>

void __crtO_l oad_environnent _file(char *_app_nane);

- Page 48 -

Description

This function, provided by libc.a, does all the work required to load additional environment variables from the file
dj gpp. env whose full pathname is given by the DJGPP environment variable. If the application does not use
environment variables, the programmer can reduce the size of the program image by providing a version of this
function that does nothing.

See _ crtO_setup_arguments.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

__crt0_setup_arguments
Syntax

#i ncl ude <crt0. h>

void crt0_setup_argunents(void);

Description

This function, provided by libc.a, does all the work required to provide the two arguments passed to main() (usually
argc and ar gv). If main() does not use these arguments, the programmer can reduce the size of the program
image by providing a version of this function that does nothing.

Note that since the default __crt 0_set up_argunents_functi on will not expand wildcards inside quotes (" or
), you can quote a part of the argument that doesn't include wildcards and still have them expanded. This is so you
could use wildcard expansion with filenames which have embedded whitespace (on LFN filesystems).

See _ crt0_load_environment file

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

_crt0_startup_flags
Syntax

#i ncl ude <crt 0. h>

int _crtO_startup flags =...;

Description

This variable can be used to determine what the startup code will (or will not) do when the program begins. This
can be used to tailor the startup environment to a particular program.

_CRTO_FLAG_PRESERVE_UPPER_CASE
If set, ar gv[O] is left in whatever case it was. If not set, all characters are mapped to lower case. Note
that if the ar gvO field in the stubinfo structure is present, the case of that part of ar gv[0] is not affected.

_CRTO_FLAG USE DOS_SLASHES
If set, reverse dashes (dos-style) are preserved in ar gv[0]. If not set, all reverse slashes are replaced with
unix-style dlashes.

_CRTO_FLAG_DROP_EXE_SUFFI X
If set, the . exe suffix is removed from the file name component of argv[O]. If not set, the suffix
remains.

_CRTO_FLAG _DROP_DRI VE_SPECI FI ER
If set, the drive specifier (e.g. C:) is removed from the beginning of ar gv[0] (if present). If not set, the
drive specifier remains.

_CRTO_FLAG DI SALLOW RESPONSE_FI LES

If set, response files (e.g. @cc. rf) are not expanded. If not set, the contents of the response files are used
to create arguments. Note that if the file does not exist, that argument remains unexpanded.

- Page 49 -

_CRTO_FLAG _KEEP_QUOTES
If set, the quote characters ', ", and \ will be retained in ar gv[] elements when processing command lines
passed by DOS and via syst em This is used by the r edi r program, and should only be needed if you
want to get the original command line exactly as it was passed by the caller.

_CRTO_FLAG FI LL_SBRK_MEMORY
If set, fill sbrk’d memory with a constant value. If not, memory gets whatever happens to have been in
there, which breaks some applications.

_CRTO_FLAG FI LL_DEADBEEF
If set, fill memory (above) with Oxdeadbeef, else fill with zero. This is especialy useful for debugging
uninitialized memory problems.

_CRTO_FLAG_NEARPTR
If set, set DS limit to 4GB which alows use of near pointers to DOS (and other) memory. WARNING,
disables memory protection and bad pointers may crash the machine or wipe out your data. This flag is
silently ignored on NT and DOSEmu, which disallow such huge selector limits.

_CRTO_FLAG NULLCK
If set, disable NULL pointer protection (if it can be controlled at all).

_CRTO_FLAG NM _SI GNAL
If set, enabled capture of NMI in exception code. This may cause problems with laptops and "green" boxes
which use it to wake up. Default is to leave NMIs alone and pass through to real mode code. You decide.

_CRTO_FLAG_NO_LFN
If set, disable usage of long file name functions even on systems (such as Windows 9X) which support them.
This might be needed to work around program assumptions on file name format on programs written
specifically for DOS. Note that this flag overrides the value of the environment variable LFN

_CRTO_FLAG_NONMOVE_SBRK
If set, the sbr k agorithm uses multiple DPMI memory blocks which makes sure the base of CS/DS/SS does
not change. This may cause problems with sbr k(0) values and programs with other assumptions about
sbrk behavior. This flag is useful with near pointers, since a constant pointer to DOS/Video memory can be
computed without needing to reload it after any routine which might call sbr k.

_CRTO_FLAG_UNI X_SBRK
If set, the sbr k agorithm resizes memory blocks so that the layout of memory is set up to be the most
compatible with Unix sbr k expectations. This mode should not be used with hardware interrupts, near
pointers, and may cause problems with QDPMI virtual memory.

If your program requires a specific shr k behavior, you should set either this or the previous flag, since the
default may change in different libc releases.

_CRTO_DI SABLE_SBRK_ADDRESS WRAP
If set, non-move sbr k should discard (ignore) memory blocks which are returned by DPMI which would
require address wrap to access (at addresses below the CS/DS base address). This bit is automatically set on
Windows NT systems which require it. It may be manually set on other systems which don't require it to
retain a more normal memory space layout and better memory protection. This bit can be set but should
never be cleared.

_CRTO_FLAG LOCK_MEMORY
If set, locks all memory as it is alocated. This effectively disables virtual memory, and may be useful if
using extensive hardware interrupt codes in a relatively small image size. The memory is locked after it is
sbrk’'ed, so the locking may fail. This bit may be set or cleared during execution. When sbr k uses
multiple memory zones, it can be difficult to lock all memory since the memory block size and location is
impossible to determine.

_CRTO_FLAG_PRESERVE_FI LENAME_CASE
If set, disables al filename letter-case conversions in functions that traverse directories (except
findfirst/findnext which always return the filenames exactly as found in the directory entry). When reset, al
filenames on 8+3 MSDOS filesystems and DOS-style 8+3 filenames on LFN systems are converted to
lower-case by functions such as ‘readdir’, get cwd, fi xpat h and others. Note that when this flag is set,
ALL filenames on MSDOS systems will appear in upper-case, which is both ugly and will break many
Unix-born programs. Use only if you know exactly what you are doing!

This flag overrides the value of the environment variable FNCASE, See preserve fncase

- Page 50 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

cscanf
Syntax

#i ncl ude <coni o. h>

int cscanf(const char *_format, ...);

Description

Like scanf (See scanf), but it reads from the standard input device directly, avoiding buffering both by DOS and
by the library. Each character is read by get che (See getche).

Return Vaue
The number of fields stored.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

ctermid
Syntax

#i ncl ude <uni std. h>

char *cternmid(char *s);

Description

This function returns the name of the current terminal device. Under MS-DOS, this is always "con".
Return Value

If sis null, returns pointer to interna static string "con". Otherwise, copies "con" to buffer pointed by s
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXEXHXXHXXIXHXIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

ctime
Syntax

#i ncl ude <ti nme. h>
char *ctinme(const tine_t *cal);

Description

This function returns an ASCII representation of the time in cal. This is equivalent to
asctinme(localtine(cal)). See asctime See locatime.

Return Vaue

The ascii representation of the time.

- Page 51 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

delay
Syntax

#i ncl ude <dos. h>

voi d del ay(unsi gned nmsec) ;

Description

This function causes the program to pause for msec milliseconds. It uses the i nt 15h delay function to relinquish
the CPU to other programs that might need it.

Some operating systems that emulate DOS, such as OS2, Windows/NT, Windows 2000 and Windows XP hang the
DOS session when the Pause key is pressed during the call to del ay. Plain DOS and Windows 3.X and 9X are
known to not have this bug. On Windows 2000 and XP to exit the pause press any key.

Some operating systems, such as Windows 2000 and XP which do not support i nt 15h. i nt lah is used instead
on these operating systems. This method has lower accuracy in the delay length.

Windows 2000 and XP delay resolution is 54.9 millisecond. Under Windows 2000 and XP the delay function uses
the Time Of Day Tick which occurs 18.2 times per second. This limits the accuracy of the delay to around 27
milliseconds on Windows 2000 and XP. On Windows 2000 and XP the Programable Interval Timer works and is a
source of higher resolution than delay currently uses. Unfortunately PIT and Time Of Day tic does not appear to be
coordinated.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

del ay(200); /* delay for 1/5 second */
delline
Syntax

#i ncl ude <coni 0. h>
voi d del l'i ne(voi d);

Description
The line the cursor is on is deleted; lines below it scroll up.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIXHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

- Page 52 -

_detect 80387
Syntax

#i ncl ude <dos. h>

int _detect_80387(void);

Description
Detects whether a numeric coprocessor is present. Note that floating-point code will work even without a
coprocessor, due to the existence of emulation.

Return Vaue

1 if a coprocessor is present, O if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

if (_detect 80387())
printf("You have a coprocessor\n");

difftime
Syntax

#i ncl ude <ti ne. h>

double difftime(time_t t1, tine_t t0);

Description
This function returns the difference in time, in seconds, from tO to tl1

Return Vaue

The number of seconds.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

time t t1, tO;

doubl e el apsed;

ti me(&0);

do_sonet hing();

time(&t1);

el apsed =difftime(tl, t0);

dirname
Syntax

#i ncl ude <uni std. h>

char * dirnane (const char *fnane);

Description

This function returns the directory part of the argument fname copied to a buffer alocated by calling mal | oc. The
directory part is everything up to but not including the rightmost slash (either forward- or backslash) in fname If
fname includes a drive letter but no dashes, the function will return x: . where x is the drive letter. If fname
includes neither the drive letter nor any slashes, ". " will be returned. Trailing slashes are removed from the result,
unless it is a root directory, with or without a drive letter.

- Page 53 -

Return value

The directory part in malloc’ed storage, or a NULL pointer of either there's not enough free memory, or fname is a
NULL pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

printf ("The parent of current directoryis %\n",
di rname (getcwd (0, PATH MAX)));

disable
Syntax

#i ncl ude <dos. h>

i nt di sabl e(void);

Description
This function disables interrupts.

See enable.

Return Value
Returns nonzero if the interrupts had been enabled before this call, zero if they were aready disabled.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

Example

int ints_were_enabl ed;

i nts_were_enabl ed = di sabl e();
. . . dosome stuff . . .

if (ints_were_enabl ed)

enabl e();

div
Syntax
#i ncl ude <stdlib. h>

div_t div(int numerator, int denom nator);

Description

Returns the quotient and remainder of the division numerator divided by denominator. The return type is as follows:
t ypedef struct {
i nt quot ;

int rem
} div_t;

Return Vaue

The results of the division are returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 54 -

Example

div_td:div(4 3);
printf("42 = %l x 3 + %\ n" , d.quot, d.ren);

di v(+40, +3) ={ +13, +1}
di v(+40, -3) ={ - 13 +1}
div(-40, +3) ={ -13, -1}
div(-40, -3) ={ +13, -1}

__digpp_exception_toggle
Syntax

#i ncl ude <sys/ exceptn. h>

void _djgpp_exception_toggle(void);

Description

This function is automatically called when the program exits, to restore handling of all the exceptions to their normal
state. You may also call it from your program, around the code fragments where you need to temporarily restore all
the exceptions to their default handling. One example of such case might be a call to a library function that spawns
a child program, when you don’t want to handle signals generated while the child runs (by default, those signals are
also passed to the parent).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No
Example

__dj gpp_exception_toggle();

systen("nyprog");
__dj gpp_exception_toggle();

__digpp_map physical_memory
Syntax

#i ncl ude <dpm . h>

int __djgpp_rmap_physical _nenory(void *our_addr, unsi gned | ong num byt es,
unsi gned | ong phys_addr);

Description

This function attempts to map a range of physica memory over the specified addresses. One common use of this
routine is to map device memory, such as a linear frame buffer, into the address space of the calling program.
our_addr, num_bytes and phys addr must be page-aligned. If they are not page-aligned, er r no will be set to

El NVAL and the routine will fail.

This routine properly handles memory ranges that span multiple DPMI handles, while
__dpm _map_device_i n_nmenory_bl ock does not.

Consult DPMI documentation on function 0508H for details on how this function works. Note: since 0508H is a
DPMI service new with DPMI 1.0, this call will fail on most DPMI 0.9 servers. For your program to work on a
wide range of systems, you should not assume this call will succeed.

Even on failure, this routine may affect a subset of the pages specified.

Return Vaue

0 on success, -1 on failure. On failure, err no will be set to El NVAL for illega input parameters, or EACCES if
the DPMI server rejected the mapping reguest.

- Page 55 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

i f (__djgpp_rmap_physical _nmenory (nmy_page_al i gned_nenory, 16384,
0x40000000))
printf ("Failedto nap physical addresses!\n");

__digpp_memory_handle
Syntax

#i ncl ude <crt0. h>

__djgpp_sbrk_handl e *__dj gpp_nenory_handl e(unsi gned addr ess) ;

Description

This function returns a pointer to a structure containing the memory handle and program relative offset associated
with the address passed. It is just a convenient way to process the _ djgpp_memory _handle list.

Return Value
A pointer to the _ djgpp_sbrk_handle associated with a particular address.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

__digpp_memory_handle list
Syntax

#i ncl ude <crt 0. h>
extern __djgpp_sbrk handle djgpp_nenory _handl e |ist[256];

Description

This array contains a list of memory handles and program relative offsets alocated by sbrk() in addition to the
handle allocated by the stub. These values are normally not needed unless you are doing low-level DPMI page
protection or memory mapping.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No

Example

#i ncl ude <crt0. h>

for(i=0; i<256; i++) {
int h, a, s;
h=_djgpp_nenory_handle list[i].handle;
a=__djgpp_nenory handle list[i].address;
s = __djgpp_nenory_handl e_size[i];
if(a==0&&i !'=0) break;

ri

nt f (" handl e[%d] =0x% base=0x% si ze=0x%\n",i, h, a,s);

__digpp_memory _handle size
Syntax

#i ncl ude <crt 0. h>
ext ern unsi gned __ dj gpp_nenory_handl e_si ze[256] ;

Description

- Page 56 -

This array contains a list of the sizes of the memory regions alocated by sbrk() in addition to the memory region
allocated by the stub. These values are normally not needed unless you are dumping the memory blocks.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

#i ncl ude <crt 0. h>

for(i=0; i<256; i++) {
int h, a, s;
h=__djgpp_nenory_handl e _list[i].handle;
a=__djgpp_nenory handle list[i].address;
s = __djgpp_nenory_handl e_size[i];
if(a==0¢&&i !'=0) break;

ri

nt f (" handl e[%d] =0x% base=0x% si ze=0x%\n",i, h,a,s);

__digpp_nearptr_disable
Syntax

#i ncl ude <sys/ nearptr. h>

voi d __dj gpp_nearptr_disabl e(void);

Description
This function disables near pointers, and re-enables protection. See djgpp_nearptr_enable.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

__digpp_nearptr_enable
Syntax

#i ncl ude <sys/ nearptr. h>
int __djgpp_nearptr_enabl e(void);

Description

This function enables "near pointers’ to be used to access the DOS memory arena. Sort of. When you cal this
function, it will return nonzero if it has successfully enabled near pointers. If so, you must add the value
__dj gpp_conventi onal _base to the linear address of the physical memory. For example:

if (__djgpp_nearptr_enabl e())
{

short *screen = (short *)(__dj gpp_conventi onal base + 0xb8000);
for (i=0; i<80*24*2; i ++)

screen[i] = 0x0720;

__dj gpp_nearptr_disable();

}

The variable __dj gpp_base_addr ess contains the linear base address of the application’s data segment. You
can subtract this value from other linear addresses that DPMI functions might return in order to obtain a near pointer
to those linear regions as well.

If using the Unix-like sbrk algorithm, near pointers are only valid until the next mal | oc, syst em spawn*, or
exec* function call, since the linear base address of the application may be changed by these calls.

WARNING: When you enable near pointers, you disable all the protection that the system is providing. If you are
not careful, your application may destroy the data in your computer. USE AT YOUR OWN RISK!

- Page 57 -

Return Vaue

Returns 0 if near pointers are not available, or nonzero if they are.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__digpp_set_ctrl ¢
Syntax

#i ncl ude <sys/ exceptn. h>

int __djgpp_set _ctrl_c(int enable);

Description

This function sets and resets the bit which controls whether signals SI G NT and SI GQUI T (See signal) will be
raised when you press the INTR or QUIT keys. By default these generate signals which, if uncaught by a signal
handler, will abort your program. However, when you cal the set node library function to switch the console
reads to binary mode, or open the console in binary mode for reading, this generation of signals is turned off,
because some programs want to get the ~C and ~\ characters as any other character and handle them by themselves.

__djgpp_set_ctrl _c lets you explicitly determine the effect of INTR and QUIT keys. When called with a
non-zero, positive value of enable, it arranges for SI G NT and SI GQUI T signals to be generated when the
appropriate key is pressed; if you call it with a zero in enable, these keys are treated as normal characters. If
enable is negative, __dj gpp_set _ctrl _c returns the current state of the signal generation, but doesn’'t change it.

For getting similar effects via the POSIX t er m os functions, see See tcsetattr.

Note that the effect of CtrlBREAK key is unaffected by this function; use the _go32_want _ctrl _break library
function to control it.

Also note that in DJGPP, the effect of the interrupt signal will only be seen when the program is in protected mode
(See signal, Signa Mechanism, for more details). Thus, if you press Ctrl-C while your program calls DOS (e.g.,
when reading from the console), the SI A NT signal handler will only be called after that call returns.

Return Vaue

The state of SI G NT and SI GQUI T generation before the call: 0 if it was disabled, 1 if it was enabled. If the
argument enable is negative, the state is not altered.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

set node(fileno(stdin), O Bl NARY);
if (isatty(fileno(stdin)));
__djgpp_set_ctrl _c(1);

__digpp_set_page_attributes
Syntax

#i ncl ude <dpm . h>

i nt dj gpp_set _page_attri butes(voi d *our_addr, unsigned | ong num bytes,

unsi gned short attributes);

Description

This function sets the DPMI page attributes for the pages in a range of memory. our_addr and num_bytes must be
page-aligned. If they are not page-aligned, errno will be set to EIl NVAL and the routine will fail.

Consult DPMI documentation on function 0507H for the meaning of the attributes argument. Note: since 0507H is

- Page 58 -

a DPMI service new with DPMI 1.0, this call will fail on most DPMI 0.9 servers. For your program to work on a
wide range of systems, you should not assume this call will succeed.

Even on failure, this routine may affect a subset of the pages specified.

Return Vaue

0 on success, -1 on failure. On failure, errno will be set to EI NVAL for illegal input parameters, or EACCES if
the DPMI server regjected the attribute setting.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXXIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
if (__djgpp_set page attributes (nmy_page_aligned nenory, 16384, 0))
printf ("Failedto nake pages uncomitted!\n");
__digpp_set_sigint_key
Syntax

#i ncl ude <sys/ exceptn. h>

void __djgpp_set_sigint_key(int new key);

Description

This function changes the INTR key that generates the signal SI G NT. By default, Ctrl-C is set as the INTR key.
To replace it with another key, put the scan code of the new INTR key into the bits 0-7 and the required keyboard
status byte into bits 8-15 of new_key, and call this function. Here's how the keyboard status bits are defined:

Bit

76543210 Meani ng

....... X Ri ght Shift key
...... X. Left Shift key
..... X.. crl key
oo X .. At key
... X ... Scroll Lock key

X NumLock key

X Caps Lock key
X ... I nsert

A 1 in any of the above bits means that the corresponding key should be pressed; a zero means it should be
released. Currently, al but the lower 4 bits are always ignored by the DJGPP keyboard handler when you set the
INTR key using this function.

For example, the default Ctrl-C key should be passed as 0x042¢e, since the scan code of the C key is 2Eh, and
when the Ctrl key is pressed, the keyboard status byte is 04h.

To disable SI G NT generation, pass zero as the argument (since no key has a zero scan code).

This function will set things up so that the left Shift key doesn't affect Ctrl- and Alt-modified keys; the right Shift
key won't affect them either, unless its bit is explicitly set in new_key. This means that Ctrl-C and Ctrl-c will both
trigger SI G NT if 0x042e is passed to this function.

The DJGPP built-in keyboard handler pretends that when the right Shift key is pressed, so is the left Shift key (but
not vice versa).

For getting similar effects via the POSIX t er mi os functions, see See tcsetattr.

Return Vaue
The previous INTR key (scan code in bits 0-7, keyboad status in bits 8-15).

- Page 59 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No
Example

__djgpp_set _sigint_key(0x0422); /* make Ctrl-g generate SIA NT' s */

__digpp_set_sigquit_key
Syntax

#i ncl ude <sys/ exceptn. h>

void djgpp_set_sigquit_key(int new key);

Description

This function changes the QUIT key that generates the signal SI GQUI T. By default, Ctrl-\is set as the QUIT key.
To replace it with another key, put the scan code of the new QUIT key into the bits 0-7 and the required keyboard
status byte into bits 8-15 of new_key, and call this function. Here's how the keyboard status bits are defined:

Bi t

76543210 Meani ng

....... X Ri ght Shift key
...... X. Left Shift key
..... X.. carl key

... XL At key
... X ... Scroll Lock key
X NumLock key

X Caps Lock key
X I nsert

A 1 in any of the above bits means that the corresponding key should be pressed; a zero means it should be
released. Currently, al but the lower 4 bits are always ignored by the DJGPP keyboard handler when you set the
QUIT key with this function.

For example, the default Ctrl-\ key should be passed as 0x042b, since the scan code of \ is 2Bh and when the Ctrl
key is pressed, the keyboard status byte is 04h.

To disable SI GQUI T generation, pass zero as the argument (since no key has a zero scan code).

This function will set things up so that the left Shift key doesn't affect Ctrl- and Alt-modified keys; the right Shift
key won't affect them either, unless its bit is explicitly set in new_key. This means that Ctrl-\ and Ctrl-| will both
trigger SI GQUI T if 0x042b is passed to this function.

The DJGPP built-in keyboard handler pretends that when the right Shift key is pressed, so is the left Shift key (but
not vice versa).

For getting similar effects via the POSIX t er m os functions, see See tcsetattr.

Return Value
The previous QUIT key (scan code in bits 0-7, keyboad status in bits 8-15).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

- Page 60 -

__djgpp_set_sigint_key(0); /* disable SIGQU T s */

__digpp_share flags
Syntax
#i ncl ude <fcntl . h>
int __djgpp_share_flags =...;
Description
This variable controls the share flags used by open (and hence f open) when opening a file.

If you assign any value other than O to this variable libc will use that value for the sharing bits when if calls DOS

to open the file. But if you specify any share flag in the open call then these flags will remain untouched. In this

way _ dj gpp_share_fl ags acts just like a default and by default is O ensuring maximum compatibility with
older versions of djgpp.

If you don’'t know how the share flags act consult any DOS reference. They allow to share or protect a file when
it's opened more than once by the same task or by two or more tasks. The exact behavior depends on the exact
case. One interesting thing is that when the file is opened by two tasks under Windows the results are different if
you use Windows 3.1 or Windows 95. To add even more complexity Windows 3.1 is affected by SHARE. EXE

The available flags are:

SH_COWPAT 0x0000
That's the compatible mode.

SH_DENYRWO0x0010
Deny read and deny write.

SH_DENYWR 0x0020
Deny write.

SH_DENYRD 0x0030
Deny read.

SH_DENYNO 0x0040
No deny.

Of course these flags are DOS specific and doesn’'t exist under other OSs; and as you can imagine
__dj gpp_share_fl ags is djgpp specific.

See open. See fopen.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

__djgpp_spawn
Syntax

#i ncl ude <process. h>

i nt dj gpp_spawn(i nt node, const char *path, char *const argv|[],

char *const envp[], unsigned | ong fl ags);

Description

This function runs other programs like spawnve (See spawn*) except that an additional parameter flags is passed.
flags can include the following flags to control the details of finding the program to run:

SPAVWN_EXTENSI ON_SRCH
If an extension is not included in path, search for a file path with the extensions . com . exe, . bat, and
.btm

- Page 61 -

SPAVWN_NO_EXTENSI ON_SRCH
Do not perform an extension search. If the file has an extension, it must aready be included in path.

Return Vaue
See spawn*.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

char *args[] ={
"gcc. exe",

-vY,
“hello.c",
0
b
__dj gpp_spawn(P_WAIT, "/dev/env/DJD R/ bin/gcc.exe", args, NULL,
SPAWN_NO_EXTENSI ON_SRCH) ;

__digpp_traceback exit

Syntax

#i ncl ude <si gnal . h>

void djgpp_traceback _exit(int signo);

Description

This function is a signal handler which will print a traceback and abort the program. It is called by default by the
DJGPP signal-handling code when any signal except SI GQUI T is raised (SI GQUI T is by default discarded).

You can use this function to get the Unix behavior of aborting the program on SI GQUI T (see the example below).

When this function is called directly, pass the signal number as its signo argument.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
signal (SIGQUI T, _ djgpp_traceback exit);

_djstat_describe lossage
Syntax

#i ncl ude <stdi o. h>

voi d _djstat_describe_| ossage(FI LE *fp);

Description

Accesses the global variable _dj stat _fail _bits (See djstat fail _bits) and prints to the stream given by fp a
human-readable description of the undocumented DOS features which the last call to stat () or fstat () failed to
use. (If fp is zero, the function prints to stderr.) If the last call to f ?stat () didn't set any failure bits, an “‘al’s
well”’ message is printed. This function is designed to help in debugging these functions in hostile environments
(like DOS clones) and in adapting them to the future DOS versions. If you ever have any strange results returned
by f ?stat (), please cal this function and post the diagnostics it printed to the DJGPP mailing list.

The diagnostic messages this function prints are amost self-explanatory. Some explanations of terminology and
abbreviations used by the printed messages will further clarify them.

- Page 62 -

SDA (Swappable DOS Area) -- this is an internal DOS structure. st at () uses it to get the full directory entry
(including the starting cluster number) of a file. The pointer to SDA found by st at () is trusted only if we find
the pathname of our file at a specific offset in that SDA.

SFT (System File Table) -- another internal DOS structure, used in file operations. f st at () uses it to get full
information on a file given its handle. An SFT entry which is found by f stat () is only trusted if it contains
files size and time stamp like those returned by DOS functions 57h and 42h. Novell NetWare 3.x traps DOS file
operations in such a way they never get to SFT, so some faillure messages refer specifically to Novell.

Hashing -- the fall-back method of returning a unique inode number for each file. It is used whenever the starting
cluster of a file couldn’t be reliably determined.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

if (stat(path, &tat_ buf))
_djstat_describe_| ossage((FILE *)0);

_djstat_fail_bits
Syntax

#i ncl ude <sys/stat. h>
ext ern unsi gned short _djstat_fail_bits;

As proper operation of stat (See staf) and f st at (See fstat) depend on undocumented DOS features, they could
faill in some incompatible environment or a future DOS version. If they do, the _dj stat _fail _bits variable
will have some of its bits set. Each bit describes a single feature which was used and failed. The function
_djstat_describe_| ossage (See _djstat_describe lossage) may be called to print a human-readable description
of the bits which were set by the last call to f ?st at. This should make debugging f ?st at failures in an
unanticipated environment a lot easier.

The following bits are currently defined:

_STFAI L_SDA
Indicates that Get SDA call failed.

_STFAI L_OSVER
Indicates an unsupported DOS version (less than 3.10 for st at or less than 2.0 for f st at).

_STFAI L_BADSDA
The pointer to SDA was found to be bogus.

_STFAI L_TRUENAME
Indicates that _t r uename (See _truename) function call failed.

_STFAI L_HASH
Indicates that the starting cluster of the file is unavailable, and inode number was computed by hashing its
name.

_STFAI L_LABEL
The application requested the time stamp of a root dir, but no volume label was found.

_STFAI L_DCOUNT
The number of SDA reported is ridiculoudly large (probably an unsupported DOS clone).

_STFAIL_WRITEBI T
fstat was asked to get write access hit of a file, but couldn’t.

_STFAI L_DEVNO
fstat failed to get device number.

- Page 63 -

_STFAI L_BADSFT
An SFT entry for this file was found by f st at, but its contents can’t be trusted because it didn't match file
size and time stamp as reported by DOS.

_STFAI L_SFTI DX
The SFT index in Job File Table in program’s PSP is negative.

_STFAI L_SFTNF
The file entry was not found in the SFT array.

Below are some explanations of terminology and abbreviations used by the printed messages, which will further
clarify the meaning of the above bits and their descriptions printed by dj stat _descri be_| ossage (See
_djstat_describe lossage).

SDA (Swappable Data Ared) -- this is an internal DOS structure. st at uses it to get the full directory entry
(including the starting cluster number) of a file. The pointer to SDA found by st at is trusted only if we find the
pathname of our file at a specific offset in that SDA.

SFT (System File Table) -- another internal DOS structure, used in file operations. f st at uses it to get full
information on a file given its handle. An SFT entry which is found by f st at is only trusted if it contains files
size and time stamp like those returned by DOS functions 57h and 42h. Novell NetWare 3.x traps DOS file
operations in such a way they never get to SFT, so some faillure messages refer specifically to Novell.

Hashing -- the fall-back method of returning a unique inode number for each file. It is used whenever the starting
cluster of a file couldn’t be reliably determined. The full pathname of the file is looked up in a table of files seen
earlier (hashing is used to speed the lookup process). If found, the inode from the table is returned; this ensures that
a given file will get the same inode number. Otherwise a new inode number is invented, recorded in the table and
returned to caller.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

_djstat_flags
Syntax

#i ncl ude <sys/stat. h>
ext ern unsi gned short _djstat_fl ags;

This variable contains bits for some fields of struct stat which are expensive to compute under DOS. Any
such computation is only done by st at (See staf) or f st at (See fstat) if the corresponding bit in
_djstat_flags iscleared By default, al the bits are cleared, so applications which don't care, automagically
get a full version, possibly at a price of performance. To get the fastest possible version for your application, clear
only the bits which you need and set al the others.

The following bits are currently defined:

STAT| NODE
Causes stat and f st at to compute the st _i no (inode number) field.

_STAT_EXEC_EXT
Tells stat and f st at to compute the execute access hit from the file-name extension. st at and f st at
know about many popular file-name extensions, to speed up the computation of the execute access bit.

_STAT_EXEC MAG C
Tells st at and f st at to compute the execute access bit from magic signature (the first two bytes of the
file). Use i s_execut abl e (See _is executable), if the file-name extension is not enough for this.

Computing the execute access bit from the magic signature is by far the most expensive part of st at and
fstat (because it requires to read the first two bytes of every file). If your application doesn't care about
execute access bit, setting _ STAT_EXEC_MAG C will significantly speed it up.

Note that if _STAT _EXEC MAQ Cis set, but _STAT _EXEC EXT is not, some files which shouldn’t be
flagged as executables (e.g., COFF *. o object files) will have their execute bit set, because they have the
magic number signature at their beginning. Therefore, only use the above combination if you want to debug
the list of extensions provided in i s_exec. ¢ file.

- Page 64 -

_STAT_DI RSl ZE
Causes st at to compute directory size by counting the number of its entries (unless some friendly network
redirector brought a true directory size with it). Also computes the number of subdirectories and sets the
number of links st _nl i nk field.

This computation is also quite expensive, especialy for directories with large sub-directories. If your
application doesn’'t care about size of directories and the st _nl i nk member, you should set the
_STAT_DI RSI ZE hit in _dj stat_fl ags.

_STAT_ROOT_TI ME
Causes st at to try to get time stamp of root directory from its volume label entry, if there is one.

_STAT WRITEBI T
Tells f st at that file's write access bit is required (this needs special treatment only under some versions of
Novell Netware).

Note that if you set a hit, some failure bits in _dj stat _fail _bits (See djstat fail bits might not be set,
because some computations which report failures are only done when they are required.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXKXXKXXKXXKXXKXXXXXXXX NOo No

diclose
Syntax

#i ncl ude <dl fcn. h>

i nt dlclose (void *handl e);

Description

This function closes a dynamic module loaded with dl open (See dlopen). The memory is freed and all pointers
into that image become invalid.

Return Vaue

Returns 0 on success, non-zero value on failure. More detailed error information can be obtained using dl er r or
(See dierror).

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXXXXKIIXKXXKXXXXXXXXKXXXXXXXXXX No 1003.1-2001; not
1003.2-1992

dlerror
Syntax

#i ncl ude <dl fcn. h>
char *dl error (void);

Description

This function returns a character string with more information on the last error that occurred during dynamic linking
processing.

Return Vaue

Returns NULL if no errors, pointer to error string if available.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXXXXKIIXKXXKXXKXXKXXKXXXXXXXXXX No 1003.1-2001; not
1003.2-1992
dlerrstatmod

- Page 65 -

Syntax

#i ncl ude <sys/ dxe. h>

extern void (*dl errstatnod) (const char *nodul e);

Description

This is a pointer to a function (e.g. replaceable) containing a pointer to a function that is called when static linking
fails because of missing module. Note that due to delayed nature of static linkage, the error can pop up very late!
If you want to check it at startup, call the "load MODULENAME" function explicitly. The function should never
return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

dlerrstatsym
Syntax

#i ncl ude <sys/ dxe. h>

extern void (*dl errstatsym) (const char *nodul e, const char *synbol);

Description

This is a pointer to a function that is being called during static linking when the dynamic loader finds that some
symbol is missing from dynamic module. The function should never return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

dlopen
Syntax

#i ncl ude <dl fcn. h>

voi d *dl open (const char *fil enane, int node);

Description
This function loads a dynamic executable image, whose file name is pointed to by filename into memory and returns
a handle associated with the image for use with the dl sym (See disym) and dl cl ose (See diclose) functions.

If filename contains a path it is used, else it searches the path specified by the environment variable
LD LIBRARY_PATH. The typical extension used is . DXE, and these dynamic loadable images are created using
dxe3gen (See dxe3gen, , dxe3gen, utils).

The mode field is a combination of RTLD xxx flags, of which only RTLD GLOBAL works (others are defined in
dl f cn. h for Unix compatibility). The RDLD_GLOBAL flag means al symbols in this module are made public and
subsequently loaded modules with unresolved symbols will ‘see’ them and will try to find the unresolved references
through them.

Return Vaue

NULL on failure, handle for the loaded image on success.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIEXHXKKIEXHXXKXKHXXXXXXXXXXXXXXXXXXX NO 1003.1-2001; not
1003.2-1992

diregsym
Syntax

#i ncl ude <sys/ dxe. h>

- Page 66 -

i nt dl regsym(const dxe_synbol _tabl e *syntab);

Description
This function registers a table of symbols to be exported into the loaded modules.

You can register any number of such tables. When a module with unresolved external symbols is loaded, al these
tables are searched for the respective symbol. If none is found, the last-resort handler is called. If even the
last-resort handler cannot return an address, an error condition is raised.

The effect of dl r egsymis cumulative. That is, you can call it multiple times to register severa export symbol
tables, and all of them will be taken into account when loading a new module.

Return Vaue

Returns number of symbol tables in use.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

disym
Syntax

#i ncl ude <dl fcn. h>

voi d *dl sym(voi d *handl e, const char *synbol nane);

Description
This function get the address of a symbol defined in a shared loadable image.

The handle argument is the value returned from a call to dl open, or the special value RTLD_DEFAULT which will
search al symbols in the globa scope.

The symbol_name is the assembler name, not the C name. For DJGPP/COFF prepend an underscore in front.

Return Vaue

Returns NULL on failure, pointer to requested symbol on success.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXXXXKIIXKXXKXXXXXXXXKXXXXXXXXXX No 1003.1-2001; not
1003.2-1992

disymresolver
Syntax

#i ncl ude <sys/ dxe. h>

extern void *(*dl synresol ver) (const char *symmane);

Description

This is a pointer to a function (e.g. replaceable) containing a pointer to a function that is called when an unresolved
symbol cannot be found in all the symbol tables that the dynamic loader have at his disposition. For example, as a
last resort, the routine could return the address of a dummy function -- this allows loading modules that you don’t
know in advance which unresolved symbols it contains. Of course, the functions that use this last-resort dummy
function will be, most likely, unuseable but at least you may query the address of some table inside the module, for
example, and process it somehow.

Return Vaue

The handler should return NULL to rise a error condition, otherwise it should return a valid address.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
- Page 67 -

dlunregsym
Syntax

#i ncl ude <sys/ dxe. h>
i nt dlunregsym(const dxe_synbol table *syntab);

Description

This function removes a table of symbols exported into the loaded modules. For completeness - the inverse of
dl regsymand rarely used.

Return Vaue

Returns number of symbol tables in use if success, -1 on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

_doprnt
Syntax

#i ncl ude <stdi 0. h>
int _doprnt(const char *fornat, void *parans, FILE *file);

Description

This is an internal function that is used by all the pri ntf style functions, which simply pass their format,
arguments, and stream to this function.

See printf, for a discussion of the alowed formats and arguments.

Return Vaue

The number of characters generated is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXKXXXXXKXXKXXXKXXXXXXXXXX NO No

Example

int args[] ={ 1, 2, 3, 66};
_doprnt ("% % % %€\ n", args, stdout);

_dos close
Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_cl ose(int handl e);

Description
This is a direct connection to the MS-DOS close function call (%ah = 0x3E). This function closes the specified file.

See _dos open. See _dos creat. See _dos creathew. See _dos read. See _dos write

Return Vaue

Returns 0 if successful or DOS error code on error (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No

- Page 68 -

Example

i nt handl e;

_dos_creat ("FOO. DAT", _A ARCH, &handl e);

'_dbs_cl o_se(handl e) ;
_dos_commit
Syntax

#i ncl ude <dos. h>

unsi gned int _dos_commi t (i nt handl e);

Description
This is a direct connection to the MS-DOS commit function cal (%ah = 0x68). This function flushes DOS internal
file buffers to disk.

Return Vaue

Returns 0 if successful or DOS error code on error (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXXIXKIXKXXXKXXKXXXXXXXXXXX NO No

Example
_dos_write(handl e, buffer, 1000, & esult);
_dos_conmi t (handl e);
_dos_cl ose(handl e);

_dos creat
Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_creat (const char *fil enanme, unsi gned short attr,
i nt *handl e) ;

Description

This is a direct connection to the MS-DOS creat function call (%ah = 0x3C). This function creates the given file
with the given attribute and puts file handle into handle if creating is successful. If the file already exists it
truncates the file to zero length. Meaning of attr parameter is the following:

_A NORVAL (0x00)
Normal file (no read/write restrictions)

_A RDONLY (0x01)
Read only file

_A _H DDEN (0x02)
Hidden file

_A SYSTEM (0x04)
System file

_A ARCH (0x20)
Archive file

See aso See _dos open, See _dos creatnew, See _dos read, See dos write, and See _dos close
This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is

available. For LFN-aware functions with similar functionality see See creat, and See _creatnew. Also see See credt,
and See open, which are Posix-standard.

- Page 69 -

Return Vaue

Returns 0 if successful or DOS error code on error (and sets er r no)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
i nt handl e;
if (! _dos_creat("FOO DAT", _A ARCH, &handle))
put s("Creati ng was successful !'");
_dos_creatnew

Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_creatnew const char *fil enane, unsi gned short attr,
i nt *handl e) ;
Description

This is a direct connection to the MS-DOS create unique function call (%ah = 0x5B). This function creates the
given file with the given attribute and puts file handle into handle if creating is successful. This function will fail if
the specified file exists. Meaning of attr parameter is the following:

_A NORVAL (0x00)
Normal file (no read/write restrictions)

_A RDONLY (0x01)
Read only file

_A _H DDEN (0x02)
Hidden file

_A SYSTEM (0x04)
System file

_A ARCH (0x20)
Archive file

See aso See _dos open, See _dos creat, See _dos read, See _dos write, and See _dos close
This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is

available. For LFN-aware functions with similar functionality see See _creatnew, and See creat. Also see See credt,
and See open, which are Posix-standard.

Return Vaue

Returns 0 if successful or DOS error code on error (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

i nt handl e;

if (! _dos_creatnew("FOO DAT", _A NORMAL, &handle))

put s("Creati ng was successful !''");

_dos findfirst
Syntax

#i ncl ude <dos. h>

- Page 70 -

unsi gned int _dos_findfirst(char *nanme, unsignedint attr,
struct find_ t *result);

Description

This function and the related _dos_fi ndnext (See _dos findnext) are used to scan directories for the list of files
therein. The name is a wildcard that specifies the directory and files to search. result is a structure to hold the
results and state of the search, and attr is a combination of the following:

_A NORMAL (0x00)
Normal file (no read/write restrictions)

_A RDONLY (0x01)
Read only file

_A_H DDEN (0x02)
Hidden file

_A_SYSTEM (0x04)
System file

_A VCOLI D (0x08)
Volume ID file

_A SUBDI R (0x10)
Subdirectory

_A ARCH (0x20)
Archive file

The results are returned in a st ruct find_t defined on <dos. h> as follows:

struct find_t {

char reserved[21];

unsi gned char attrib;
unsi gned short w _ti ne;
unsi gned short w _date;
unsi gned | ong si ze;
char nane[256] ;

i
See _dos findnext.

This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is
available. For LFN-aware functions with similar functionality see See findfirst, and See findnext. Also see See
opendir, and See readdir, which are Posix-standard.

Return Vaue

Zero if a match is found, DOS error code if not found (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
Example
#i ncl ude <dos. h>

struct find t f;

if (! dos findfirst("*.DAT", &, A ARCH| _A RDONLY))
{

do

{

printf ("% 14s %40u %02u: ¥YO2u: YO2u YO2u/ ¥O2u/ ¥O4u\ n",
f. name,

f.size,

- Page 71 -

ime >> 11) & Ox1f,
ime >>5) & Ox3f,

ime & Ox1f) * 2,

ate >>5) & 0xOf,

ate & Ox1f),

date >>9) & Ox7f) + 1980);
(!_dos_findnext (&));

R e T i Y e N

_dos findnext
Syntax

#i ncl ude <dos. h>

unsi gned int _dos_findnext(struct find t *result);

Description

This finds the next file in the search started by _dos_fi ndfirst. See See dos findfirst, for the description of
struct find_t.

This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is
available. For LFN-aware functions with similar functionality see See findfirst, and See findnext. Also see See
opendir, and See readdir, which are Posix-standard.

Return Vaue

Zero if a match is found, DOS error code if not found (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

_dos _getdate
Syntax

#i ncl ude <dos. h>

voi d _dos_getdate(struct dosdate t *date);

Description
This function gets the current date and fills the date structure with these values.

struct dosdate_t {

unsi gned char day; /* 1-31 */

unsi gned char nonth; /* 1-12 */

unsi gned short year; /* 1980-2099 */

unsi gned char dayof week; /* 0-6, 0=Sunday */
b

See dos setdate See dos gettime See dos settime

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

struct dosdate_t date;

_dos_get dat e(&dat e) ;

_dos_getdiskfree

- Page 72 -

Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_getdi skfree(unsigned int drive,
struct di skfree_t *di skspace);

Description
This function determines the free space on drive drive (O=default, 1=A:, 2=B:, etc.) and fills diskspace structure.
The members of struct di skfree_t are defined by <dos. h> as follows:

struct di skfree t {

unsi gned short total clusters;

unsi gned short avail _clusters;

unsi gned short sectors_per_cluster;
unsi gned short bytes_per_sector;

Return Vaue

Returns with O if successful, non-zero on error (and sets er r no to El NVAL).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

struct di skfree_ t df;
unsi gned | ong freebyt es;

if (! _dos_getdi skfree(0, &f))
{

freebytes = (unsigned | ong)df. avail clusters *

(unsi gned | ong) df . byt es_per sector *

(unsigned | ong) df . sectors_per_cl uster;

printf("Thereis %ufree bytes onthe current drive.\n", freebytes);

el se
printf("Unableto get free di sk space.\n");

_dos _getdrive
Syntax

#i ncl ude <dos. h>
voi d _dos_getdrive(unsignedint *p_ drive);
Description
This function determine the current default drive and writes this value into p_drive (1=A:, 2=B:, etc.).

See dos setdrive

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

unsi gned i nt drive;
_dos_getdrive(&drive);

- Page 73 -

printf("The current driveis %:.\n", "A" - 1 +drive);

_dos_getfileattr
Syntax

#i ncl ude <dos. h>

unsi gned int _dos_getfileattr(const char *fil enane,
unsigned int *p_attr);

Description

This function determines the attributes of given file and fills attr with it. Use the following constans (in DOS.H) to
check this value.

_A NORVAL (0x00)
Normal file (no read/write restrictions)

_A RDONLY (0x01)
Read only file

_A_Hi DDEN (0x02)
Hidden file

_A SYSTEM (0x04)
System file

_A VOLI D (0x08)
Volume ID file

_A SUBDI R (0x10)
Subdirectory

_A ARCH (0x20)
Archive file

See dos_setfileattr.
This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is

available. For LFN-aware functions with similar functionality see See _chmod. Also see See chmod, See access, and
See stat, which are Posix-standard.

Return Vaue
Returns with O if successful and DOS error value on error (and sets er r no=ENOENT).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No

Example

unsignedint attr;

if (! _dos_getfileattr("FOO DAT", &attr))

[
{
put s("FOO DAT attributes are:");
if (attr & A ARCH) puts("Archive");
if (attr & _A RDONLY) puts("Read only");
if (attr & A HI DDEN) puts("Hi dden");
if (attr & A SYSTEM) puts("ls it part of DOS ?");
if (attr & A VOLID) puts("Volune ID");
if (attr & A SUBDIR) puts("Directory");
}
el se
put s("Unabl e to get FOO DAT attributes.");
_dos_getftime

- Page 74 -

Syntax

#i ncl ude <dos. h>

unsi gned int _dos_getftine(int handle,
unsi gned i nt *p_date, unsigned *p_tine);

Description

This function gets the date and time of the given file and puts these values into p_date and p_time variable. The
meaning of DOS date in the p_date variable is the following:

FEDCBA9876543210(bits)
XXXXXXXXXXXXXXXX
* * *

year nont h day

X U1

year = 0-119 (rel ative to 1980)
nonth = 1-12
day = 1-31

The meaning of DOS time in the p_time variable is the following:

FEDCBA9876543210
XXXXXXXXXXXXXXXX
* * *

hour s m nut es seconds

hours = 0-23
m nut es = 0-59
seconds = 0-29 in two-second i nterval s

See dos_setftime.

This function cannot be used to return last access and creation date and time, even on systems where the LFN API
(See _use Ifn, LFN) is available. See See _Ifn_get ftime for a function that can be used to get the other two times.
Also see See fdtat, which is Posix-standard.

Return Value
Returns 0 if successful and return DOS error on error (and sets er r no=EBADF).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
unsi gned i nt handl e, date, tine;
_dos_open("FOO DAT", O RDWR, &handl e);
_dos_getftinme(handl e, &date, &tine);
_dos_cl ose(handl e);
printf("FOO DAT date and tine is: %94u- %02u- ¥92u 992u: ¥O2u: ¥O2u.\ n",
/* year nmonth day */
((date >>9) & O0x7F) + 1980U, (date >>5) & OxOF, date & Ox1F,

/* hour m nute second */
(time >>11) & Ox1F, (time >>5) & O0x3F, (time & Ox1F) * 2);

_dos _gettime
Syntax

#i ncl ude <dos. h>

void dos gettime(struct dostine_t *tine);

Description
This function gets the current time and fills the time structure with these values.

- Page 75 -

struct dostime_t {

unsi gned char hour; /* 0-23 */
unsi gned char minute; /* 0-59 */
unsi gned char second; /* 0-59 */
unsi gned char hsecond; /* 0-99 */

See dos settime See dos getdate See dos setdate

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIXEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example
struct dostime_t tine;

_dos_gettine(&ine);

_dos k64
Syntax

#i ncl ude <i 0. h>

int _dos_I|k64(int fd, long |l ong offset, long longlength);
Description
Adds an advisory lock to the specified region of the file.

Arguments offset and length must be of type | ong | ong, thus enabling you to lock with offsets and lengths as
large as ~2"63 (FAT16 limits this to ~2"31; FAT32 limits this to 2/32-2).

See _dos unlk64.

Return Vaue

Zero if the lock was added, nonzero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

_dos lock
Syntax

#i ncl ude <i 0. h>
int _dos_lock(int fd, | ong offset, | ong | ength);

Description
Adds an advisory lock to the specified region of the file.

Return Vaue

Zero if the lock was added, nonzero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

_dos _open
Syntax

- Page 76 -

#i ncl ude <fcntl . h>
#i ncl ude <share. h>
#i ncl ude <dos. h>

unsi gned i nt _dos_open(const char *fil ename, unsi gned short node,
i nt *handl e) ;

Description

This is a direct connection to the MS-DOS open function call (%ah = 0x3D). This function opens the given file
with the given mode and puts handle of file into handle if openning is successful. Meaning of mode parameter is
the following:

Access mode bits (in FCNTL.H):

O_RDONLY (_O RDONLY) 0x00
Open for read only

O VRONLY (_O WRONLY) 0x01
Open for write only

O_RDVWR (_O RDWR) 0x02
Open for read and write

Sharing mode bhits (in SHARE.H):

SH _COWPAT (_SH COWPAT) 0x00
Compatibility mode

SH DENYRW(_SH DENYRW 0x10
Deny read/write mode

SH DENYWR (_SH DENYWR) 0x20
Deny write mode

SH DENYRD (_SH DENYRD) 0x30
Deny read mode

SH _DENYNO (_SH DENYNO) 0x40
Deny none mode

Inheritance bits (in FCNTL.H):

O NO NHERI T (_O NO NHERI T) 0x80
File is not inherited by child process

See aso See _dos creat, See _dos creatnew, See _dos read, See dos write, and See _dos close
This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is

available. For LFN-aware functions with similar functionality see See open, See _creat, and See _creatnew. Also
see See open, and See creat, which are Posix-standard.

Return Value
Returns 0 if successful or DOS error code on error (and sets er r no to EACCES, EINVAL, EMFILE or ENOENT).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

i nt handl e;

if (! _dos_open("FOO DAT", O RDWR, &handl e))
puts("Wow, fil e openi ng was successful !'");

_dos read
Syntax

- Page 77 -

#i ncl ude <dos. h>

unsi gned i nt _dos_read(int handl e, void *buffer, unsignedint count,
unsi gned int *result);
Description

This is a direct connection to the MS-DOS read function call (%ah = 0x3F). No conversion is done on the data; it
is read as raw binary data. This function reads from handle into buffer count bytes. count value may be arbitrary
size (for example > 64KB). It puts number of bytes read into result if reading is successful.

See aso See _dos open, See _dos creat, See _dos creatnew, See _dos write, and See _dos close

Return Value
Returns 0 if successful or DOS error code on error (and sets er r no to EACCES or EBADF)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Example

i nt handl e;
unsi gned int result;
char *fil ebuffer;

if (! _dos_open("FOO DAT", O RDONLY, &handle))
{

put s(" FOO. DAT openni ng was successful . ");
if ((filebuffer = malloc(130000)) != NUL L)

if (! _dos_read(handle, buffer, 130000, & esult))
printf("% bytes read fromFOO DAT.\n", result);
el se

put s(" Reading error.");

/* Do something with filebuffer. */

_dos_cl ose(handl e);

}

_dos setdate
Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_setdate(struct dosdate_ t *date);

Description
This function sets the current date. The dosdate t structure is as follows:
struct dosdate_t {
unsi gned char day; /* 1-31 */
unsi gned char nonth; /* 1-12 */
unsi gned short year; /* 1980-2099 */

unsi gned char dayof week; /* 0-6, 0=Sunday */
1

dayofweek field has no effect at this function cal.
See dos getdate See _dos gettime See _dos settime
Return Value

Returns 0 if successful and non-zero on error (and sets er r no=EINVAL).
- Page 78 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

struct dosdate t date;

dat e- >year = 1999;
date->nmonth = 12;

dat e- >day = 31;

if (! _dos_setdate(&date))
puts("lt was avaliddate.");

_dos_setdrive
Syntax

#i ncl ude <dos. h>
void dos_setdrive(unsignedint drive, unsignedint *p _drives);

Description

This function set the current default drive based on drive (1=A:, 2=B:, etc.) and determines the number of available
logical drives and fills p_drives with it.

See _dos getdrive

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

unsi gned i nt avail abl e_dri ves;

/* The current drive will be A */
_dos_setdrive(1, &avail able_drives);
printf("Nunber of avail abl e logical drives %u.\n", avail able_drives);

_dos_setfileattr
Syntax

#i ncl ude <dos. h>

unsigned int _dos_setfileattr(const char *fil enane, unsignedint attr);

Description
This function sets the attributes of given file. Use the following constans in DOS.H to create attr parameter:

_A NORVAL (0x00)
Normal file (no read/write restrictions)

_A RDONLY (0x01)
Read only file

_A _H DDEN (0x02)
Hidden file

_A SYSTEM (0x04)
System file

_A VCOLI D (0x08)
Volume ID file

- Page 79 -

_A SUBDI R (0x10)
Subdirectory

_A ARCH (0x20)
Archive file

See _dos_getfileattr.

This function does not support long filenames, even on systems where the LFN APl (See use Ifn, LFN) is
available. For LFN-aware functions with similar functionality see See _chmod. Also see See chmod, which is
Posix-standard.

Return Vaue
Returns with O if successful and DOS error value on error (and sets err no to ENOENT or EACCES).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

if (!_dos_setfileattr("FOO DAT", _A RDONLY | _A HI DDEN))
put s(" FOO. DAT i s hi dden now. ") ;

_dos_setftime
Syntax

#i ncl ude <dos. h>

unsi gned i nt _dos_setftine(int handl e,
unsi gned i nt date, unsignedtine);

Description

This function sets the date and time of the given file. The meaning of DOS date in the date variable is the
following:

year nont h day

year = 0-119 (rel ative to 1980)
nonth = 1-12
day = 1-31

The meaning of DOS time in the time variable is the following:

FEDCBA9876543210(bits)

XXXXXXXXXXXXXXXX
* * * * *

hour s m nut es seconds
hours = 0-23
m nut es = 0-59
seconds = 0-29 in two-second intervals
See dos getftime.
This function cannot be used to set the last access date and time, even on systems where the LFN APl (See

_use Ifn, LFN) is available. For LFN-aware functions with similar functionality see See utime which is
Posix-standard, and see See utimes

Return Value
Returns 0 if successful and return DOS error on error (and sets er r no=EBADF).

Portability

- Page 80 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example
struct dosdate_ t d;

struct dostine_t t;
unsi gned i nt handl e, date, tineg;

dos_open(" FOO. DAT", O RDWR, &handl e);

dos_get dat e(&d) ;

_dos_gettine(&t);

date = ((d.year - 1980) << 9) | (d.nmonth << 5) | d. day;
time = (t.hour << 11) | (t.mnute <<5) | (t.second/ 2);
_dos_setftinme(handl e, date, tine);

_dos_cl ose(handl e);

_dos_settime
Syntax

#i ncl ude <dos. h>

void _dos_settime(struct dostine_t *tine);

Description
This function sets the current time. The time structure is as follows:

struct dostime_t {

unsi gned char hour; /* 0-23 */
unsi gned char minute; /* 0-59 */
unsi gned char second; /* 0-59 */
unsi gned char hsecond; /* 0-99 */

See dos gettime See dos getdate See dos setdate

Return Vaue

Returns 0 if successful and non-zero on error (and sets er r no=EINVAL).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
struct dostinme_t tine;
ti me- >hour = 23;
time->m nute = 59;
ti me- >second = 59;
ti me- >hsecond = 99;
if (! _dos_settine(&ine))
puts("lt was avalidtinme.");

_dos unlk64
Syntax

#i ncl ude <i 0. h>

int _dos_unl k64(int fd, longlong offset, | ong long | ength);
Description
Removes an advisory lock to the specified region of the file.

Arguments offset and length must be of type | ong | ong, thus enabling you to unlock with offsets and lengths as
large as ~2"63 (FAT16 limits this to ~2"31; FAT32 limits this to 2/32-2).

See dos |k64.

- Page 81 -

Return Vaue

Zero if the lock was removed, nonzero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

_dos_unlock
Syntax

#i ncl ude <i 0. h>

_dos_unl ock(int fd, long of fset, long | ength);

Description
Removes an advisory lock to the specified region of the file.

Return Vaue

Zero if the lock was removed, nonzero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

_dos write
Syntax

#i ncl ude <dos. h>

unsigned int _dos_write(int handle,
const voi d *buffer, unsignedint count,
unsigned int *result);

Description

This is a direct connection to the MS-DOS write function call (%ah = 0x40). No conversion is done on the data; it
is written as raw binary data. This function writes count bytes from buffer to handle count value may be arbitrary
size (eg. > 64KB). It puts the number of bytes written into result if writing is successful.

See adso See _dos open, See _dos creat, See _dos creatnew, See dos read, and See _dos close

Return Vaue
Returns 0 if successful or DOS error code on error (and sets err no to EACCES or EBADF)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

i nt handl e;
unsi gned int result;
char *fil ebuffer;

if (! _dos_creat("FOO DAT", _A ARCH, &handle))
{

put s(" FOO. DAT creati ng was successful .");
if ((filebuffer = malloc(130000)) !'= NULL)
{

/* Put sonet hi ngintofilebuffer. */
i'1"'(| _dos_write(handl e, buffer, 130000, & esult))

- Page 82 -

printf("% bytes witteninto FOO DAT.", result);
el se
puts("Witingerror.");

_dos_cl ose(handl e);

_doscan
Syntax

#i ncl ude <stdarg. h>
#i ncl ude <stdi 0. h>

int doscan(FILE*file, const char *format, va_list argp);

Description

This is an internal function that is used by all the scanf style functions, which simply pass their format,
arguments, and stream to this function.

See scanf, for a discussion of the allowed formats and arguments.

Return Vaue

The number of characters successfully scanned is returned, or -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKKKIXKXXXXXKXXKXXKXXXXXXXXXX NO No

Example

TODO. Thi s exanpl e i s bogus now
TODO. Rewite this exanmple!

int x, vy;

int *args[2];
args[0] = &x;
args[1] = &y;

_doscan(stdi’n, "od %", args);

_doserrno
Syntax

#i ncl ude <errno. h>
externint _doserrno;

Description
Whenever a DOS call returns a failure indication, this variable is assigned the value of the error code returned by
the failed DOS call.

For a list of the error codes and their short descriptions, see See dosexterr.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

_doserrno = 0;

fprintf (stdprn, "Hello, world!\r\n\f");

i f (_doserrno == 0xlc)

fprintf (stderr, "The printer is out of paper!\n");

__dosexec_find_on_path
Syntax

#i ncl ude <stdi o. h>
#i ncl ude <l i bc/ dosexec. h>

- Page 83 -

char *__dosexec_find_on_path(const char *program
char *envp[], char *buf);

Description

This function searches for a program using a given path. The program is searched for using a known set of
executable extensions, e.g. . exe. These executable extensions are described for the spawn* () function (See
spawn®).

Pass the program name in program, the environment array in envp and the output buffer in buf. envp is an array of
pointers to the environment variables; it must be terminated with a NULL pointer. buf must be large enough to hold
at least FI LENAME_MAX bytes.

envp controls where __dosexec_fi nd_on_pat h looks for the program. If envp is NULL, then only the current
directory is searched. If envp contains the PATH environment variable whose value lists several directories, then
these directories are also searched. The global variable envi r on is usually passed for envp.

Return Vaue

If the function finds the program, with or without one of the known executable extensions, either in the current
directory or along the PATH as recorded in envp, it puts the full pathname into buf and returns a pointer to buf.
Otherwise, it returns NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

char shel | pat h[FI LENAME_NMAX] ;
extern char * _ dosexec_find on_path (const char *, char *[], char *);
extern char **environ,;

/* Seeif we can find "/bin/sh.exe", "/bin/sh.cont, etc. */

if (__dosexec_find on_path ("/bin/sh", (char **)0, shell path)
/* I'f not found, | ook for "sh" al ong t he PATH. */

|| __dosexec_find_on_path ("sh", environ, shell path))

printf ("/bin/shfoundas ‘%’ \n", shellpath);

dosexterr
Syntax

#i ncl ude <dos. h>

i nt dosexterr(struct DOSERROR *p_error);

Description
This function reads extended error information from DOS and fills p_error structure.

struct DOSERROR {
int exterror;
char cl ass;

char acti on;

char | ocus;

Vaues for DOS 2xtended -error code (exterr field):
00h (0) no error

01h (1) function nunber invalid

02h (2) file not found

03h (3) pat h not found

04h (4) too many open files (no handl es avail abl e)
05h (5) access deni ed

06h (6) invalid handl e

07h (7) menory control bl ock destroyed

08h (8) insufficient nenory

09h (9) menory bl ock address invalid

0Ah (10) environment invalid (usually >32Kin | engt h)

- Page 84 -

0Bh (11) format invalid

OCh (12) access code invalid

ODh (13) datainvalid

OEh (14) reserved

OEh (14) (PTS-DOCS 6.51+, S/ DCS 1.0+) fixup overfl ow
OFh (15) invaliddrive

10h (16) attenpted to renove current directory

11h (17) not sane device

12h (18) no nore files

---DOS 3.0+ (INT 24 errors)---

13h (19) di sk write-protected

14h (20) unknown unit

15h (21) drive not ready

16h (22) unknown conmmand

17h (23) data error (CRO

18h (24) bad request structure |l ength

19h (25) seek error

1Ah (26) unknown nedi a type (non- DCS di sk)

1Bh (27) sector not found

1Ch (28) printer out of paper

1Dh (29) wite fault

1Eh (30) read fault

1Fh (31) general failure

20h (32) sharing violation

21h (33) | ock viol ation

22h (34) disk change invalid (ES:DI ->nedialDstructure)(see #01681)
23h (35) FCB unavai l abl e

23h (35) (PTS-DCS 6.51+, S/ DCS 1. 0+) bad FAT

24h (36) sharing buffer overfl ow

25h (37) (DGCS 4. 0+) code page ni smat ch

26h (38) (DGCS 4.0+) cannot conplete fil e operation (EOF/ out of input)
27h (39) (DCS 4.0+) insufficient disk space

28h-31h reserved

---CEMnetwork errors (INT 24)---

32h (50) network request not supported

33h (51) renote conputer not |istening

34h (52) duplicat e nane on network

35h (53) network nane not found

36h (54) network busy

37h (55) network device no | onger exists

38h (56) network BI OGS conmand | init exceeded

39h (57) network adapt er hardware error

3Ah (58) incorrect response fromnet wor k

3Bh (59) unexpected network error

3Ch (60) i nconpati bl e renot e adapt er

3Dh (61) print queue full

3Eh (62) queue not full

3Fh (63) not enough space to print file

40h (64) networ k nanme was del et ed

41h (65) network: Access deni ed

(DOS 3. 0+ [maybe 3. 3+??7?]) codepage switchi ng not possible
(see al so | NT 21/ AX=6602h, | NT 2F/ AX=AD42h)

42h (66) network device type incorrect

43h (67) networ k nane not found

44h (68) network nanme limt exceeded

45h (69) network BIOS session linmt exceeded

46h (70) tenporarily paused

47h (71) network request not accept ed

48h (72) network print/di sk redirection paused

49h (73) network software not installed

(LANt astic) invalidnetwork version

4Ah (74) unexpect ed adapter cl ose

(LANt asti c) account expired

4Bh (75) (LANtastic) password expired

4Ch (76) (LANtastic) loginattenpt invalidat thistine
4Dh (77) (LANtastic v3+) disk linit exceeded on networ k node
4Eh (78) (LANtastic v3+) not | ogged into netwrk node
4Fh (79) reserved

- Page 85 -

---end of errors reportable vialNT 24---
50h (80) file exists
51h (81) (undoc) duplicated FCB
52h (82) cannot nake directory
53h (83) fail on I NT 24h
---network-related errors (non-1NT 24)---
54h (84) (DGCs 3.
55h (85) (DGCs 3.
56h (86) (DCS 3.
57h (87) (DGCs 3.
58h (88) (DGCs 3.
59h (89) (DCS 4.

avai |l abl e

5Ah (90) (DOS 4.
5Bh (91) (DOS 4.
5Ch (92) (DOS 4.
5Dh (93) (DOS 4.
5Fh (95) (DOS 4.

64h (100)
64h (100)
65h (101)
65h (101)
66h (102)
66h (102)
67h (103)
67h (103)
68h (104)
68h (104)
69h (105)
6Ah (106)
6Bh (107)
6Ch (108)
6Dh (109)
6Eh (110)
6Fh (111)
70h (112)
71h (113)
72h (114)
73h (115)
74h (116)
74h (116)
75h (117)
76h (118)
77h (119)
78h (120)
79h (121)
7Ah (122)
7Bh (123)
7Ch (124)
7Dh (125)
7Eh (126)
7Fh (127)
80h (128)
81h (129)
82h (130)
83h (131)
84h (132)

---JO N suB

85h (133)
86h (134)
87h (135)
88h (136)
89h (137)
8Ah (138)
8Bh (139)
8Ch (140)
8Dh (141)
8Eh (142)

(MSCDEX)

3+)
3+)
3+)
3+)
3+)
0+)

duplicate

0+)

too many redirections / out of structures

redirection/ already assi gned

i nval i d password

i nval i d par anet er

network write fault

function not supported on network / no process slots

required systemconponent not installed/ not frozen

0+, Net WAred) tiner server tabl e overfl owed
0+, Net WAred4) duplicateintinmer servicetable
0+, Net Wared4) noitens to work on

0+, Net WAred) interrupted/ invalid systemcall

unknown err or

(DCS 4. 0+, Net War ed4) open senmaphore | imt exceeded
(MSCDEX) not ready
(DGCS 4. 0+, Net Var e4) excl usi ve semaphore i s al ready owned

(MSCDEX) EMS nenory no | onger valid

(DCS 4. 0+, Net War ed4) semaphor e was set when cl ose attenpted

(MSCDEX) not Hi gh Si

(DCS 4.

0+, Net War e4)

(MSCDEX) door open

(DCS 4.
(DCS 4.
(DCS 4.
(DCS 4.
(DCS 4.
(DCS 4.
(DOS 5.
(DOS 5.
(DOS 5.
(DOS 5.
(DOS 5.

8
s o0

BERERaREE R aREERER0R8038R858

ANANAN AN AN AN AN AN AN CAAAAAAAAAAAAAAAAAA
oo ® gooooaoaaaoaoaoaaaoaoioag

0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)
0+, Net War e4)

re4) error on
. 0+, Net War e4)
. O+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)

rrors---

. 0+, Net War e4)
. O+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)
. 0+, Net War e4)

erra or | SO 9660 f or mat
t oo many excl usi ve semaphor e requests

operationinvalidfrominterrupt handl er
semaphor e owner di ed

semaphore linit exceeded

insert drive B: diskinto A: / di sk changed
drive | ocked by anot her process

br oken pi pe

pi pe open/create fail ed

pi pe buffer overfl owed

di sk full

no nor e sear ch handl es

invalidtarget handl e for dup2

bad user virtual address / protection violation

O+) VI OKBD r equest

console | /O

unknown cat egory code for | OCTL
invalidvalue for verify fl ag

| evel four driver not found by DOS | OCTL
invalid/ uninplemented function nurmber
semaphor e ti neout

buffer too small to holdreturn data
invalidcharacter or bad fil e-systemnane
uni mpl enented i nformati on | evel

no vol une | abel found

nmodul e handl e not found

pr ocedur e addr ess not found

CWait found no children

CWait children still running
invalidoperation for direct di sk-access handl e
attenpt ed seek to negati ve of f set
attenpted t o seek on devi ce or pipe

drive al ready has JO Ned dri ves

drive is already JO Ned

drive is al ready SUBSTed

can not del ete drive whichis not JO Ned
can not del ete drive which is not SUBSTed
can not JONto aJO Ned drive

can not SUBST to a SUBSTed dri ve

can not JONto a SUBSTed drive

can not SUBSTto a JA Ned dri ve

drive is busy

- Page 86 -

can not JO N SUBST to sane drive
directory nust not be root directory
canonly JONto enpty directory
path is already i n use for SUBST
path is already inuse for JON

path is in use by anot her process
directory previously SUBSTI t ut ed
systemtrace error

i nvalid event count for DosMuxSemAai t
t oo many wai ti ng on nut ex
invalidlist format

vol unme | abel too | arge

unabl e t o creat e anot her TCB

si gnal refused

segnment di scar ded

segment not | ocked
invalidthread-I|D address

i nval i d pat hname passed t o EXEC

. 0+) maxi mumnunber of t hreads reached

i nval i d ordinal

shar ed segnment al ready exi sts

no child process towait for

NoWai t specified and child still running
invalid flag nunber

semaphor e does not exi st

invalidstarting code segnent

i nval i d stack segment

i nval i d nodul e type (DLL can not be used as

i nval i d EXE si ghature

EXE mar ked i nval i d

bad EXE format (e.g. DOS-node program
i terated data exceeds 64K

i nvalid m ni numal | ocati on size
dynamic link frominvalid Ri ng

| OPL not enabl ed

i nval i d segment descriptor privilegelevel
aut omati ¢ dat a segnent exceeds 64K

Ri ng2 segnent nust be noveabl e

rel ocation chai n exceeds segrment limt
infiniteloopinrelocationchain

envi ronnment vari abl e not found

file systeminfornmation not avail able

) attenpted to execute non-famly APl call in DOS node

8Fh (143) (DOCS 5. 0+, Net War e4)

90h (144) (DOCS 5. 0+, Net War e4)

91h (145) (DGCS 5. 0+, Net War e4)

92h (146) (DOCS 5. 0+, Net War e4)

93h (147) (DOS 5. 0+, Net War e4)

94h (148) (DGCS 5. 0+, Net War e4)

95h (149) (DCS 5. 0+, Net War e4)

96h (150) (DOS 5. 0+, Net War e4)

97h (151) (DGCS 5. 0+, Net War e4)

98h (152) (DOCS 5. 0+, Net War e4)

99h (153) (DOS 5. 0+, Net War e4)

9Ah (154) (DGCS 5. 0+, Net War e4)

9Bh (155) (DOS 5. 0+, Net War e4)

9Ch (156) (DOS 5. 0+, Net War e4)

9Dh (157) (DGOS 5. 0+, Net War e4)

9Eh (158) (DOCS 5. 0+, Net War e4)

9Fh (159) (DOS 5. 0+, Net War e4)

AOh (160) (DOS5.0+) bad argunents

AOh (160) (NetWared) bad envi ronment pointer
Alh (161) (DOS 5. 0+, Net War e4)

A2h (162) (DOCS 5.0+, Net Ware4) si gnal al ready pendi ng
A3h (163) (DGCs 5. O+) uncertain nedi a

A3h (163) (NetWared) ERROR 124 mappi ng

Adh (164) (DOCS 5

Adh (164) (Net \ar e4) no nore process slots
A5h (165) (NetWare4) ERROR 124 mappi ng

BOh (176) (Ms5-DOS 7.0) vol une is not | ocked
Blh (177) (M5-DOS 7.0) volune is | ocked indrive
B2h (178) (Ms-DOS 7.0) volune i s not renovabl e
B4h (180) (Ms-DCS 7.0) | ock count has been exceeded
B4h (180) (NetWared) invalid segnment nunber
B5h (181) (M5-DOS 7.0) a valid eject request failed
B5h (181) (DOS 5.0-6.0, NetWared) invalidcall gate
B6h (182) (DOS 5. 0+, Net Wr e4)

B7h (183) (DOS 5. 0+, Net \Wr e4)

B8h (184) (DOS 5. 0+, Net War e4)

B9h (185) (DOS 5. 0+, Net War e4)

BAh (186) (DOS 5. 0+, Net \Wr e4)

BBh (187) (DOS 5. 0+, Net War e4)

BCh (188) (DOS 5. 0+, Net War e4)

BDh (189) (DOS 5. 0+, Net \Wr e4)

BEh (190) (DGS 5. 0+, Net War e4)

appl i cation)

BFh (191) (DOS 5. 0+, Net \War e4)

Q0h (192) (DOCS 5. 0+, Net War e4)

Clh (193) (DOS 5. 0+, Net War e4)

C2h (194) (DGCS 5. 0+, Net War e4)

C3h (195) (DOCS 5. 0+, Net War e4)

C4h (196) (DOS 5. 0+, Net War e4)

C5h (197) (DGOS 5. 0+, Net War e4)

C6h (198) (DOCS 5. 0+, Net War e4)

Crh (199) (DCS 5. 0+, Net War e4)

C8h (200) (DGCS 5. 0+, Net War e4)

C9h (201) (DCS 5. 0+, Net War e4)

CAh (202) (DOS 5. 0+, Net War e4)

CBh (203) (Net Ware4)

CCh (204) (NetWare4) not current country

CDh (205) (NetWare4) no signal sent

CEh (206) (NetWare4) file nane not 8.3

CFh (207) (NetWare4) Ring2 stack i n use

DOh (208) (Net\Ware4d) neta expansionis too |long
Dlh (209) (NetWared4) invalid signal number
D2h (210) (NetWared4) inactive thread

D3h (211) (NetWare4)

D4h (212) (NetWared4) | ocked error

D5h (213) (Net\Ware4

D6h (214) (Net Ware4) too nmany nodul es

- Page 87 -

D7h (215) (Net\Ware4) nesting not al | owed

E6h (230) (Net Ware4) non-exi stent pipe, or bad operation
E7h (231) (NetWared) pipe is busy

E8h (232) (NetWare4) no data avail abl e for nonbl ocki ng read
E9h (233) (Net Wared) pi pe di sconnect ed by server

EAh (234) (NetWare4) nore data avail abl e

FFh (255) (NetWare4) invaliddrive

Vaues Bahefrd) deass asseBdd).ce (st orage space or |/ Ochannel s)
02h (2) tenporary situation (file or record | ock)
03h (3) authorization/ perm ssion probl em(deni ed access)
04h (4) internal systemerror (systemsoftware bug)
hardware fail ure
systemfailure (configurationfile m ssingor incorrect)
application programerror
08h not found
09h bad f or mat
0Ah (10) | ocked
0Bh (11) nedia error
OCh (12) already exists/ collisionwithexistingitem
0Dh (13) unknown / ot her
OEh (14) (undoc) cannot
OFh (15) (undoc) tine

A~
© 00~ 01
— o e

Values @dhsuggested action (action field):
02h del ayed retry (after pause)
03h pronpt user to reenter input
04h abort after cl eanup
05h i mredi at e abort ("panic")
06h i gnore
O7h retry after user intervention

Vaues G etnok hasus ocoofigghpr opri at e
02h bl ock devi ce (di sk error)
03h network rel at ed
04h serial device (tineout)
04h (PTS-DOCS 6. 51+ & S/ DCS 1. 0+) charact er device
05h nenory rel at ed

Return Vaue

Returns with the extended error code.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

FI LE *f p;
struct DOSERROR de;

= f open(" EXAMPLE. DAT", "r") ;
if (fp==NULL)

puts("Unable to openfile for reading.");
dosexterr (&de);
printf("Extended DOS error information:\n");

printf("Extended error: %\n", de.exterror);
printf("d ass: %\ n", de.cl ass);
printf("Action: %\n", de. action);
printf("Error Locus: %\ n", de. | ocus);

}

- Page 88 -

return O;

}

dosmemget
Syntax

#i ncl ude <sys/ novedat a. h>
voi d dosnenget (i nt offset, int | ength, void *buffer);

Description

This function transfers data from MS-DOS's conventional memory space to the program’s virtual address space. The
offset is a physical address, which can be computed from a real-mode segment/offset pair as follows:

of fset = segnent * 16 + of f set;

The length is the number of bytes to transfer, and buffer is a pointer to somewhere in your virtual address space
(such as memory obtained from mal | oc) where the data will go.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

Example

unsi gned short shift_state;
dosmenget (0x417, 2, &shift_state);
if (shift_state & 0x0004)

[* Crl key pressed */;

dosmemgetb
Syntax

#i ncl ude <sys/ novedat a. h>
voi d _dosmenget b(unsi gned | ong of fset, size_t xfers, void *buffer);

Description

This function transfers data from MS-DOS's conventional memory space to the program’s virtual address space,
using only byte transfers. The offset is a physical address, which can be computed from a real-mode segment/offset
pair as follows:

of fset = segnent * 16 + of f set;

The xfers is the number of bytes to transfer, and buffer is a pointer to somewhere in your virtual address space
(such as memory obtained from nmal | oc) where the data will go.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

unsi gned short shift_state;
_dosnenget b(0x417, 2, &shift_state);
if (shift_state & 0x0004)

/* Ctrl key pressed */;

- Page 89 -

dosmemgetl
Syntax

#i ncl ude <sys/ novedat a. h>
voi d _dosnenget| (unsi gned | ong of fset, size t xfers, void *buffer);

Description

This function transfers data from MS-DOS's conventional memory space to the program’s virtual address space,
using only long-word (32-bit) transfers. The offset is a physical address, which can be computed from a real-mode
segment/offset pair as follows:

of fset = segnent * 16 + of f set;

The count is the number of long-words to transfer, and buffer is a pointer to somewhere in your virtual address
space (such as memory obtained from mal | oc) where the data will go.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXEXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

unsi gned | ong shift _state;
_dosnenget | (0x417, 1, &shift_state);
if (shift_state & 0x0004)

[* Crl key pressed */;

dosmemgetw
Syntax

#i ncl ude <sys/ novedat a. h>
voi d _dosmenget W unsi gned | ong of fset, size_t xfers, void *buffer);

Description

This function transfers data from MS-DOS's conventional memory space to the program’s virtual address space,
using only short-word (16-bit) transfers. The offset is a physical address, which can be computed from a real-mode
segment/offset pair as follows:

of fset = segnent * 16 + of f set;

The xfers is the number of words to transfer, and buffer is a pointer to somewhere in your virtual address space
(such as memory obtained from nmal | oc) where the data will go.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

unsi gned short shift_state;
_dosnmenget w(0x417, 1, &shift_state);
if (shift_state & 0x0004)

/* Ctrl key pressed */;

dosmemput

- Page 90 -

Syntax

#i ncl ude <sys/ novedat a. h>
voi d dosnmenput (const void *buffer, int length, int offset);

Description

This function transfers data from the program’s virtual address space to MS-DOS's conventional memory space. The
offset is a physical address, which can be computed from a real-mode segment/offset pair as follows:

of fset = segnent * 16 + of fset;

The length is the number of bytes to transfer, and buffer is a pointer to somewhere in your virtual address space
(such as memory obtained from nal | oc) where the data will come from.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

unsi gned short save_screen[25][80];
dosnmenput (save_screen, 80*2*25, 0xb8000);
dosmemputb
Syntax

#i ncl ude <sys/ novedat a. h>

voi d _dosnenput b(const void *buffer, size_t xfers,
unsi gned | ong of fset);

Description

This function transfers data from the program’s virtual address space to MS-DOS's conventional memory space,
using only byte (8-bit) transfers. The offset is a physical address, which can be computed from a real-mode
segment/offset pair as follows:

of fset = segnent * 16 + of fset;

The xfers is the number of bytes to transfer, and buffer is a pointer to somewhere in your virtual address space
(such as memory obtained from nal | oc) where the data will come from.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

unsi gned short save_screen[25][80];
_dosnenput b(save_screen, 0xb8000, 80*2*25);

dosmempuitl
Syntax

#i ncl ude <sys/ novedat a. h>

voi d _dosnenput | (const void *buffer, size_t xfers,
unsi gned | ong of fset);

- Page 91 -

Description

This function transfers data from the program’s virtual address space to MS-DOS's conventional memory space,
using only long-word (32-bit) transfers. The offset is a physical address, which can be computed from a real-mode
segment/offset pair as follows:

of fset = segnent * 16 + of f set;

The xfers is the number of long-words to transfer, and buffer is a pointer to somewhere in your virtual address
space (such as memory obtained from mal | oc) where the data will come from.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

unsi gned short save_screen[25][80];
_dosmenput | (save_screen, 40*25, 0xb8000);

dosmemputw
Syntax

#i ncl ude <sys/ novedat a. h>

voi d _dosmenput W const void *buffer, size t xfers,
unsi gned | ong of f set);

Description

This function transfers data from the program’s virtual address space to MS-DOS's conventional memory space,
using only short-word (16-bit) transfers. The offset is a physical address, which can be computed from a real-mode
segment/offset pair as follows:

of fset = segnent * 16 + of f set;

The xfers is the number of short-words to transfer, and buffer is a pointer to somewhere in your virtual address
space (such as memory obtained from mal | oc) where the data will come from.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Example

unsi gned short save_screen[25][80];
_dosmenmput w(save_screen, 0xb8000, 80*25);

dostrerr
Syntax

#i ncl ude <dos. h>
int dostrerr(struct DOSERROR *p_error, struct DOSERROR str *p_str);

Description

This function accepts the extended error structure from DOS (e.g., from the returned parameter from function
dosext err, See dosexterr) and returns the strings which describes that error structure in the structure pointed to by
the second parameter. This function is a DOS analogue of the ANSI function strerror (See strerror), and can be

- Page 92 -

used to print descriptive messages corresponding to the errors described in the DOSERROR structure.
For a list of the strings returned for each error number and type, see See dosexterr.
p_error must point to the following structure:

struct DOSERROR {
int exterror;
char cl ass;

char acti on;

char | ocus;

1
p_str must point to the following structure:

struct DOSERROR_STR {
char *exterror_str;
char *class_str;

char *action_str;
char *l ocus_str;

b

Return Vaue

If either pointer parameter is NULL, returns -1 and sets errno to EINVAL. If both parameters are not NULL,
checks the value of each member of the DOSERROR parameter p_error. If each value is within the limits of valid
error codes for that member, sets parameter p_str member fields with the corresponding string describing the error
code. If any error code is outside of the valid values for that code, sets the corresponding p_str member to the
string **Unknown error: * followed by the decima numeric value of the error code.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

FI LE *f p;
struct DOSERROR de;
struct DOSERROR _STR se;

fp = fopen("EXAMPLE. DAT", "r");
if (fp==NUL)

puts("Unable to openfile for reading.");

dosexterr (&de);

dostrerr(&de, &se);

printf("Extended DOS error information:\n");

printf("Extended error: % : 9%\n",de.exterror,se.exterror_str);
printf("Cass: % : %\n", de.cl ass, se.class_str);
printf("Action: % : %\n", de.action, se.action_str);
printf("Error Locus: % : %\n", de. | ocus, se. |l ocus_str);

return O;

}
DPMI Overview

ext ern unsi gned short __dpni _error;

For most functions, the error returned from the DPMI server is stored in this variable.

- Page 93 -

t ypedef struct {

unsi gned short of fset 16;
unsi gned short segnent;
} __dpm _raddr;

This structure is used to hold a real-mode address, which consists of a segment:offset pair.

t ypedef struct {

unsi gned | ong of f set 32;
unsi gned short sel ector;
} __dpm _paddr;

This structure is used to hold a protected-mode address, which consists of a selector:offset pair.

t ypedef struct {

unsi gned | ong handle; /* 0, 2 */

unsi gned |l ong size; /* or count */ /* 4, 6 */
unsi gned | ong address; /* 8, 10 */

} __dpm _nem nfo;

This structure is used by many functions that need to refer to blocks of 32-bit memory. The si ze field doubles as
a count for those operations that want a count of something, or return a count.

t ypedef uni on {

struct {

unsi gned | ong edi

unsi gned | ong esi

unsi gned | ong ebp

unsi gned | ong res;

unsi gned | ong ebx;

unsi gned | ong edx;

unsi gned | ong ecx;

unsi gned | ong eax;

}od;

struct {

unsi gned short di, di _hi;
unsi gned short si, si_hi;
unsi gned short bp, bp_hi;
unsi gned short res, res_hi;
unsi gned short bx, bx_hi;
unsi gned short dx, dx_hi;
unsi gned short c¢cx, cx_hi;
unsi gned short ax, ax_hi;
unsi gned short fl ags;

unsi gned short es;
unsi gned short ds;
unsi gned short fs;
unsi gned short gs;
unsi gned short ip;
unsi gned short cs;
unsi gned short sp
unsi gned short ss;
}ox;

struct {

unsi gned char edi|
unsi gned char esi|
unsi gned char ebp]
unsi gned char resj 4]
unsi gned char bl, bh, ebx_ b2, ebx_b3;
unsi gned char dl, dh, edx_ b2, edx_ b3;
unsi gned char cl, ch, ecx_b2, ecx_b3;
unsi gned char al, ah, eax_b2, eax_b3;
}oh

} __dpm _regs;

This structure is used by functions that pass register information, such as simulating real-mode calls.
t ypedef struct {

- Page 94 -

unsi gned char mgj or;

unsi gned char m nor;

unsi gned short fl ags;
unsi gned char cpu;

unsi gned char nmaster_pic;
unsi gned char sl ave_pi c;
} __dpm _version_ret;

This structure is used to return version information to the program.

t ypedef struct {

unsi gned l ong | argest _avail abl e_free_bl ock_i n_bytes;
unsi gned | ong maxi mum unl ocked_page_al | ocati on_i n_pages;
unsi gned | ong maxi num | ocked_page_al | ocati on_i n_pages;
unsi gned |l ong | i near _address_space_si ze_i n_pages;

unsi gned | ong t ot al _nunber _of _unl ocked_pages;

unsi gned | ong total nunber_of free_pages;

unsi gned | ong total _nunber_of physi cal pages;

unsi gned | ong free_I| i near _address_space_i n_pages;

unsi gned |l ong size _of paging file partition_in_pages;
unsi gned | ong reserved]| 3];

} __dpm _free_nem.info;

This structure is used to return information about the state of virtual memory in the system.

t ypedef struct {

unsi gned long total all ocated_bytes of physical _nenory_ host;
unsi gned long total _all ocated_bytes_of virtual _nenory_host;
unsi gned long total avail abl e _bytes of virtual nenory_host;
unsi gned long total all ocated bytes of virtual nenory_vcpu
unsi gned | ong total _avail abl e_bytes_of virtual _nenory_vcpu
unsigned long total all ocated bytes of virtual nenory client;
unsi gned l ong total avail abl e _bytes of virtual nenory client;
unsi gned l ong total _| ocked_bytes_of nmenory_client;

unsi gned | ong max_| ocked _bytes_of nenory client;

unsi gned | ong hi ghest _| i near _address_avail able_to_client;
unsi gned | ong si ze_in_bytes_of | argest_free_nmenory_bl ock

unsi gned |l ong size_of _mninum allocation_unit_in_bytes;

unsi gned | ong si ze_of allocation_alignnment_unit _in_bytes;
unsi gned | ong reserved[19];

} __dpm _nenory_info;

This is also used to return memory information, but by a different function.

t ypedef struct {

unsi gned | ong dat al16][2] ;
unsi gned | ong codel6][2] ;
unsi gned short ip;

unsi gned short reserved;
unsi gned | ong dat a32[2] ;
unsi gned | ong code32[2] ;
unsi gned | ong ei p;

} __dpm _call back_info;

This structure is used to install TSR programs.

t ypedef struct {

unsi gned | ong si ze_r equest ed;
unsi gned | ong si ze;

unsi gned | ong handl e;

unsi gned | ong addr ess;

unsi gned | ong nane_of f set ;
unsi gned short nane_sel ect or;
unsi gned short reservedl,;
unsi gned | ong r eserved2;

} __dpm _shm nfo;

This structure is used to manipulate shared memory regions.

- Page 95 -

DPMI Specification

To obtain the DPMI specification, Contact Intel and order document number 240977-001. Also, try
ftp.qdeck.com:/pub/memory/dpmi* and http://www.del orie.com/djgpp/doc/dpmi/.
__dpmi_allocate_ dos memory

Syntax

#i ncl ude <dpmi . h>

i nt dpm _al |l ocate_dos_nenory(int _paragraphs,

int * ret_selector_or_max);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0100
This function allocates DOS memory. You pass it the number of paragraphs ((bytes+15)>>4) to allocate. If it

succeeds, it returns a segment (dos-style) and fills in _ret_selector_or_max with a selector (protected-mode) that you
can use to reference the same memory. Note that it's the selector you use to free the block, not the segment.

Return Value
-1 on error, else the segment [0000..FFFF].

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No
__dpmi_allocate |dt_descriptors

Syntax

#i ncl ude <dpm . h>
int __dpm _allocate | dt_descriptors(int count);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0000

Allocates count descriptors.

Return Vaue

-1 on error, else the first descriptor. Use _ dpmi _get _sel ector i ncrenent _val ue (See
__dpmi_get_selector_increment_value) to figure out the remaining selectors.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

short sel = __dpm _all ocate_| dt_descriptors(1);
__dpmi_allocate linear_ memory
Syntax

#i ncl ude <dpm . h>

- Page 96 -

int __dpm _allocate_linear_menory(__dpm _neminfo *info, int commt);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0504 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This alocates a block of page-aligned linear address space. Pass a desired address (or zero for any) and a size.
commit is 1 for committed pages, else they are uncommitted. It returns a handle and the actual address.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_allocate_ memory
Syntax

#i ncl ude <dpm . h>
int __dpm _allocate nmenory(__dpm nemnfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0501
This allocates virtual memory. Fill in size, returns handle and address.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_allocate real_mode_callback
Syntax

#i ncl ude <dpm . h>

int __dpm _allocate real node_cal |l back(void (*_handl er) (void),
__dpm _regs *_regs,
__dpm _raddr *_ret);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0303
This function gives you a real-mode address to pass to TSRs that gets reflected to your protected-mode handler.

You pass it a register block to use; it gets filled in with the real-mode registers when your handler is called, and
the registers are set from it when the handler returns.

Return Vaue

-1 on error, €se zero.

- Page 97 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No
__dpmi_allocate _shared memory

Syntax

#i ncl ude <dpm . h>
int __dpm _allocate_shared nmenory(__dpm _shminfo *info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0d0O (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function allocates a shared memory block that can be accessed from different virtual machines. Fill the
required length in i nf o- >si ze_r equest ed. The function fills the rest of the structure: allocated length in

i nf o->si ze, block handle in i nf o- >handl e, linear address in i nf o- >addr ess, and the selector:offset of an
AscCliz block name (up to 128 bytes long) in i nf o- >nanme_sel ect or and i nf o- >nane_of f set, respectively.

The access to the shared memory block can be serialized by calling the
__dpm _serialize_on_shared_nenory function (See _ dpmi_serialize on_shared_memory).

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_allocate specific_|dt_descriptor

Syntax

#i ncl ude <dpm . h>
int _dpm _allocate specific_|dt _descriptor(int selector);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x000d

This alocates the specific selector given.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No
__dpmi_clear_debug_watchpoint

Syntax

#i ncl ude <dpm . h>

int __dpm _clear_debug wat chpoi nt (unsi gned | ong _handl e);

Description

- Page 98 -

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0b01
Clear a debug watchpoint.
Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_create alias descriptor

Syntax

#i ncl ude <dpmi . h>
int __dpm _create_alias_descriptor(int _selector);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x000a
Create a new selector with the same parameters as the given one.

Return Vaue

-1 on error, else the new selector.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

__dpmi_discard page contents
Syntax

#i ncl ude <dpm . h>
int __dpm _discard_page contents(__dpm nmenminfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0703

Advises the server that the given pages are no longer needed and may be reclaimed. Fill in address and size (in
bytes).

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NOo No

__dpmi_free dos_memory
Syntax

#i ncl ude <dpm . h>

- Page 99 -

int __dpm _free_dos_menory(int _selector);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0101

This function frees the dos memory alocated by See dpmi_allocate dos memory. Remember to pass the selector
and not the segment.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_free |dt_descriptor

Syntax

#i ncl ude <dpm . h>
int __dpm free | dt _descriptor(int descriptor);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0001

This function frees a single descriptor, even if it was alocated as one of many.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

__dpm free_ | dt_descriptor(sel);
__dpmi_free_memory
Syntax

#i ncl ude <dpm . h>

int __dpm _free_nmenory(unsigned | ong _handl e);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0502

This frees a block of virtual memory.

Return Vaue

-1 on error, ese zero.

- Page 100 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXX NO No
__dpmi_free physical _address mapping

Syntax

#i ncl ude <dpmi . h>
int __dpm _free physical address_mappi ng(__dpm _nmeninfo *info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0801 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function unmaps a physical device mapped with See dpmi_physical_address mapping Fill in the linear
address.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKKKIXKXXXXXKXXKXXKXXXXXXXXXX NO No
__dpmi_free rea _mode_callback

Syntax

#i ncl ude <dpm . h>
int _dpm _free real node call back(__dpm _raddr *_addr);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0303

This function frees the real-mode callback address.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXKXXXXXXXX NO No
__dpmi_free serialization on_shared memory

Syntax

#i ncl ude <dpm . h>

int _dpm _free serialization_on_shared _nmenory(unsigned | ong handl e,
int flags);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0d03 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

- Page 101 -

This function frees the serialization on shared memory block specified by its handle handle The bit-mapped
variable flags defines the following bits:

bit 0
If set, release shared seridization (as opposed to exclusive serialization).

bit 1
If set, free pending serialization.

bits 2-15
Reserved (should be zero).

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_free shared memory

Syntax

#i ncl ude <dpm . h>
int __dpm _free_shared_nenory(unsigned | ong handl e);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0dO1 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function frees the shared memory block specified by the given handle The handle becomes invalid after this
cal.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_get_and disable virtua_interrupt_state

Syntax

#i ncl ude <dpmi . h>
int __dpm _get and_disable virtual interrupt_state(void);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0900

This function disables interrupts, and returns the previous setting.

Return Value
The previous setting.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 102 -

__dpmi_get_and enable virtual interrupt_state
Syntax

#i ncl ude <dpm . h>
int __dpm _get _and_enable virtual interrupt_state(void);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0901
This function enables interrupts, and returns the previous setting.

Return Vaue
The previous setting.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXKXKXXXXXKXXKXXKXXKXXXXXXXX NO No
__dpmi_get and set virtual interrupt_state

Syntax

#i ncl ude <dpm . h>
int _dpm _get _and_set virtual interrupt_state(int _old state);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AH = 0x09
This function restores the interrupt state from a previous cal to
__dpm _get_and_disable virtual _interrupt_state (See _dpmi_get and disable virtua_interrupt_state)

or __dpm _get _and_enable virtual interrupt_state (See
__dpmi_get_and_enable virtual_interrupt_state).

Return Vaue
The previous setting.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No
__dpmi_get capabilities

Syntax

#i ncl ude <dpm . h>
int __dpm _get capabilities(int *flags, char *vendor info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0401 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

Gets the capabilities of the server. flags are as follows:

- Page 103 -

....... X = 1="page accessed/dirty" supported
------ X- = 1="exceptions restartbl e" supported
---- -X-- =1="devi ce mappi ng" supported

---- X--- =1="map conventi onal nenory" supported
---X---- =1="demand zero-fill" supported

--X- ---- =1="write-protect client" supported
-X-- ---- =1="wite-protect host" supported

The vendor info is a 128-byte buffer:
[0] host mmj or nunber

[1] host mi nor nunber
[2..127] vendor name

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

__dpmi_get_coprocessor_status
Syntax

#i ncl ude <dpm . h>
int _dpm _get coprocessor_status(void);

Description

Please refer to See DPMI Specification, for details on DPMI function call operation. Also see See DPMI Overview,
for general information.

DPMI function AX = 0x0e00 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

Return Vaue

-1 on error, else returns the processor status flags. Here's the meaning of each set bit:

bit 0
If set, co-processor is enabled. If reset, co-processor is disabled.
bit 1
If set, the application is emulating the co-processor.
bit 2
If set, the numeric co-processor is present.
bit 3
If set, the DPMI host is emulating the co-processor.
bits 4-7
The co-processor type:
0000
none
0010
80287
0011
80387
0100
80486 with a numeric processor
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

- Page 104 -

__dpmi_get_descriptor
Syntax

#i ncl ude <dpm . h>

int __dpm _get descriptor(int selector, void* buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x000b

This function fills the 8-byte buffer pointed to by _buffer with the parameters of the descriptor whose selector is
passed in _selector. The data has the following format:

~NOOOOOUIUIUIORAWNEO

Here's an
shorts):

Specia

WWWWWWNNNNNEFEO

XXXX XXXX = segnent limt [7:0]

XXXX XXXX = segnent limt [15: 8]

XXXX XXXX = base address [7: 0]

XXXX XXXX = base address [15: 8]

XXXX XXXX = base address [23: 16]

---- XXXX =type; see details bel ow

---X---- =0=system 1=application (nust be 1)
-XX- ---- =privilege level, usually 3 (binary 11)
X--- ---- = 0=absent, 1=present; usually 1

---- XXXX =segnent limt [19:16]

---X---- =avail abl e for user; see details bel ow
--0- ---- =nust be zero

-X-- ---- =0=16-bit 1=32-bit; usually 1
Xo-m - - = O=byte-granul ar (smal|) l=page-granul ar (big)

XXXX XXXX = base address [31: 24]

aternative view of the layout that treats the buffer as an array of 4 16-bit words (i.e., unsi gned

XXXX XXXX XXXX XXXX = segment |imt [15:0]

XXXX XXXXK XXXX XXXX = base addr ess [15: 0]

-------- XXXX XXXX = base address [23: 16]

=type; see details bel ow

= O=system 1l=application; nmust be 1
privilege level, usually 3 (binary 11)
DR = O=absent, l=present; usually 1
———————————— XXXX = segnent limt [19:16]

avai |l abl e for user; see detail s bel ow
—————————— 0- ---- = nust be zero

———————— -X-- ---- =0=16-bit 1=32-bit; usually 1
-------- X--- ---- =0=byte-granul ar (small) l1=page-granul ar (big)
XXX XXXXK = === == - - = base address [31: 24]

L
3

X
1

considerations apply to some of the fields:

Segment Limit fields

The segment limit is specified as a 20-bit number. This number is interpreted as a number of bytes if the
granularity hit (bit 7 of byte 6) is not set, and as a humber of 4KB pages if the granularity bit is set.
Offsets larger than the limit will generate a GPF, the General Protection Fault exception.

For expand-down data segments (see below), the segment limit is the lower limit of the segment; the upper
limit is either Oxffffffff or Oxffff, depending on whether the size bit is set (32-bit default size) or not (16-hit
default size). For expand-down segments, values of offset less than the segment limit result in a GPF.

Base Address fields

Segment base address should generaly be 16-byte aligned. This is not required, but it maximizes performance
by aligning code and data on 16-byte boundaries.

Type field

This field has different meanings depending on whether the descriptor is for code or data segment. For code

- Page 105 -

segments, the meaning is as follows:

---X =0=not accessed, l=accessed

--1- = O=execute only, l1=execute/read; nmust be 1
-0-- = 0=non-conform ng, 1=conform ng; nust be 0
1--- = 0=dat a segnment, 1=code segnent

The accessed/not accessed bit indicates whether the segment has been accessed since the last time the bit was
cleared. This bit is set whenever the segment selector is loaded into a segment register, and the bit then
remains set until explicitly cleared. This bit can be used for debugging purposes.

The read bit must be set to allow reading data from the code segment, which is done in several cases by the
library. The DPMI spec (See DPMI Specification) requires this bit to be 1 for code segments.

The conforming bit must be cleared so that transfer of execution into this segment from a less-privileged
segment will result in a GPF. The DPMI spec (See DPMI Specification) requires this bit to be O for code
segments.

For data segments, the meaning of the t ype field is as follows:

---X =0=not accessed, l=accessed

--X- =0=read-only, 1=read/wite

- X-- = 0=expand- up, l=expand-down; usually 0
0--- = O=dat a segnent, l1l=code segnent

The accessed/not accessed bit has the same meaning as for code segments. The expand up/down bit is meant
to be 1 for stack segments whose size should be changed dynamically, whereby changing the limit adds the
additional space to the bottom of the stack; for data segments and statically-sized stack segments, this bit is
usualy zero.

Present bit
If this bit is clear, a segment-not-present exception will be generated when the selector is loaded into a
segment register, and al the fields of the descriptor except the privilege level and the system/application bit
are available for CPU/OS to store their own data. Don't clear this bit unless you know what you are doing.

Available bit
This bit is left for the application’s use. It is neither set nor cleared by the DPMI server.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXKXXKXXKXXXKXXKXXXXXXXX NO No
__dpmi_get_descriptor_access rights

Syntax

#i ncl ude <dpm . h>
int __dpm _get descriptor_access rights(int _selector);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

This function returns the access rights byte from the | ar opcode.

Return Vaue

The access byte. See _ dpmi_set_descriptor_access rights for the details about the access information returned. Also
see See _ dpmi_get descriptor.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 106 -

__dpmi_get_extended exception_handler _vector pm
Syntax

#i ncl ude <dpm . h>

int __dpm _get extended_exception_handl er _vector_ pn{
int vector, __dpm _paddr *address

)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0210 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.
This gets the function that handles protected mode exceptions.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXEXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_get_extended exception_handler_vector rm
Syntax

#i ncl ude <dpm . h>

int __dpm _get extended_exception_handl er _vector rn{
int vector, __dpni _paddr *address
)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0211 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function gets the handler for real-mode exceptions.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
__dpmi_get free_ memory_information

Syntax

#i ncl ude <dpm . h>
int __dpm _get _free_menory_information(__dpm free_nmem.info *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0500
This function returns information about available memory. Unsupported fields will have -1 (Oxfffffff) in them.

- Page 107 -

Return Vaue

Zero. This aways works.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_get_ memory_block_size and base

Syntax

#i ncl ude <dpmi . h>
int __dpm _get nenory_bl ock _size _and base(__dpm _neminfo *info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x050a (DPMI 1.0 only). Not supported by CWSDPMI and Windows.
Pass the handle. It fills in the address and size.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
__dpmi_get_memory_information

Syntax

#i ncl ude <dpm . h>
int __dpm _get nenory_ information(__dpm nenory_info *buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x050b (DPMI 1.0 only). Not supported by CWSDPMI and Windows.
This function returns virtual memory information, as follows:

total allocated bytes of physical nenory_ host
The total amount of allocated physical memory controlled by the DPMI host.

total _allocated bytes of virtual nenory_ host
The total amount of allocated virtual memory controlled by the DPMI host.

total avail abl e_bytes of virtual nenory_host
The total amount of available virtual memory controlled by the DPMI host.

total _allocated bytes of virtual nenory_ vcpu
The amount of virtual memory allocated by the DPMI host for the current virtual machine.

total avail abl e bytes of virtual nenory_vcpu
The amount of virtual memory available for the current virtual machine.

total _allocated bytes of virtual nenory client
The amount of virtual memory allocated by the DPMI host for the current client (that is, for the calling
program).
total avail able bytes of virtual nmenory client
- Page 108 -

The amount of virtual memory available to the current client.

total | ocked bytes of menory client
The amount of memory locked by the calling program.

max_| ocked _bytes of nenory client
Maximum locked memory for the current client.

hi ghest |inear_address _avail able to client
The highest linear address available to the calling program.

size in_bytes of largest free nenory_ bl ock
Size of the largest available memory block.

size of _minimumallocation_unit _in_bytes
Size of the smallest block that can be alocated.

size_of allocation_alignnment _unit_in _bytes
The alignment of allocated memory blocks.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_get_multiple descriptors

Syntax

#i ncl ude <dpm . h>
int __dpm _get nultiple_descriptors(int count, void *buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x000e (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function gets a list of selectors parameters. The buffer pointed to by buffer must be prefilled with selector
values, and will contain the parameters on return:

[0x00: 2] sel ector #1 (pass)
[0x02: 8] paraneters #1 (returned)

[Ox0a: 2] sel ector #2 (pass)
[Ox0c: 8] paraneters #2 (returned)

Return Vaue

Returns count if successful, the negative of the number of descriptors copied if failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_get page attributes

Syntax

#i ncl ude <dpm . h>

int __dpm _get _page_attributes(__dpm _meminfo *info, short *buffer);
Description

- Page 109 -

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0506 (DPMI 1.0 only). Supported by CWSDPMI, but not by Windows.

This function retrieves the attributes of a number of pages. Pass the handle in i nf o- >handl e, offset of first page
(relative to start of block) in i nf o- >addr ess, and number of pages in i nf o- >count. The buffer buffer gets
filled in with the attributes. For each page, a 16-hit attribute word in buffer defines the attributes of that page as
follows:

bits 0-2
Page type:

000

uncommitted
001

committed
010

mapped

bit 3
If set, the page is read/write. If cleared, the page is read-only.

bit 4
If set, bits 5 and 6 specify accessed and dirty bits.

bit 5
The page has been accessed (only valid if bit 4 is set).

bit 6
The page has been written (is dirty). Only valid if bit 4 is set.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

__dpmi_get page size
Syntax

#i ncl ude <dpm . h>
int __dpm _get page_size(unsigned | ong *_si ze);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0604
Fills in the page size.

Return Vaue

-1 on error (16-bit host), else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NOo No

__dpmi_get processor_exception_handler_vector
Syntax

#i ncl ude <dpm . h>

- Page 110 -

int __dpm _get_processor_exception_handl er _vect or (
int vector, __dpm _paddr *_address
)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0202

This function gets the current protected-mode exception handler (not interrupts) for the exception _vector. It will
return a selector:offset pair in the members of the _address variable.

Return Vaue

-1 on error (invalid vector), else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

__dpmi_get protected mode_interrupt_vector
Syntax

#i ncl ude <dpm . h>

int __dpm _get_protected node_interrupt_vector(int _vector,
__dpm _paddr * _address);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0204

This function gets the address of the current protected mode interrupt (not exception) handler. It returns a
selector:offset pair.

Return Vaue

Zero. This aways works.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXXXXKXXKXXXXXXXX NO No
__dpmi_get raw_mode switch _addr

Syntax

#i ncl ude <dpm . h>

int __dpm _get raw node switch _addr(__dpmi raddr * rm
__dpm _paddr *_pm;

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0306

Read the spec for more info.

Return Vaue

Zero. This aways works.

- Page 111 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No
__dpmi_get real_mode _interrupt_vector

Syntax

#i ncl ude <dpm . h>

int __dpm _get real node_interrupt_vector(int _vector,
__dpm _raddr *_address);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0200

This function stores the real-mode interrupt vector address in _address This is the same as the DOS get vector call,
and returns a real-mode segment:offset pair.

Bits [31:8] in the vector number are silently ignored.

Return Vaue

Zero. This function always works.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

__dpmi_get segment_base address
Syntax

#i ncl ude <dpm . h>

i nt dpm _get _segnent _base_address(int _sel ector,

unsi gned | ong *_addr) ;

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0006
The physical base address of the selector is stored in *addr.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIXHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

Example

unsi gned | ong addr;
if (__dpm _get_segnent base_address(sel ector, &addr))

__dpmi_get segment_limit
Syntax

#i ncl ude <dpm . h>

- Page 112 -

unsi gned __dpm _get _segnent _limt(int _selector);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

Return Vaue
The limit of the segment, as returned by the | s| opcode.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

__dpmi_get_selector_increment_value
Syntax

#i ncl ude <dpm . h>
int __dpm _get _selector_increnment_val ue(void);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0003

Return Vaue
The value to add to each selector alocated by _ dpmi_allocate |dt_descriptors to get the next one.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIXEKHXXKIEXKXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
__dpmi_get_state of debug_watchpoint

Syntax

#i ncl ude <dpm . h>

int __dpm _get_state_ of_debug_wat chpoi nt (unsi gned | ong _handl e,
int * status);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0b02

Gets the state of the watchpoint. Pass handle, fills in status (O=not encountered, 1=encountered).

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_get_state save restore addr

Syntax

#i ncl ude <dpm . h>
int __dpm _get state save restore_addr(__dpm _raddr * rm

- Page 113 -

__dpm _paddr *_pm;

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0305

Read the spec for info.

Return Vaue
The number of bytes required to save state.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_get vendor_specific_api_entry point

Syntax

#i ncl ude <dpm . h>

int __dpm _get _vendor_specific_api _entry_point(char *_id,
__dpm _paddr *_api);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0a00

Look up a vendor-specific function, given the name of the function.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_get version

Syntax

#i ncl ude <dpm . h>
int __dpm _get version(__dpm _version_ret * ret);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0400
Fills in version information. The flags are as follows:
——————— X =0=16-bit host 1=32-bit host
—————— X- = 0=V86 used for reflected ints, 1=real node
---- -X-- =0=novirtual menory, 1=virtual nenory supported

The cpu is 2=80286, 3=80386, 4=80486, etc.

DPMI 0.9 returns major=0 and minor=0x5a.

- Page 114 -

Return Vaue

Zero. This aways works.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_get_virtua _interrupt_state

Syntax

#i ncl ude <dpmi . h>
int __dpm _get virtual interrupt_state(void);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0902

Return Vaue
This function returns the current interrupt flag (1=enabled).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKKKIXKXXXXXKXXKXXKXXXXXXXXXX NO No

__dpmi_install resident_service provider callback
Syntax

#i ncl ude <dpm . h>

int _dpm _install _resident _service_provider_callback(
__dpm _cal I back_info *info

)E

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0c00 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function installs a resident service provider callback and declares an intent to provide resident protected-mode
services after terminating with a call to __dpm _termi nate_and_stay_resi dent (See
__dpmi_terminate_and_stay resident).

The various members of info should be filled as follows:

dat al6
An 8-byte descriptor for the 16-bit data segment.

codel6
An 8-byte descriptor for the 16-bit code segment (zeros if not supported).
A 16-bit offset of the 16-bit callback procedure.

dat a32
An 8-byte descriptor for 32-bit data segment.

code32
An 8-byte descriptor for 32-bit code segment (zeros if not supported).

eip
- Page 115 -

A 32-bit offset of the 32-bit callback procedure.
See dpmi_get descriptor, for the details about the layout of the 8-byte segment descriptor.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXKXXXXXXXXXXX NO No
__dpmi_int

Syntax

#i ncl ude <dpmi . h>
int __dpm _int(int _vector, _ dpm _regs * regs);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0300

This function performs a software interrupt in real mode after filling in most the registers from the given structure.
%ss, %esp, and %eflags are automatically taken care of, unlike See __dpmi_simulate real_mode_interrupt.

The following variables can be used to tune this function. By default, these variables are al zero.
__dpm _int_ss
__dpm _int_sp

__dpm _int_flags
These hold the values stored in the appropriate field in the __dpm _regs structure.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
__dpmi_lock_linear_region

Syntax

#i ncl ude <dpm . h>
int __dpm _l ock_|linear_region(__dpnm _mem nfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0600

This function locks virtual memory, to prevent page faults during hardware interrupts. Pass address and size (in
bytes).

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 116 -

__dpmi_map_conventional_memory_in_memory_block
Syntax

#i ncl ude <dpm . h>

int __dpm _map_conventional _nmenory i n_nmenory_ bl ock(
__dpm _nem nfo *info, unsi gned | ong physaddr

)E

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0509 (DPMI 1.0 only). Supported by CWSDPMI, but not by Windows.

This function maps conventional memory (even when virtualized) to virtual memory. Pass the handle, offset, and
number of pages.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_map device in_memory_block

Syntax

#i ncl ude <dpm . h>

int __dpm _map_device in_nmenory_ bl ock(__dpm _neninfo *info,
unsi gned | ong *physaddr);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0508 (DPMI 1.0 only). Supported by CWSDPMI, but not by Windows.

This function maps a physical address range to virtual memory. Pass the handle, offset relative to the start of the
block, and number of pages to map.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_mark_page as demand paging_candidate

Syntax

#i ncl ude <dpmi . h>
int __dpm _mark _page as_denmand_pagi ng_candi date(__dpm _nemi nfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0702

- Page 117 -

Advises the server that certain pages are unlikely to be used soon. Set address and size (in bytes).

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No
__dpmi_mark_real mode region as pageable

Syntax

#i ncl ude <dpm . h>
int __dpm _mark real node regi on_as pageabl e(__dpm neminfo * _info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0602

This function advises the host that the given pages are suitable for page-out. Pass address and size (in bytes).

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_physical _address mapping

Syntax

#i ncl ude <dpm . h>
int __dpm _physical address _mappi ng(__dpnmi _nenminfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0800

Maps a physical device (like a graphics buffer) to linear memory. Fill in the physical address and size (in bytes).
On return, the address is the linear address to use.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_relock_real _mode region

Syntax

#i ncl ude <dpm . h>

int __dpm _relock _real node_region(__dpm _nem nfo *_info);
Description

- Page 118 -

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0603

This function relocks the pages unlocked with See dpmi_mark _real mode region_as pageable Pass address and
size (in bytes).

Return Vaue

-1 on error, ese zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_reset_debug_watchpoint

Syntax

#i ncl ude <dpm . h>
int __dpm _reset debug wat chpoi nt (unsi gned | ong _handl e);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0b03

Resets a watchpoint given its handle in _handle

Return Vaue

-1 on error, ese zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
__dpmi_resize dos_memory

Syntax

#i ncl ude <dpm . h>

int __dpm _resize dos _nmenory(int _selector, int newpara,
int *_ret_max);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0102

This function resizes a dos memory block. Remember to pass the selector, and not the segment. If this call fails,
ret max contains the largest number of paragraphs available.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_resize linear_memory

- Page 119 -

Syntax

#i ncl ude <dpm . h>
int _dpm _resize |linear_nmenmory(__dpm neminfo *info, int commt);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0505 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function resizes a memory block. Pass the handle and new size. Bit 0 of commit is 1 for committed pages;
bit 1 is 1 to automatically update descriptors. It returns a new handle and base address.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_resize_memory

Syntax

#i ncl ude <dpm . h>
int __dpm _resize_nenmory(__dpni _menmi nfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0503

This function changes the size of a virtual memory block. You must pass the handle and size fields. It may
change the base address aso; beware of debugging breakpoints and locked memory. It will return a new handle.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_segment_to_descriptor
Syntax

#i ncl ude <dpmi . h>
int __dpm _segnent _to_descriptor(int segnent);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0002

This function returns a selector that maps to what the real-mode segment provided would have referenced. Warning:
this is a scarce resource.

Return Vaue
-1 on error, else the selector.
- Page 120 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

short video = __dpm _segnent _to_descri pt or (0xa000) ;
movedat a(_ny_ds(), buffer, video, 0, 320*200);

__dpmi_serialize on _shared_memory
Syntax

#i ncl ude <dpm . h>
int __dpm _serialize on_shared nenory(unsigned | ong handle, int flags);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0d02 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function serializes access to a shared memory block whose handle is given in handle The bit-mapped variable
flags defines the following bits:

bit 0
If set, return immediately if seridization is unavailable. If cleared, the program is suspended until the
seridization becomes available.

bit 1
If set, perform shared serialization. |If cleared, perform exclusive serialization.

bits 2-15
Reserved (should be zero).

An exclusive serialization blocks any seriaization attempts for the same memory block from other virtual machines.
A shared seridization blocks only exclusive serialization attempts from other virtual machines.

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_set_coprocessor_emulation
Syntax

#i ncl ude <dpmi . h>
int __dpm _set coprocessor_enul ation(int flags);

Description

Please refer to See DPMI Specification, for details on DPMI function call operation. Also see See DPMI Overview,
for general information.

DPMI function AX = 0x0e01 (DPMI v1.0 only, but supported by most DPMI v0.9 servers, including CWSDPMI,
Windows, and QDPMI).

This function sets the co-processor emulation state as specified by flags. The only two used bits in flags are:

bit O
If set, enable the co-processor. If reset, disable the co-processor.

bit 1
- Page 121 -

If set, the emulation of the floating-point instructions will be done by the calling application.

DJGPP programs using one of the provided emulators should generally call this function with an argument of 2.
(The DJGPP startup code does that automatically if no co-processor is detected.)

Return Vaue

-1 on errors, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

__dpmi_set_debug watchpoint
Syntax

#i ncl ude <dpm . h>
int _dpm _set debug watchpoint(__dpm neminfo* info, int type);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0b00

Set a debug breakpoint. Type is 0 for execute, 1 for write, and 2 for access. Fill in address and size (1,2,4 bytes).
Server fills in handle.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

__dpmi_set_descriptor
Syntax

#i ncl ude <dpm . h>
int __dpm _set_descriptor(int _selector, void*_buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x000c

This function sets the parameters of the selector _selector by copying the contents of the 8-byte buffer pointed to by
_buffer into the LDT entry of the selector’'s descriptor. See _ dpmi_get descriptor, for the description of the
contents of the 8-byte buffer.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NOo No

___dpmi_set_descriptor_access rights
Syntax

#i ncl ude <dpm . h>

- Page 122 -

int __dpm _set_descriptor_access _rights(int _selector, int _rights);

Description
Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also

see the DPMI Overview (See DPMI Overview) for general information.
DPMI function AX = 0x0009
This sets the access rights of _selector to _rights

The meaning of the individual bit fields of _rights is described below. For more details, please refer to See
__dpmi_get_descriptor.

............... X = 0=not accessed, l=accessed
______________ X- = data: O=read, 1l=r/w, code: l=readabl e
............ - X-- = data: O=expand-up, l=expand-down;
code: 0=non- conformni ng

------------ X--- = 0=data, l=code
----------- 1---- =nmnust bel
-------- -XX- ---- =priviledge | evel (must equal CPL)
-------- X--- ---- = 0O=absent, 1=present
D R = avai l abl e for t he user
--0- ---- ---- ---- =nust be 0
D R N = 0=16-bit 1=32-bit
X--- ---- ---- ---- =0=byte granul ar (snmall) 1=page-granul ar (big)
Return Value
-1 on error, else zero.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

__dpmi_set_extended _exception_handler_vector pm
Syntax

#i ncl ude <dpm . h>

int __dpm _set extended_exception_handl er _vector pn{
int vector, __dpnmi _paddr *address
)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0212 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.
This function installs a handler for protected-mode exceptions.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_set_extended exception_handler _vector rm

Syntax

#i ncl ude <dpm . h>

i nt dpm _set _extended_excepti on_handl er _vector_rm(

int vector, __dpm _paddr *address

- Page 123 -

)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0213 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.
This function installs a handler for real-mode exceptions.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_set_multiple_descriptors

Syntax

#i ncl ude <dpm . h>
int __dpm _set_nultiple_descriptors(int count, void *buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x000f (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function sets multiple descriptors. Buffer usage is likein __dpmi _get _nul ti pl e_descriptors (See
__dpmi_get_multiple descriptorg, but the caller fills in everything before calling.

Return Vaue

Returns count if successful, the negative of the number of descriptors set if failure.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_set_page attributes

Syntax

#i ncl ude <dpm . h>
int __dpm _set page attributes(__dpm _nenminfo *info, short *buffer);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0507 (DPMI 1.0 only). Supported by CWSDPMI, but not by Windows.

This function sets attributes of a number of pages. Pass handle in i nf o- >handl e, offset within block in

i nf o- >addr ess, and number of pages in i nf o- >count. buffer points to an array of 16-bit words which specify
the new attributes. See _ dpmi_get page attributes for the definition of the page attribute word.

The DJGPP startup code calls this function to uncommit the so-called null page the first 4KB of the program’s

address space. This causes NULL pointer dereferences, a frequent programmatic error, to trigger a Page Fault
exception, rather than go unnoticed.

Return Vaue

- Page 124 -

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

__dpmi_set_processor_exception_handler_vector
Syntax

#i ncl ude <dpm . h>

int __dpm _set_processor_exception_handl er _vect or (
int vector, _ dpm _paddr *_address
)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0203
This function installs a handler for protected mode exceptions (not interrupts). You must pass a selector:offset pair.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

__dpmi_set_protected mode _interrupt_vector
Syntax

#i ncl ude <dpm . h>

int __dpm _set protected node_ interrupt_vector(int _vector,
__dpm _paddr *_address);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0205
This function installs a protected-mode interrupt (not exception) handler. You must pass a selector;offset pair.

Hardware interrupts will always be reflected to protected mode if you install a handler. You must explicitely st i
before i ret because i ret won't always restore interrupts in a virtual environment.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No
__dpmi_set_rea _mode interrupt_vector

Syntax

#i ncl ude <dpm . h>

int __dpm _set real node_interrupt_vector(int _vector,
__dpm _raddr *_address);

- Page 125 -

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0201
This function sets a real-mode interrupt vector. You must pass a segment:offset pair, not a selector.

Bits [31:8] in the vector number are silently ignored.

Return Vaue

Zero. This function always works.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_set_segment_base address

Syntax

#i ncl ude <dpm . h>
int __dpm _set_segnent _base_address(int _selector, unsigned _address);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0007

This function sets the base address of the selector to _address

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
__dpmi_set_segment_limit

Syntax

#i ncl ude <dpm . h>
int __dpm _set_segnent _limt(int _selector, unsigned _address);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0008
This function sets the highest valid address in the segment referenced by _selector. For example, if you pass Oxfffff,

the highest valid address is Oxfffff. Note: if you pass a number <= 64K, the segment changes to "non-big", and
may cause unexpected problems. Limits for segments larger than 1IMB must have their low 12 bits set.

Return Vaue

-1 on error, €se zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No

- Page 126 -

__dpmi_simulate realmode_interrupt
Syntax

#i ncl ude <dpm . h>

int __dpm _sinulate real node_ interrupt(int _vector,
__dpm _regs *_regs);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0300

This function performs a software interrupt in real mode after filling in all the registers from the given structure.
You must set %ss, %esp, and %eflags to valid real-mode values or zero, unlike See __dpmi_int.

Return Vaue

-1 on error, else zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXEXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
__dpmi_simulate real_mode procedure iret

Syntax

#i ncl ude <dpm . h>
int __dpm _sinulate real node procedure_iret(__dpm regs * _regs);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0302

This function switches to real mode, filling in all the registers from the structure. ss:sp and flags must be valid or
zero. The called function must return with an i ret.

Return Vaue

-1 on error, €se zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

__dpmi_simulate rea _mode procedure retf
Syntax

#i ncl ude <dpm . h>
int __dpm _sinulate real node procedure retf(__dpm regs * regs);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for genera information.

DPMI function AX = 0x0301

This function switches to real mode with all the registers set from the structure, including cs:ip. The function called
should return with a ret f. ssisp and flags must be set to valid values or zero.

- Page 127 -

Return Vaue

-1 on error, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

__dpmi_simulate real_mode procedure retf stack
Syntax

#i ncl ude <dpmi . h>

int __dpm _sinulate real node procedure_retf_ stack(

__dpm _regs *_regs,
i nt stack_words_to_copy, const void *stack_data

)

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0301

This function switches to real mode with all the registers set from the structure, including cs:iip. The function called
should return with a ret f. ssisp and flags must be set to valid values or zero.

You may optionally specify data to be copied to the real-mode stack, to pass arguments to real-mode procedures
with stack-based calling conventions. If you don't want to copy data to the real mode stack, pass O for
stack_words_to_copy, and NULL for stack_bytes

Note that the amount of stack data to be copied should be given in units of 16-bit words, not in bytes. This is
defined by the underlying DPMI function.

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

__dpmi_terminate_and_stay resident
Syntax

#i ncl ude <dpm . h>

i nt dpm _term nate_and_stay_resident(int return_code,

i nt paragraphs_to_keep);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0cO1 (DPMI 1.0 only). Not supported by CWSDPMI and Windows.

This function terminates the calling program, but leaves it resident in memory. return_code specifies which value to
return to the OS. paragraphs to keep specifies the number of paragraphs of DOS (conventional) memory to keep; it
should be either zero or 6 or more. Note that any protected-mode memory remains alocated to the program unless
explicitly freed before calling this function.

The caling program must call the function __ dpm _install _resident_service_provider_call back

before this one, otherwise it will be terminated instead of going TSR. See
__dpmi_install_resident_service provider_callback.

- Page 128 -

Return Vaue

This call does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
__dpmi_unlock_linear_region

Syntax

#i ncl ude <dpm . h>
int __dpm _unlock_l|inear_region(__dpm _nem nfo *_info);

Description

Please refer to the DPMI Specification (See DPMI Specification) for details on DPMI function call operation. Also
see the DPMI Overview (See DPMI Overview) for general information.

DPMI function AX = 0x0601
This function unlocks virtual memory. Pass address and size (in bytes).

Return Vaue

-1 on error, ese zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

__dpmi_yield
Syntax

#i ncl ude <dpm . h>

void __dpm _yield(void);

Description

__dpm _yi el d cals function 1680h of the interrupt 2Fh, which tells the task manager in a multitasking
environment that the calling program doesn't need the rest of its time slice. The task manager will then preempt the
calling program and switch to another task that is ready to run.

This function should be called in busy-wait loops, like when a program waits for user input via keyboard, after it
finds the keyboard buffer empty, to enhance overall performance in a multitasking environment.

Return Vaue

None. If the call isn't supported by the environment, like when running on plain DOS, err no is set to ENOSYS
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

DTTOIF

Syntax

#i ncl ude <dirent. h>

struct dirent *de;
node t file_node = DITA F(de->d_type)

Description

This macro converts the d_t ype member of a st ruct di rent variable, as returned by r eaddi r (See readdir) to
an equivalent value of the st _node member of a struct stat variable (See stat).

- Page 129 -

Note that the access rights are not set in the result returned by this macro. Only the file-type information is copied.

Return Value
The file's mode bits are returned. If the argument has the value DT _UNKNOWN the result will be S | FREG

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXXKXXEKXXEXXXIXXXIXXXXXXXKXXKXXXKXXXXXXXXXX No No (see note 1)
Notes:

1. This macro is available on systems which support the d_t ype member in st ruct dirent.
dup
Syntax

#i ncl ude <uni std. h>

i nt dup(int old _handle);

Description
This function duplicates the given file handle. Both handles refer to the same file and file pointer.

Return Vaue

The new file handle, or -1 if error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIXIXHXKKIEXHXHXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example
do _file(dup(fileno(stdin)));

dup2
Syntax

#i ncl ude <uni std. h>

i nt dup2(int existing_handle, int new handl e);

Description

This call causes new_handle to refer to the same file and file pointer as existing_handle. If new_handle is an open
file, it is closed.

Return Vaue

The new handle, or -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXKXXIXHXIXHXXIXHXXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

/* copy newfileto stdinstream*/
cl ose(0);

dup2(new stdin, 0);

cl ose(new stdin);

__dup_fd_properties
Syntax

#i nclude <li bc/fd_props. h>

- Page 130 -

void __dup_fd_properties(int existing_handle, int new handl e);

Description
Causes the new file descriptor new_handle to refer to the same f d_pr operti es struct as existing_handle. This
internal function is called by dup and dup2.

For more information, see __set _fd_properties (See _set fd _properties) and __cl ear _fd_properties
(See _ clear_fd_properties).

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

_dxe load
Syntax

#i ncl ude <sys/ dxe. h>

voi d *_dxe_| oad(char *dxe_fil enane);

Description

This function loads a dynamic executable image, whose file name is pointed to by dxe filename, into memory and
returns the entry point for the symbol associated with the image. The symbol may point to a structure or a function.

Return Vaue

0 on failure, the address of the loaded symbol on success.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

staticint (*add)(int a, int b);

add = _dxe_| oad("add. dxe");

if (add ==

printf("Cannot | oad add. dxe\n");

el se

printf("Ckay, 3+4=9%\n", add(3,4));

DXE_macros
Syntax

#i ncl ude <sys/ dxe. h>

DXE_EXPORT_TABLE(nane)
DXE_EXPORT_TABLE_AUTQ(nane)
DXE_EXPORT(synbol)
DXE_EXPORT, ASI\/(_synbol)
DXE_EXPORT_END

Description

These macros alows you to define a table of symbols that are going to be exported into subsequently loaded
modules. If you use DXE_EXPORT_TABLE_AUTO instead of DXE_EXPORT_TABLE the table will be automatically
registered with the dynamic loader during program startup (thus you don’t need to call dI r egsym(name)
manualy).

- Page 131 -

DXE_DEMAND(nane) ;

This macro declares the two functions that are present if you are statically linking against a dynamic library (see the
dxe3gen section for details on static linking). Note that name should be in capitals with any illegal character
converted to underscore. After declaring the module with the above macro, you can call the dI | oad_NAME and

dl unl oad_NAME functions to dynamically load and unload the statically linked dynamic library.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

ecvt
Syntax

#i ncl ude <stdlib. h>

char * ecvt (doubl e value, int ndigits, int *decpt, int *sign)
Description
This function converts the value into a null-terminated string, and returns a pointer to that string.

ecvt works exactly like ecvt buf (See ecvtbuf), except that it generates the string in an internal static buffer which
is overwritten on each call.

Return Vaue
A pointer to the generated string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

ecvtbuf
Syntax

#i ncl ude <stdlib. h>

char * ecvtbuf (doubl e value, int ndigits, int *decpt, int *sign,
char *buf)

Description

This function converts its argument value into a null-terminated string of ndigits digits in buf. buf should have
enough space to hold at least ndi gits + 1 characters.

The produced string in buf does not include the decimal point. Instead, the position of the decima point relative to
the beginning of buf is stored in an integer variable whose address is passed in decpt. Thus, if buf is returned as
11234 and *decpt as 1, this corresponds to a value of 1.234; if *decpt is -1, this corresponds to a value of
0.01234, etc.

The sign is aso not included in buf’'s value. If value is negative, ecvt buf puts a nonzero value into the variable
whose address is passed in sign; otherwise it stores zero in *sign.

The least-significant digit in buf is rounded.

ecvt buf produces the string ““NaN’" if value is a NaN, and ‘‘Inf"’ or ‘‘Infinity’” if value is an infinity (the longer
form is produced when ndigits is 8 or more).

Return Value
A pointer to buf.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

- Page 132 -

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <mmat h. h>

char vbuf[20];
i nt esign, edecpt;

ecvtbuf (M PlI, 5 &edecpt, &esign, buf)

[* Thiswill print " 31416". */
printf ("%%", esign?’-" : ' ', buf);

edi_init
Syntax
#i ncl ude <debug/ dbgcom h>
voidedi init (jnp_buf start_state);

Description
This function is part of the DJGPP debugging support. It should be called after a call to v2I oadi nage (See
v2loadimage) which loads an executable program as a debuggee. edi i nit then takes care of initiaizing the data
structures which need to be set before the debugger can set breakpoints and run the debuggee.
The argument start_state is usually set by a preceding call to v2l oadi nage.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
Example
i f (v2l oadi mage (exec_file, cndline, start_state))
printf ("Load failed for i mage %\ n", exec _file);
exit (1);
}

edi _init (start_state);

enable
Syntax

#i ncl ude <dos. h>

i nt enabl e(void);
Description
This function enables interrupts.

See disable.

Return Vaue
Returns nonzero if the interrupts were already enabled, zero if they had been disabled before this call.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

int ints_were_enabl ed;

i nts_were_enabl ed = enabl e();

. . . dosone stuff . . .

if (!ints_were_enabl ed)

- Page 133 -

di sabl e();

endgrent
Syntax

#i ncl ude <grp. h>
voi d endgrent (voi d);

Description
This function should be called after all calls to get grent, get grgi d, or get gr nam

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Example
See getgrent.

endmntent
Syntax

#i ncl ude <mtent. h>
int endmtent (FILE *filep);

Description
This function should be called after the last call to get nmt ent (See getmntent).

Return Vaue

This function always returns one.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXKXXKXXKXXXKXXKXXXXXXXX NO No

endpwent
Syntax

#i ncl ude <pwd. h>

voi d endpwent (voi d) ;

Description
This function should be called after the last call to getpwent (See getpwent).

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

errno
Syntax

#i ncl ude <errno. h>

- Page 134 -

externint errno;

Description

This variable is used to hold the value of the error of the last function call. The value might be one of the
following:

0

10

11

12

13

14

15

16

No Error. Library functions never set err no to zero, but the startup code does that just before calling mai n
(this is ANSI C requirement).

EDOM -- Numerical input to a function is out of range.
ERANGE -- Numerical output of a function is out of range.

E2BIG -- Argument list too long. syst emand the functions from the spawn family assign this to err no
when the command line is too long (longer than 126-character limit when invoking non-DJGPP programs, or
longer than the transfer buffer size when invoking DJGPP programs).

EACCES -- Permission denied. Attempt to write to a read-only file, or remove a non-empty directory, or
open a directory as if it were a file, etc. In essence, it's a DOS way of saying "You can’'t do that, but I'm
too stupid to know why."

EAGAIN -- Resource temporarily unavailable, try again later. Almost never used in DJGPP, except when
DOS returns error code 3Dh ("network print queue full*) 81h (NetWare4 "CWait children still running") or
9Bh (NetWared "unable to create another TCB").

EBADF -- Bad file descriptor: an invalid file handle passed to a library function.

EBUSY -- Resource busy. Attempt to remove current directory (including current directory on another drive),
or when a networked resource, such as a drive, is in use by another process.

ECHILD -- No child processes. Returned by wai t and wai t pi d, and by NetWare-related calls.
EDEADLK -- Resource deadlock avoided. Never used in DIJGPP.

EEXIST -- File exists. Returned by open and nkdi r when a file or directory by that name aready exists.
EFAULT -- Bad address. A function was passed a bad pointer (like a NULL pointer).

EFBIG -- File too large. Never used in DJGPP.

EINTR -- Interrupted system call. syst emand the functions of the spawn family use that when the child
program was interrupted by CtrlC. Also, when DOS returns the "fail on INT 24h" error code.

EINVAL -- Invalid argument. Any case when any argument to a library function is found to be invalid.
Examples include invalid drive number, "." or ".." as one of the arguments to r enane, syntax errors in the
command line passed to syst em etc.

EIO -- Input or output error. Low-level error in I/O operation, like bad disk block, damaged FAT, etc.

EISDIR -- Is a directory: an attempt to do something with a directory which is only alowed with regular

- Page 135 -

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

files. DOS usualy returns EACCES in these cases, but DJGPP sometimes assigns El SDI R to err no, like
when r enane is called to move a regular file over a directory, or when syst emor one of the spawn*
functions are passed a name of a directory instead of an executable program.

EMFILE -- Too many open files in system (no more handles available). This usualy means that the number
specified by the FI LES= directive in CONFI G SYS is too small.

EMLINK -- Too many links. Not used in DJGPP (as DOS doesn’'t support hard links).
ENAMETOOLONG -- File name too long (longer than FI LENAME_MAX defined in st di 0. h).
ENFILE -- Too many open files. Never used in DJGPP.

ENODEV -- No such device. Attempt to access an invalid drive, or an invalid operation for the type of
drive.

ENOENT -- No such file or directory.

ENOEXEC -- Unable to execute file. Returned by _dxe | oad (when the argument names a file that isn't a
valid DXE), and by NetWare-related calls which run programs remotely.

ENOLCK -- No locks available. Returned when the DOS file-locking functions cannot lock more files (due
to overflow of the sharing buffer).

ENOMEM -- Not enough memory. Note that, unlike your expectations, mal | oc does NOT set errno to
ENOVEM however, severa library functions that use mal | oc will do that when it returns a NULL pointer.

ENOSPC -- No space left on drive. DOS usually doesn’t return this error, but wite and _write do this
for it, when they detect a full disk condition.

ENOSYS -- Function not implemented. Any system call that isn't supported by the underlying OS, like an
LFN function when running on plain DOS.

ENOTDIR -- Not a directory. DOS never returns this code, but some library functions, like r enanme and
_truenane, do that if they expect a valid directory pathname, but get either an invalid (e.g. empty)
pathname or a file that is not a directory.

ENOTEMPTY -- Directory not empty. DOS never returns this code, but r enanme does, when it is caled to
move a directory over an existing non-empty directory.

ENOTTY -- Inappropriate 1/O control operation. The termios functions set er r no to this when called on a
device that isnot a TTY.

ENXIO -- No such device or address. An operation attempted to reference a device (not a disk drive) that is
invalid, or non-existent, or access a disk drive that exists but is empty.

EPERM -- Operation not permitted. Examples include: sharing or file lock violations; denial of access to
networked resources; expired password or illegal login attempts via a network; too many or duplicate network
redirections; etc.

EPIPE -- Broken pipe: attempt to write to a pipe with nobody to read it. This never happens in DJGPP.

- Page 136 -

34
EROFS -- Read-only file system: attempt to write to a read-only disk. Unfortunately, DOS almost never
returns this code.

35
ESPIPE -- Invalid seek: attempt to seek on a pipe. Never happens in DJGPP, except for NetWare-related
operations, since pipes are simulated with regular files in MS-DOS, and therefore are aways seekable.

36
ESRCH -- No such process. Not used in DJGPP.

37
EXDEV -- Improper link. An attempt to rename a file across drives or create a cross-device hardlink.

38
ENMFILE -- No more files. findfirst and fi ndnext assign this to err no when they exhaust the files
in the directory. readdir does that as well.

39
ELOOP -- Too many levels of symbolic links. Can be set virtually by any file handling function in library.
Usually means encountered link loop (link1 -> link2, link2 -> link1).

40
EOVERFLOW -- Value too large. fil el engt h can assign this to err no when a file's length is larger than
2731-2 (See filelength). | fil el engt h can assign this to er r no when a file's length is larger than 2°63-1

(See Ifilelength).
41
EILSEQ -- Invalid or incomplete multibyte or wide character.
See perror.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHKIIXHKXIXHKIIXKXXEKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

exec*
Syntax

#i ncl ude <uni std. h>

execl (const char *path, const char *argv0, ...);
execl e(const char *path, const char *argvo0, ...
char *const envp[] */);

execl p(const char *path, const char *argv0, ...);
execl pe(const char *path, const char *argvo, ...
char *const envp[] */);

—~—————
*3 3 *3 35
- o+ o+~

execv(const char *path, char *const argv[])
execve(const char *path, char *const argv[], char *const envp[]);
execvp(const char *path, char *const argv]]

[

i nt
i nt
i nt
i nt execvpe(const char *path, char *const argv

% char *const envp[]);
Description

These functions operate by caling spawn* with a type of P_OVERLAY. Refer to spawn* (See spawn*) for a full
description.

Return Vaue

If successful, these functions do not return. If there is an error, these functions return -1 and set er r no to indicate
the error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

- Page 137 -

Example

execl p("gcc", "gcc", "-v", "hello.c", 0);

__exit
Syntax

#i ncl ude <uni std. h>

void _exit(int exit_code);

Description

This is an internal library function which exits the program, returning exit_code to the calling process. No additional
processing is done, and any at exit functions are not caled. Since hardware interrupts are not unhooked, this can
cause crashes after the program exits. This function is normally caled only by _exit; do not cal it directly.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXKEXXXIXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

_exit
Syntax

#i ncl ude <uni std. h>

void exit(int exit_code);

Description

This function exits the program, returning exit_code to the calling process. No additional processing (such as closing
file descriptors or calls to the static destructor functions) is done, and any at exi t functions are not called; only the
hardware interrupt handlers are unhooked, to prevent system crashes e.g. after a cal to abort. This function is
normally called only by exit and abort.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEKHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

_Exit
Syntax

#i ncl ude <stdlib. h>

void Exit(int exit_code);

Description

This function exits the program, returning exit_code to the calling process. No additional processing (such as closing
file descriptors or calls to the static destructor functions) is done, and any at exi t functions are not called; only the
hardware interrupt handlers are unhooked, to prevent system crashes.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXXIEXXXXIXEXXXXIXXXXXXXXXXXXXXXXXXXXX C99 (see note 1); not C89
1003.1-2001; not 1003.2-1992

- Page 138 -

Notes:

1. Depending on the implementation, Exit may do the additional processing described above.

Example
i{f (argc < 4)

print_usage();
_Exit(1);
}

exit

Syntax

#i ncl ude <stdlib. h>

voidexit(int exit_code);

Description

This function exits the program, returning exit_code to the calling process. Before exiting, al open files are closed
and al atexit and on_exit requests are processed.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKHXIXHXXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
i{f (argc < 4)

print_usage();
}exi t(1);

exp
Syntax

#i ncl ude <mat h. h>

doubl e exp(doubl e x);

Description

This function computes the exponential of x, e*x, where e is the base of the natura system of logarithms,
approximately 2.718281828.

Return Vaue

e to the x power. If the value of x is finite, but so large in magnitude that its exponential cannot be accurately
represented by a doubl e, the return value is the nearest representable doubl e (possibly, an | nf), and errno is
set to ERANGE If X is either a positive or a negative infinity, the result is either +I nf or zero, respectively, and
errno is not changed. If x is a NaN the return value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 139 -

expl0
Syntax

#i ncl ude <mat h. h>

doubl e exp10(doubl e x);

Description
This function computes 10 to the power of x, 10"x.

Return Vaue

10 to the x power. If the value of x is finite, but so large in magnitude that 10"x cannot be accurately represented
by a doubl e, the return value is the nearest representable doubl e (possibly, an I nf), and errno is set to
ERANGE If x is either a positive or a negative infinity, the result is either +1 nf or zero, respectively, and err no
is not changed. If x is a NaN the return value is NaN and er r no is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

exp2
Syntax

#i ncl ude <mat h. h>

doubl e exp2(doubl e x);

Description
This function computes 2 to the power of x, 2*x.

Return Vaue

2 to the x power. If the value of x is finite, but so large in magnitude that 2*x cannot be accurately represented by
a doubl e, the return value is is the nearest representable doubl e (possibly, an | nf), and errno is set to
ERANGE. If x is either a positive or a negative infinity, the result is either +1 nf or zero, respectively, and err no
is not changed. If x is a NaN the return value is NaN and er r no is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

expml
Syntax

#i ncl ude <mmat h. h>

doubl e expni(doubl e x);

Description

This function computes the value of e*x - 1, the exponential of x minus 1, where e is the base of the natural
system of logarithms, approximately 2.718281828. The result is more accurate than exp(x) - 1 for small vaues of
X, where the latter method would lose many significant digits.

Return Vaue

e raised to the power x, minus 1. If the value of x is finite, but so large that its exponent would overflow a
doubl e, the return value is | nf, and errno is set to ERANGE If x is either a positive or a negative infinity, the
result is either +I nf or -1, respectively, and err no is not changed. If x is a NaN the return value is NaN and
errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 140 -

fabs
Syntax

#i ncl ude <mat h. h>

doubl e f abs(doubl e x);

Description
This function computes the absolute value of its argument x.

Return Vaue

x if x is positive, else -x. Note that in this context, +0.0 is positive and -0.0 is negative. Infinities and NaNs are
returned unchanged, except for the sign.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

_far*
Syntax

#i ncl ude <sys/farptr. h>

unsi gned char _far peekb(unsi gned short sel ector, unsigned | ong of fset);
unsi gned short _farpeekw(unsi gned short sel ector, unsigned | ong of fset);
unsi gned | ong _far peekl (unsi gned short sel ector, unsigned | ong of fset);

voi d _f arpokeb(unsi gned short sel, unsigned | ong of f,
unsi gned char val);

voi d _farpokew unsi gned short sel, unsigned | ong of f,
unsi gned short val);

voi d _farpokel (unsi gned short sel, unsigned | ong of f,
unsi gned | ong val) ;

void farsetsel (unsi gned short selector);
unsi gned short _fargetsel (void);

voi d _farnspokeb(unsi gned | ong of fset, unsi gned char val ue);
voi d _farnspokew unsi gned | ong of f set, unsi gned short val ue);
voi d _farnspokel (unsi gned | ong of fset, unsi gned | ong val ue) ;

unsi gned char _farnspeekb(unsi gned | ong of fset);
unsi gned short _farnspeekw(unsi gned | ong of fset);
unsi gned | ong _farnspeekl (unsi gned | ong of fset);

Description

These functions provide the equivalent functionality of "far pointers' to peek or poke an absolute memory addresses,
even though gcc doesn’t understand the keyword "far". They come in handy when you need to access
memory-mapped devices (like VGA) or some address in lower memory returned by a real-mode service. These
functions are provided as inline assembler functions, so when you optimize your program they reduce to only a few
opcodes (only one more than a regular memory access), resulting in very optimal code.

The first two groups of functions take a selector and an offset. This selector is not a dos segment. If you want to
access dos memory, pass _go32_info_block.selector_for_linear_ memory (or just _dos ds, which is defined in the
include file go32.h) as the selector, and seg* 16+ofs as the offset. For functions which poke the memory, you
should also provide the value to put there.

The last two groups assume that you've used f ar set sel to specify the selector. You should avoid making any
function calls between farset sel and using these other functions, unless you're absolutely sure that they won’t
modify that selector. This allows you to optimize loops by setting the selector once outside the loop, and using the
shorter functions within the loop. You can use fargetsel if you want to temporary change the selector with
_farsetsel and restore it afterwards.

- Page 141 -

Return Vaue

Functions which peek the address return the value at given address. _f ar get sel returns the current selector.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
fchdir

Syntax

#i ncl ude <uni std. h>
int fchdir(int fd);

Description
This function changes the current directory to the directory described by the file descriptor fd.

Return Vaue

Zero on success, else nonzero and errno set if error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEKXXEKXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
Example
int fd;

fd=open("dir", O RDONLY);
fchdir(fd);

fchmod
Syntax

#i ncl ude <sys/stat. h>
int fchrod(int fd, node_t node);

Description

This function changes the mode (writable or write-only) of the file opened under the file descriptor fd. The value of
mode can be a combination of one or more of the S | * constants described in the description of the chnod
function (See chmod).

Some S _| * constants are ignored for regular files:

e S I*GRPand S | *OTH are ignored, because DOS/Windows has no concept of ownership, so al files are
considered to belong to the user;

e S | R* are ignored, because files are always readable on DOS/Windows.
f chnod will always succeed for character devices, but the mode will be ignored.
f chnod may not be able to change the mode of files that have been opened using low-level methods. High-level
methods for opening files include the f open (See fopen) and open (See open) functions. Low-level methods
include the _open (See open) and _dos_open (See _dos open) functions. In particular, redirected handles cannot
have their mode changed with f chnod.

f chnmod may also not work as expected under DOS. For instance, if a file is opened as read-write, then changed to
read-only with f chnod, but then written to, then the mode will not be changed.

This function can be hooked by File System Extensions (See File System Extensions).
Return Value
Zero if the file exists and the mode was changed, ese -1.

- Page 142 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
Example
int fd;

fd=open("/tnp/dj.dat", O RDWR);
fchnod(fd, S IWISR| S | RUSR);

fchown
Syntax

#i ncl ude <uni std. h>

int fchown(int fd, uid_t ower, gid_t group);

Description
This function changes the ownership of the open file specified by fd to the user ID owner and group ID group.

This function does amost nothing under MS-DOS: it just checks if the handle f d is valid. This function can be
hooked by File System Extensions (See File System Extensions).

Return Vaue

This function returns zero if the handle is valid, non-zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

fclose
Syntax

#i ncl ude <stdi 0. h>

int fclose(FILE *file);

Description
This function closes the given file

Return Vaue

Zero on success, else ECF.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
FILE *f = fopen("data", "r");
fprintf(f, "Hello\n");
fclose(f);

fentl
Syntax

#i ncl ude <fcntl. h>
int fentl (int fd, int cnd, ...);

Description
This function performs the operation specified by cmd on the file open on handle fd. The following operations are

- Page 143 -

defined by the header fcntl . h:

F_DUPFD
"~ Returns a file handle that duplicates fd like dup does (See dup), except that f cnt | also makes sure the
returned handle is the lowest available handle greater than or equal to the integer value of the third argument.

F_GETFD
"~ Get the FD_CLOEXEC close-on-exec (ak.a. no-inherit) status of fd. If the returned value has its
least-significant bit set, the file will not be inherited by programs invoked by this process; otherwise, the file
will remain open in the child processes.

Note that only the first 20 handles can be passed to child processes by DOS/Windows; handles beyond that
cannot be inherited. In addition, the stub loader of the child DJGPP program will forcibly close handles 19
and 18 (since otherwise it will be unable to read the COFF executable information and enter protected mode).
Therefore, the current implementation always returns FD_CLOEXEC for handles 18 and above.

For handles less than 18, the call will try to determine the status of the O NO NHERI T flag for that file and
will return either FD_CLOEXEC if the flag is set, or O if the flag is not set. If the status of the
O_NO NHERI T flag cannot be determined, the call will return -1, setting er r no to ENOSYS

The no-inherit bit can be set when the file is opened by using the O NO NHERI T in the open flags; see See
open.

F_SETFD
Set or unset the close-on-exec flag for the handle fd using the LSB of the integer value supplied as the third
argument. Since only the first 20 handles are passed to child programs, and since the stub loader of the
child DJGPP program will forcibly close handles 19 and 18 (since otherwise it will be unable to read the
COFF executable information and enter protected mode), the flag can only be set or unset on the first 18
handles. Attempts to set the flag for handles 18 or above will aways return 0, and attempts to unset the flag
for handles 18 or above will always return -1, setting er r no to ENOSYS

For handles less than 18, the call will try to set or unset the O NO NHERI T flag for that file and will return
0 if the flag is changed. If the O_NO NHERI T flag cannot be changed, the call will return -1, setting
errno to ENOSYS

F_GETFL
Get the open mode and status flags associated with the handle fd. The flags are those supported by open
and creat functions, like O RDONLY, O APPEND, etc.

On Windows NT this cannot report the open mode correctly --- O RDONLY is aways returned.

F_SETFL
Set the open mode and status flags associated with the handle fd. This fails in al but one case, and sets
errno to ENOSYS since DOS and Windows don’t allow changing the descriptor flags after the file is open.

The one alowed case is for O NONBLOCK, since DJGPP doesn’'t support it anyway. That is, cals using
F_SETFL will fail for all flag values except O_NONBLOCK

#i ncl ude <fcntl . h>

ret =fcntl (fd, F_SETFL, OBINARY); /* Thisw |l fail, returning -1 */
/* and setting errno to ENOSYS. */

ret =fcntl (fd, F_SETFL, O NONBLOCK); /* This wi |l succeed */
/* returning 0. */

F_GETLK
Return the lock structure that prevents obtaining the lock pointed to by the third argument, or set the
| _type field of the lock structure to F_UNLCK if there is no obstruction. Currently, only the setting of the
| _type field is provided. This cal will not return values in the struct fl ock parameter identifying what
lock parameters prevent getting the requested lock, since there is no way to obtain this information from
DOS/Windows. If the lock cannot be obtained, -1 is returned and err no is set to the reason (which will be
one of El NVAL, EBADF, EACCES or ENOLCK).

Locking of directories is not supported.

F_SETLK
Set or clear a file segment lock according to the structure pointed to by the third argument. The lock is set
when | _type is F_RDLCK (shared lock request) or F_WRLCK (exclusive lock request), and the lock is

- Page 144 -

cleared when | _type is F_UNLCK If the lock is already held, then this call returns -1 and sets err no to
EACCES

The F_RDLCK value for requesting a read lock is always treated as if it were F_WRLCK for a write lock.
This is because DOS/Win9x only supports one kind of lock, and it is the exclusive kind.
Locking of directories is not supported.

F_SETLKW

"~ Same as F_SETLK, but if the lock is blocked, the call will wait (using __dpmi _yi el d, see See
__dpmi_yield) until it is unblocked and the lock can be applied. This call will never exit if the program
making the call is the program which aready owns the lock.

Locking of directories is not supported.

F_CGETLK64

F_SETLK64

F_SETLKWs4
Each of these does exactly the same function as the non-"64" version, but the third argument must be of type
struct fl ock64, which alows the |_start and |_len members to be | ong | ong i nt values. The current
code will only use these | ong | ong i nt values modulo 2*32, which alows file locking positions up to 4
gigabytes minus 1. True 64-bit file locking is not supported.

The struct fl ock64 members |_start and |_len are declared to be of type of f set _t, which is in turn
typedef’ed to be a | ong | ong.

Locking of directories is not supported.

This function can be hooked by the Filesystem extensions, see See File System Extensions If you don’'t want this,
and you are calling f cnt| with the F_DUPFD command, you should use dup2 instead, see See dup2.

Return Vaue

If an invalid or unsupported value is passed in cmd, or fd is an invalid file handle, the function returns -1 and sets
errno to the appropriate value. Unsupported values of cmd cause ENOSYS to be stored in errno. If cmd is
F_DUPFD, the function returns the new descriptor or -1 in case of a failure.

Lock requests which specify the open file's current EOF position as the value of |_start and zero as the |_len value
will fail, returning -1 with errno set to EACCES

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHHXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. Contrary to Posix requirement, the handle returned by F_DUPFD shares the FD_CLOEXEC flag with fd
(unless they are on different sides of the 20-handle mark), since DOS/Windows only maintain a single set of
bits for all the handles associated with the same call to open.

Example

/* Save the handle in away that it won’'t be passed
tochild processes. */
int saved fd =fcntl (fd, F_DUPFD, 20);

/* Set an advisory |l ock for the whole file. */
struct flock fl ock;
int retval, fd,

flock.l_type = F_RDLCK;

flock.l whence = SEEK SET;

flock.l _start =flock.l _len=0;
errno = 0;

retval =fcntl (fd, F_SETLK, &fl ock);

/* Get the status of the | ock we just obt ai ned
- Page 145 -

(should return-1wth errno == EACCES). */
errno = 0;
retval =fcntl (fd, F_GETLK, &fl ock);

/* Rel ease the | ock. */

errno = 0;

flock.l _type = F_UNLCK;

retval =fcntl (fd, F_SETLK, &fl ock);

/* Get the status of the |l ock we just rel eased
(should return Q). */

errno = 0;

flock.l _type = F_RDLCK;

retval =fcntl (fd, F_GETLK, &fl ock);

/* Try to set the O BINARY flag onthe openfile
(should return-1wth errno == ENOSYS). */
errno = 0;

retval =fcntl (fd, F_SETFL, O _BI NARY);

/* Set the O NONBLOCK fl ag on the open file
(should return Q). */

errno = 0;

retval =fcntl (fd, F_SETFL, O _NONBLOCK);

/* Get the flags onthe openfile
(al ways returns 0). */
errno = 0;

retval =fcntl (fd, F_GETFL);

fovt
Syntax

#i ncl ude <stdlib. h>

char * fcvt (doubl e value, int ndigits, int *decpt, int *sign)

Description
This function converts the value into a null-terminated string, and returns a pointer to that string.

fcvt works exactly like f cvt buf (See fevtbuf), except that it generates the string in an interna static buffer which
is overwritten on each call.

Return Vaue
A pointer to the generated string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

fevtbuf
Syntax

#i ncl ude <stdlib. h>

char * fcvtbuf (doubl e value, int ndigits, int *decpt, int *sign,
char *buf)

Description

This function converts its argument value into a null-terminated string in buf with ndigits digits to the right of the
decimal point. ndigits can be negative to indicate rounding to the left of the decimal point. buf should have enough
space to hold at least 310+max(0, ndi gi ts) characters.

Note that, unlike ecvt buf (See ecvtbuf), f cvt buf only counts the digits to the right of the decimal point. Thus,
if value is 123.45678 and ndigits is 4, then ecvt buf will produce ‘1235, but f cvt buf will produce ‘‘1234568"

- Page 146 -

(and *decpt will be 3 in both cases).

The produced string in buf does not include the decimal point. Instead, the position of the decima point relative to
the beginning of buf is stored in an integer variable whose address is passed in decpt. Thus, if buf is returned as
*1234"" and *decpt as 1, this corresponds to a value of 1.234; if *decpt is -1, this corresponds to a value of
0.01234, etc.

The sign is aso not included in buf’s value. If value is negative, ecvt buf puts a nonzero value into the variable
whose address is passed in sign; otherwise it stores zero in *sign.

The least-significant digit in buf is rounded.

ecvt buf produces the string “*“NaN"" if value is a NaN, and *‘Inf”’ or ‘‘Infinity’’ if value is an infinity (the longer
form is produced when ndigits is 8 or more).

Return Vaue
A pointer to buf.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

char vbuf[20];
int fsign, fdecpt;

fcvtbuf (MPI, 5, &fdecpt, & sign, buf)
/* Thisw Il print " 314159". */
printf ("%%", fsign?’'-" : ' ", buf);
fdopen
Syntax

#i ncl ude <stdi o. h>
FI LE *f dopen(i nt fd, const char *node);

Description

This function opens a stream-type file that uses the given fd file, which must already be open. The file is opened
with the modes specified by mode, which is the same as for f open. See fopen.

Return Value
The newly created FI LE *, or NULL on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXKXXIXHXIXHXXIXHXXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
FI LE *stdprn = fdopen(4, "w');

feof
Syntax

#i ncl ude <stdi o. h>

int feof (FILE *file);

Description

- Page 147 -

This function can be used to indicate if the given file is at the end-of-file or not.

Return Vaue

Nonzero at end-of-file, zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
while (! feof (stdin))
gets(line);

ferror

Syntax

#i ncl ude <stdi o. h>

int ferror(FILE*file);

Description
This function can be used to indicate if the given file has encountered an error or not. See clearerr.

Return Vaue

Nonzero for an error, zero otherwize.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
if (ferror(stdin))

exit(1);
fflush
Syntax

#i ncl ude <stdi o. h>

int fflush(FILE *file);

Description

If file is not a NULL pointer, this function causes any unwritten buffered data to be written out to the given file
This is useful in cases where the output is line buffered and you want to write a partia line.

If file is a NULL pointer, f f | ush writes any buffered output to all files opened for output.
Note that f f 1 ush has no effect for streams opened for reading only. Also note that the operating system can

further buffer/cache writes to disk files; a call to f sync (See fsync) or sync (See sync) is typicaly required to
actualy deliver data to the file(s).

Return Vaue

Zero on success, -1 on error. When called with a NULL pointer, -1 will be returned if an error happened while
flushing some of the streams (but f f 1 ush will still try to flush all the rest before it returns).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 148 -

Example

printf("Enter value: ");
fflush(stdout);
scanf (result);

ffs
Syntax
#i ncl ude <string. h>
int ffs(int _mask);
Description
This function find the first (least significant) bit set in the input value.
Return Value
Bit position (1..32) of the least significant set bit, or zero if the input value is zero.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXEXKIIXXXXXXXKXXXXXKXXKXXXXXXXX NO No
Example
ffs(0) =0
ffs(1l) =1
ffs(b5) =1
ffs(96) =6
fgetc
Syntax

#i ncl ude <stdi 0. h>

int fgetc(FILE*file);

Description
Returns the next character in the given file as an unsigned char.

Return Vaue
The given char (value 0..255) or EOF at end-of-file.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int c;
whil e((c=fgetc(stdin)) !=EOF)
fputc(c, stdout);

fgetgrent

Syntax

#i ncl ude <grp. h>

struct group *fgetgrent(FILE*file);

Description
This function, in MS-DOS, is exactly the same as get gr ent (See getgrent).

- Page 149 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

fgetpos
Syntax

#i ncl ude <stdi o. h>

int fgetpos(FILE*file, fpos_t *offset);

Description
This function records the current file pointer for file for later use by f set pos.

See fsetpos. See ftell.

Return Vaue

Zero if successful, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEXXXKXXEXKXIXKXXKXXKXXKXXKXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

fgets
Syntax

#i ncl ude <stdi o. h>

char *fgets(char *buffer, int maxl ength, FILE *file);

Description

This function reads as much of a line from a file as possible, stopping when the buffer is full (maxlength-1
characters), an end-of-line is detected, or EOF or an error is detected. It then stores a NULL to terminate the string.

Return Vaue

The address of the buffer is returned on success, if EOF is encountered before any characters are stored, or if an
error is detected, NULL is returned instead.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char buf[100];
whi | e (fgets(buf, 100, stdin))
f put s(buf, stdout);

File System Extensions

Description

The File System Extensions are a part of the lowest level of I/O operations in the C runtime library of DJGPP.
These extensions are provided to allow for cases where Unix uses a file descriptor to access such items as seria
ports, memory, and the network, but DOS does not. It allows a set of functions (called an extension) to gain
control when one of these low-level functions is called on a file descriptor set up by the extension.

Each extension must provide one or two handler functions. All handler functions take the same arguments:

int function(__FSEXT Fnunber func_number, int *rv, va |list args);

- Page 150 -

The func_number identifies which function is to be emulated. The file <sys/f sext . h> defines the function
numbers as follows:

_FSEXT_nop
A no-op. This is currently unused by the library functions.

___FSEXT_open
An open handler (See _open). This is called just before the library is about to issue the DOS OpenFile call
on behalf of your program.

If _open was caled from the library function open, then the file name passed to the handler will have
either al its symlink components resolved or will refer to a symlink file (i.e.: all directory symlinks will be
resolved), depending on whether the O _NOLI NK was passed to open (See open).

Do not use this extension to emulate symlinks. Use _ FSEXT_r eadl i nk handler instead.

__FSEXT _creat

A create handler (See _creat, and See _creatnew). Called when a file needs to be created. Note that the
handler should both create the *‘file’’ and open it.

If _creat or _creat new were called from the library functions open or creat, then the file name
passed to the handler will have all its symlink components resolved.

_FSEXT read
A read handler (See _read). Caled when data should be read from a ‘‘file’’.

_FSEXT write
A write handler (See write, and See _write). Called to write data to a ‘‘file’’. On ‘‘text’’ files it receives
the original (unconverted) buffer.

_FSEXT _r eady
A ready handler. It is called by sel ect library function (See select) when it needs to know whether a
handle used to reference the ‘*file’” is ready for reading or writing, or has an error condition set. The
handler should return an OR’ed bit mask of the following bits (defined on <sys/fsext. h>):

___FSEXT ready_read
The “*file’’ is ready for reading.

__FSEXT ready wite
The “*file’’ is ready for writing.

_FSEXT ready_error
The ‘‘file’ has an error condition set.

_FSEXT cl ose
A close handler (See _closg). Called when the ‘‘file’’ should be closed.

FSEXT fcntl
A file fentl handler (See fentl).

_FSEXT i octl
A file ioctl handler (See ioctl (General description)).

FSEXT | seek
A file Iseek handler (See Iseek). Here for backwards compatibility. Use ~ FSEXT | | seek instead. If you

have a __ FSEXT | | seek handler you don't need a __ FSEXT | seek handler as | seek cals | | seek
internally.

_FSEXT | | seek
A file llseek handler (See llseek).

__FSEXT_link
A file link handler (See link). This is most relevant to file system extensions that emulate a directory
structure.

The source and destination file names are passed to the handler unchanged.
___FSEXT _unlink

- Page 151 -

A file unlink handler (See remove and See unlink). This is most relevant to file system extensions that
emulate a directory structure.

The file name passed to the handler will have all its directory symlinks resolved, so it may refer to a symlink
file.

_FSEXT_dup
A file dup handler (See dup). This is called when a new descriptor is needed to refer to an existing
descriptor.

_FSEXT_dup2
A file dup2 handler (See dup2). This is called when two different file descriptors are used to refer to the
same open file.

FSEXT_st at
" A file Istat handler (See Istat). This extension should provide information about stated file. If you provide
this hook, function st at will be hooked too, as st at aways cals | st at.

If the handler is called as a result of a st at call, then the file name passed to the handler will have al its
symlinks resolved, so it will refer to a ‘‘regular’’ file. If the handler is called as result of a |l st at call and
not a st at call, then the file name passed to the handler will have all its directory symlinks resolved, so it
may refer to a symlink file.

_FSEXT fstat
A file fstat handler (See fstat). The extension should fill in various status information about the emulated file.

__FSEXT_readlink
A file readlink handler (See readlink). This extension should be used to provide support for symlinks in some
other than DJGPP format.

The file name passed to the handler will have all its directory symlinks resolved, so it may refer to a symlink
file.

_FSEXT_symi i nk
A file symlink handler (See symlink). This extension should create symlinks in other than DJGPP symlink
file format.

The source and destination file names are passed to the handler unchanged.

__ FSEXT _chnod
A file chmod handler (See chmod). This is called when the permissions are to be changed for a file.

The file name passed to the handler will have all its symlinks resolved.

__FSEXT_chown
A file chown handler (See chown). This is called when the ownership is to be changed for a file.

The file name passed to the handler will have al its symlinks resolved.

_FSEXT _f chnod
A file fchmod handler (See fchmod). This is called when the permissions are to be changed for an open file.

FSEXT_f chown
A file fchown handler (See fchown). This is called when the ownership is to be changed for an open file.

rv points to a temporary return value pointer. If the function is emulated by the handler, the return value should be
stored here, and the handler should return a nonzero value. If the handler returns zero, it is assumed to have not
emulated the call, and the regular DOS 1/O function will happen. The args represent the arguments passed to the
origina function; these point to the actual arguments on the stack, so the emulation may choose to modify them and
return zero to the regular function, which will then act on the modified arguments.

A normal extension would provide these parts:

. Some function to create a connection to the extension. This may be a custom function (such as socket for
networking) or an extension to open (such as / dev/ttyS0 to access the seria port).

. Initialization code that adds the open handler, if any.

- Page 152 -

. Overrides for the basic 1/0O functions, such as read and write. This is a single function in the extension
that uses the function number parameter to select an extension function.

. The core functionality of the extension, if any.

Please note that the special Unix filenames / dev/ nul | and / dev/tty are aready mapped to the appropriate DOS
names NUL and CON respectively, so you don’t need to write extensions for these.

Please note that the special Unix filenames / dev/ zero and / dev/ ful I can be made available by calling the
functions __install _dev_zero (See _ingtall_dev_zero) and __install _dev_full (See __instal_dev_full)
respectively, so you don’'t need to write extensions for these. These are implemented using File System Extensions.

Programs using the DJGPP debug support functions in | i bdbg. a may have problems using File System Extensions,
because the debug support functions use a File System Extension to track the opening and closing of files. Only the
FSEXT_open and __ FSEXT _creat calls will be passed to other File System Extensions by | i bdbg. a. In
other words, only fairly trivial File System Extensions can be used in programs at the same time as the debug

support functions.

__file exists
Syntax

#i ncl ude <uni std. h>

int __file_exists(const char *_fn);

Description

This function provides a fast way to ask if a given file exists. Unlike access(), this function does not cause other
objects to get linked in with your program, so is used primarily by the startup code to keep minimum code size
small.

Return Vaue

Zero if the file does not exist, nonzero if it does. Note that this is the opposite of what access() returns.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example

if (__file_exists(fnane))
process_fil e(fnane);

__file _tree walk
Syntax

#i ncl ude <dir. h>

i nt file tree_wal k(const char *dir,
int (*func)(const char *path,
const struct ffblk *ff));

Description

This function recursively descends the directory hierarchy which starts with dir. For each file in the hierarchy,

__file_tree_wal k calls the user-defined function func which is passed a pointer to a NULL-terminated character
array in path holding the full pathname of the file, a pointer to a f f bl k structure (See findfirst) ff with a DOS
filesystem information about that file.

This function always visits a directory before any of its siblings. The argument dir must be a directory, or
__file_tree_wal k will fail and set errno to ENOTDI R The directory dir itself is never passed to func.

The tree traversal continues until one of the following events:

(1) The tree is exhausted (i.e., al descendants of dir are processed). In thiscase, _ fil e_tree_wal k returns 0,

- Page 153 -

meaning a Success.

(2) An invocation of func returns a non-zero value. In this case, fil e tree_wal k stops the tree traversal and
returns whatever func returned.

(3) An error is detected within __ fil e _tree_wal k. In that case, ftw returns -1 and sets er r no (See errmo) to a
suitable value.

Return Vaue

Zero in case the entire tree was successfully traversed, -1 if __fil e_tree_wal k detected some error during its
operation, or any other non-zero value which was returned by the user-defined function func.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIXEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
#i ncl ude <stdlib. h>
i nt
ff _wal ker (const char *path, const struct ffblk *ff)
{

printf("%:\t%Wu\t", path, ff->ff fsize);
if (ff->ff_attrib &1)
printf("R");

i f (ff->ff_attrib&2)
printf("H");

if (ff- >ff attrlb&4)
printf("S");

if (ff- >ff attrlb&8)
printf("V

if (ff- >ff attrlb&Oxlo)
printf("D");

i f (ff >ff attrlb&OXZO)
printf("A

printf("\n");

if (strenp(ff->ff _name, "XXXXX') == 0)
return 42;
return O;

}

i nt

mai n(i nt argc, char *argv[])

if (argc > 1)

char nsg[80];

sprintf(msg, "__file_tree_wal k: %"
file tree_walk(argv[1], ff vvalker));
if (errno)

perror(nsg);

el se

put s(nsg) ;

}

el se
printf("Usage: % dir\n", argv[O0]);

return O;

filelength

- Page 154 -

Syntax

#i ncl ude <i 0. h>

long filelength(int fhandle);

Description

This function returns the size, in bytes, of a file whose handle is specified in the argument fhandle To get the
handle of a file opened by f open (See fopen) or f r eopen (See freopen), you can use fi |l eno macro (See fileno).

Return Vaue

The size of the file in bytes, or (if any error occured) -1L and errno set to a value describing the cause of the
fallure. If the file's length is larger than a 32-bit unsi gned i nt can hold, errno will be set to EOVERFLOW

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Example
printf("Size of filetowhich STDINisredirectedis % d\n",

filelength(0));
fileno
Syntax

#i ncl ude <stdi 0. h>
int fileno(FILE*file);

Description
This function returns the raw file descriptor number that file uses for 1/O.

Return Vaue

The file descriptor humber.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIIXHXKKIEXHXXKXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

findfirst
Syntax

#i ncl ude <dir. h>
int findfirst(const char *pathnane, struct ffblk *ffblk, int attrib);

Description

This function and the related f i ndnext (See findnext) are used to scan directories for the list of files therein. The
pathname is a wildcard that specifies the directory and files to search for (such as subdi r/*. c), ffblk is a structure
to hold the results and state of the search, and attrib is a combination of the following:

FA RDONLY
Include read-only files in the search (Ignored.)

FA H DDEN
Include hidden files in the search

FA SYSTEM
Include system files in the search

FA LABEL
Include the volume label in the search

- Page 155 -

FA DI REC
Include subdirectories in the search

FA_ ARCH
Include modified files in the search (Ignored.)

If a file has flag bits that are not specified in the attrib parameter, the file will be excluded from the results. Thus,
if you specified FA DI REC and FA LABEL, subdirectories and the volume label will be included in the results.
Hidden and system files will be excluded.

Since fi ndfirst cals DOS function 4eh, it is not possible to exclude read-only files or archive files from the
results. Even if the FA_ARCH and FA_RDONLY bits are not specified in the attrib parameter, the results will
include any read-only and archive files in the directory searched.

This function supports long file names.

The results of the search are stored in ffblk, which is extended when the LFN APl (See use Ifn, LFN) is
supported. Fields marked LFN are only valid if the | f n_nagi ¢ member is set to "LFN32".

struct ffblk {

char I fn_magic[6]; /* LFN: the magi ¢ "LFN32" signature */

short | fn_handle; /* LFN: t he handl e used by findfirst/findnext */
unsi gned short I fn_ctinme; /* LFN. filecreationtine */

unsi gned short | fn_cdate; /* LFN. file creation date */

unsi gned short Ifn_atime; /* LFN: file last access tinme (usually 0) */
unsi gned short | fn_adate; /* LFN. file |l ast access date */

char ff _reserved[5]; /* usedto hold the state of the search */
unsi gned char ff_attrib; /* actual attributes of the file found */
unsi gned short ff _ftinme; /* hours:5, mnutes:6, (seconds/2):5 */
unsi gned short ff _fdate; /* (year—1980) 7, mont h: 4, day:5 */
unsigned | ong ff _fsize; /* size of file*/

char ff_nane[260]; /* nane of file as ASCI | Z string */

}

Return Vaue

Zero if a match is found, nonzero if none found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXKXXXXXKXXKXXXKXXXXXXXXXX NO No

Example
struct ffblk f;
int done=findfirst("*.exe", &, FA H DDEN| FA _SYSTEM ;
whil e (!done)

printf("%0u %u: %02u: %92u Ru/ ¥YO2u/ %du ¥s\ n",
f.ff_fsize
(f.ff_ft|rre>> 11) & Ox1f,
(f.ff_ftinme >>5) & 0x3f,
(f.ff_ftime & Ox1f) * 2,
(f.ff_fdate >>5) &Oxof
(f.ff_fdate & Ox1f),
((f.ff_fdate >>9) &0x7f) + 1980,
f.ff_nane);
done =fin dnext(&f)
}

findnext

Syntax

#i ncl ude <dir. h>

- Page 156 -

int findnext(struct ffblk *ffblk);

Description
This finds the next file in the search started by fi ndfirst. See findfirst.

Return Vaue

Zero if there was a match, else nonzero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

_fixpath
Syntax

#i ncl ude <sys/stat. h>

void fixpath(const char *in_path, char *out path);

Description

This function canonicalizes the input path in_path and stores the result in the buffer pointed to by out_path

The path is fixed by removing consecutive and trailing slashes, making the path absolute if it's relative by
prepending the current drive letter and working directory, removing "." components, collapsing ".." components,
adding a drive specifier if needed, and converting all slashes to '/’. DOS-style 8+3 names of directories which are

part of the pathname, as well as its fina filename part, are returned lower-cased in out_path, but long filenames are
left intact. See _preserve fncase, for more details on letter-case conversions in filenames.

Since the returned path name can be longer than the original one, the caller should ensure there is enough space in
the buffer pointed to by out_path Using ANSI-standard constant FI LENAVE_MAX (defined on st di 0. h) or
Posix-standard constant PATH _MAX (defined on |i mi ts. h) is recommended.

Return Vaue
None. If the length of the returned path name exceeds FI LENAME_MAX errno is set to ENAMETOOLONG

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

char ol dpat h[100], newpat h[FI LENAMVE_NMAX] ;
scanf ("9%", ol dpath);

_fixpath(ol dpat h, newpath);

printf("that reallyis %\n", newpath);

flock
Syntax

#i ncl ude <sys/file. h>
int flock (int _fildes, int _op);

Description

Apply or remove an advisory lock on an open file. The file is specified by file handle fildes. Valid operations are
given below:

LOCK_SH
Shared lock. More than one process may hold a shared lock for a given file at a given time. However, all
locks on DOS/Windows 9X are exclusive locks, so LOCK_SH requests are treated as if they were LOCK_EX
requests.

LOCK_EX

- Page 157 -

Exclusive lock. Only one process may hold an exclusive lock for a given file at a given time.

LOCK _UN
Unlock the file.

LOCK_NB
Don't block when locking. May be specified (by or’ing) along with one of the other operations.

On other systems, a single file may not simultaneously have both shared and exclusive locks. However, on
DOS/Windws 9X, all locks are exclusive locks, so this rule is not true for DOS/Windows 9X.

A file is locked, not the file descriptor. So, dup (2); does not create multiple instances of a lock.
Dos/Windows 9X do not support shared locks, but the underlying implementation (which uses the F_SETLK
(non-blocking) or F_SETLKW (blocking) commands to f cnt |, See fentl) translates all shared lock request into

exclusive lock requests. Thus, requests for shared locks will be treated as if exclusive locks were requested, and
only one lock will ever be permitted at any one time on any specified region of the file.

It is therefore wise to code f| ock by oring LOCK_NB with all lock requests, whether shared or exclusive, and to

test the return value to determine if the lock was obtained or not. Using LOCK _NB will cause the implementation to
use F_SETLK instead of F_SETLKW which will return an error if the lock cannot be obtained.

Return Vaue

On success, zero is returned. On error, -1 is returned, and er r no is set appropriately.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXIXXXIXHXXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. 4.4BSD (the flock (2) call first appeared in 4.2BSD).

Example
/* Request a shared lock onfile handle fd */
errno = 0;

retval =flock(fd, LOCK SH);

/* Request a non-bl ocki ng shared | ock on file handle fd */
errno = 0;
retval =flock(fd, LOCK_SH| LOCK_NB);

/* Request an exclusive lock on file handle fd */
errno = 0;
retval =flock(fd, LOCK EX);

/* Request a non- bl ocki ng exclusive lock onfile handle fd */
errno = 0;
retval =flock(fd, LOCK EX| LOCK _NB);

/* Rel ease alock onfile handle fd */

errno = 0;
retval =flock(fd, LOCK UN);

floor
Syntax

#i ncl ude <mmat h. h>

doubl e fl oor (doubl e x);

Description
This function computes the largest integer not greater than x.

Return Vaue

- Page 158 -

The largest integer value less than or equal to x. Infinities and NaNs are returned unchanged.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

_flush_disk_cache
Syntax

#i ncl ude <i 0. h>

void flush_disk cache (void);

Description

Attempts to update the disk with the data cached in the write-behind disk caches (such as Smart Drv and the
built-in Windows 95 disk cache).

Note that this does not flush the DOS buffers. You need to call f sync (See fsync) or cl ose (See close) to force
DOS to commit the file data to the disk; sync (See sync) does that for all open files, and also cals
_flush_di sk_cache.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

Example

/* Make sure all cached data for a handle FDis actual ly
witten to disk. */

fsync (fd);

_flush_di sk _cache ();

fmod
Syntax

#i ncl ude <mat h. h>
doubl e f rod(doubl e x, doubl e y);

Description
This function computes the remainder of x/y, which is x - iy for some integer i such that iy < x < (i+1)y.

Return Vaue

The remainder of xA. If x is | nf or NaN the return value is NaN and er r no is set to EDOM If y is zero, the
return value is zero (but err no is not changed).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

_fmode
Syntax

#i ncl ude <fcntl . h>
externint _fnode;

Description
This variable may be set to O TEXT or O _BI NARY to specify the mode that newly opened files should be opened

- Page 159 -

in if the open call did not specify. See open. See fopen.
The default value is O_TEXT.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example
_frode = O_BlI NARY;

fnmatch
Syntax

#i ncl ude <f nmat ch. h>

i nt fnmatch(const char *pattern, const char *string, int flags);

Description
This function indicates if string matches the pattern. The pattern may include the following specia characters:

*

Matches zero of more characters.
Matches exactly one character.

Matches one character if it's in a range of characters. If the first character is !, matches if the character is
not in the range. Between the brackets, the range is specified by listing the characters that are in the range,
or two characters separated by - to indicate al characters in that range. For example, [a- d] matches a, b,
c, or d. If you want to include the literal - in the range, make it the first character, like in [- af z].

Causes the next character to not be treated as a wildcard. For example, \ * matches an asterisk. This feature
is not available if flags includes FNM NOESCAPE, in which case \ is treated as a directory separator.

The value of flags is a combination of zero of more of the following:

FNM_PATHNAME
This means that the string should be treated as a pathname, in that the slash characters / and \ in string
never match any of the wildcards in pattern.

FNM_NOESCAPE
If this flag is not set, the backslash \ may be used in pattern for quoting special characters. If this flag is
set, \ is treated as a directory separator.

FNM_NOCASE
If this flag is set, f nmat ch matches characters case-insensitively, including in character ranges like [a-f].
Note that the case-folding is done by calling t oupper (See toupper), and thus might be sensitive to the
current locale.

FNM_PERI OD
This flag is accepted and ignored in the current implementation. (This is the right thing to do on non-LFN
platforms, where leading dots in file names are forbidden.)

In the Posix specification, if this flag is set, leading dots in file names will not match any wildcards. If
FNM_PATHNAME is set, a dot after a slash also doesn't match any wildcards.

The DJGPP implementation treats forward slashes and backslashes as equal when FNM_NOESCAPE is set, since on
DOS/Windows these two characters are both used as directory separators in file names.

Return Vaue

Zero if the string matches, FNM_NOVATCH if it does not. Posix defines an additional FNM_ERROR code that's
returned in case of an error, but the current implementation never returns it.

- Page 160 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKIXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:
1. The equa handling of \ and / is DJGPP-specific.

Example
if (fnmatch("*.[ch]", filenanme, FNM PATHNAME| FNM NOCASE))

do_source_file(fil enamne);
fnmerge
Syntax

#i ncl ude <dir. h>

voi d f nnerge (char *path, const char *drive, const char *dir,
const char *nane, const char *ext);

Description
This function constructs a file path from its components drive, dir, name and ext. If any of these is a NULL
pointer, it won't be used. Usualy, the drive string should include the trailing colon ‘ : ', the dir string should
include the trailing dlash * /’ or backslash ‘ \ ', and the ext string should include the leading dot ‘. ’. However, if
any of these isn't present, f ner ge will add them.
See fngplit.
Return Value
None.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example
char buf [MAXPATH] ;
f nner ge(buf, "d:", "/foo/", "data", ".txt");

fnsplit
Syntax

#i ncl ude <dir. h>

int fnsplit (const char *path, char *drive, char *dir,
char *name, char *ext);

Description

This function decomposes a path into its components. It is smart enough to know that . and .. are directories,
and that file names with a leading dot, like . emacs, are not all extensions.

The drive, dir, name and ext arguments should all be passed, but some or even al of them might be NULL pointers.
Those of them which are non-NULL should point to buffers which have enough room for the strings they would
hold. The constants MAXDRI VE, MAXDI R MAXFI LE and MAXEXT, defined on dir.h, define the maximum length of
these buffers.

See fnmerge.
Return Value

A flag that indicates which components were found:

- Page 161 -

DRI VE
The drive letter was found.

DI RECTCRY
A directory or subdirectories was found.

FI LENAME
A filename was found.

EXTENSI ON
An extension was found.

W LDCARDS
The path included * or ?.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

char d[MAXDRI VE], p[MAXDI R], f[MAXFILE], e[MAXEXT];
int which="fnsplit("d:/djgpp/bin/gcc.exe", d, p, f, €);

d="d:
p="/djgpp/bin/"
f ="gcc"
e =".exe"

fopen

Syntax

#i ncl ude <stdi o. h>
FI LE *f open(const char *fil ename, const char *node);

Description

This function opens a stream corresponding to the named filename with the given mode. The mode can be one of
the following:

r
Open an existing file for reading.

w
Create a new file (or truncate an existing file) and open it for writing.

a
Open an exigting file (or create a new one) for writing. The file pointer is positioned to the end of the file
before every write.

Followed by any of these characters:

b
Force the file to be open in binary mode instead of the default mode.

When called to open the console in binary mode, f open will disable the generation of SI G NT when you
press Ctrl-C (Ctrl-Breakwill still cause SI G NT), because many programs that use binary reads from the

console will also want to get the ~C characters. You can use the __dj gpp_set _ctrl _c library function
(See __digpp_set_ctrl_o) if you want Ctrl-C to generate interrupts while console is read in binary mode.

Force the file to be open in text mode instead of the default mode.

Open the file as with O RDWR so that both reads and writes can be done to the same file.

If the file is open for both reading and writing, you must call ffl ush, f seek, or r ewi nd before switching from
read to write or from write to read.

- Page 162 -

The open file is set to line buffered if the underlying object is a device (stdin, stdout, etc), or is fully buffered if
the underlying object is a disk file (data.c, etc).

If b or t is not specified in mode, the file type is chosen by the value of f nbde (See _fmode).

You can open directories using f open, but there is limited support for stream file operations on directories. In
particular, they cannot be read from or written to.

If you need to specify the DOS share flags use the __ dj gpp_share_fl ags. See _ djgpp_share flags.
Return Value

A pointer to the FI LE object, or NULL if there was an error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXIXHXIXHHXHXXXKXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
FILE*f =fopen("foo", "rb+"); /* openexistingfile for read/wite,
* bi nary node */

fork

Syntax

#i ncl ude <uni std. h>

pid t fork(void);

Description

This function always returns -1 and sets er r no to ENOMEM, as MS-DOS does not support multiple processes. It
exists only to assist in porting Unix programs.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
fpathconf

Syntax

#i ncl ude <uni std. h>
Il ong fpathconf(int fd, int nane);

Description

Returns configuration information on the filesystem that the open file resides on. See pathconf. If the filesystem
cannot be determined from the file handle fd (e.g., for character devices), f pat hconf will return the info for the
current drive.

Return Value
The configuration value; for details, see See pathconf.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

fpclassify
Syntax

#i ncl ude <mat h. h>
Description

- Page 163 -

The macro f pcl assi fy returns the kind of the floating point value supplied.

Return Value
FP_I NFI NI TE, FP_NAN FP_NORMAL, FP_SUBNORMAL, FP_ZERO or FP_UNNCRIVAL.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEKXXKXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C99; not C89
Example

float f =1;

doubl e d = I NFI NI TY;

| ong doubl e I d = NAN,

i{f(fpclassify(f) ! = FP_NORNAL)
printf("Sonethingiswongwththeinplenentation!\n");
i{f(fpclassify(d) '=FP_INFIN TE)
printf("Sonethingiswongwththeinplenentation!\n");
i{f(fpclassify(ld) !'=FP_NAN)

printf("Sonethingiswongwththeinplenentation!\n");

__fpclassifyd
Syntax

#i ncl ude <mat h. h>
int _ fpclassifyd(double);

Description

Returns the kind of the floating point value supplied. You should use the type generic macro f pcl assi fy (See
fpclassify) instead of this function.

Return Vaue
FP_I NFI NI TE, FP_NAN FP_NORMAL, FP_SUBNCRMVAL or FP_ZERQ

Portability

{ANSI/ISO C {XX C99; not C89
Example

i f(__fpclassifyd(0.0) !=FP_ZERO)

{

printf("Somethingis wongwththeinplenentation!\n");

__fpclassifyf
Syntax

- Page 164 -

#i ncl ude <mat h. h>
int _ fpclassifyf(float);

Description

Returns the kind of the floating point value supplied. You should use the type generic macro f pcl assi fy (See
fpclassify) instead of this function.

Return Vaue
FP_I NFI NI TE, FP_NAN FP_NORMAL, FP_SUBNCRMVAL or FP_ZERQ

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEXHXXHXIXHHIXHXXIKXXXEXXXKXXXXXXXXXXXXX C99; not C89

Example
i{f(__fpclassifyf(0.0F) !'=FP_ZERO)

printf("Somethingis wongwththeinplenentation!\n");

__fpclassifyld
Syntax

#i ncl ude <nat h. h>
int _ fpclassifyld(long double);

Description

Returns the kind of the floating point value supplied. You should use the type generic macro f pcl assi fy (See
fpclassify) instead of this function.

Return Vaue
FP_I NFI NI TE, FP_NAN FP_NORMAL, FP_SUBNORMAL, FP_ZERO or FP_UNNCRIVAL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXXKXIXKXXKXXKXXXXXKXXXXXXXXXXX C99; not C89

Example
i{f(__fpclassifyld(0.0L) !=FP_ZERO)

printf("Sonethingis wongwththeinplenentation!\n");

_fpreset
Syntax

#i ncl ude <f| oat . h>

void fpreset(void);

Description
Resets the FPU completely.

- Page 165 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXX NO No

fprintf
Syntax

#i ncl ude <stdi 0. h>

int fprintf(FILE*file, const char *format, ...);
Description
Prints formatted output to the named file. See printf.
Return Value
The number of characters written.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

fpurge
Syntax

#i ncl ude <stdi o. h>

int fpurge(FILE*file);

Description

If file designates a buffered stream open for writing or for both reading and writing, this function purges the
stream’s buffer without writing it to disk. Otherwise, it does nothing (so it has no effect on read-only streams such
as st di n).

Return Vaue

Zero on success, -1 on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
fputc

Syntax

#i ncl ude <stdi o. h>

int fputc(int character, FILE *file);

Description
This function writes the given character to the given fil e.

Return Value
The given character [0..255] or ECF.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
fputc(’\n', stdout);

- Page 166 -

fputs
Syntax

#i ncl ude <stdi o. h>
int fputs(const char *string, FILE*file);

Description
This function all the characters of string (except the trailing NULL) to the given file

Return Vaue

A nonnegative number on success, ECF on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

fputs("Hello\n", stdout);
fread
Syntax

#i ncl ude <stdi o. h>

size_t fread(void *buffer, size_t size, size_t number, FILE*file);

Description

This function reads size*number characters from file to buffer.
Return Vaue

The number of items of size size read, or less if there was an error.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHIIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
i nt foo[10];

fread(foo, sizeof(int), 10, stdin);
free
Syntax

#i ncl ude <stdlib. h>
void free(void *ptr);

Description
Returns the allocated memory to the heap (See malloc). If the ptr is NULL, fr ee does nothing.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 167 -

Example

char *q = (char *)mal | oc(20);
free(a);

freopen
Syntax

#i ncl ude <stdi o. h>
FI LE *freopen(const char *fil enane, const char *node, FILE *file);

Description

This function closes file if it was open, then opens a new file like f open(fil enane, node) (See fopen) but it
reuses file.

This is useful to, for example, associate st dout with a new file.

Return Vaue
The new file, or NULL on error.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXIXHHXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
freopen("/tnp/stdout.dat”, "wb", stdout);

frexp
Syntax

#i ncl ude <mmat h. h>

doubl e frexp(doubl e x, int *pexp);

Description

This function separates the given value x into a mantissa m in the range [0. 5, 1) and an exponent e, such that
m*2"e = x. It returns the value of the mantissa and stores the integer exponent in *pexp.

Return Vaue

The mantissa. If the value of x is NaN or | nf, the return value is NaN zero is stored in *pexp, and errno is set
to EDOM If x is zero, *pexp and the return value are also both zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

fscanf
Syntax

#i ncl ude <stdi o. h>

int fscanf(FILE *file, const char *format, ...);
Description
This function scans formatted text from file and stores it in the variables pointed to by the arguments. See scanf.
Return Value

The number of items successfully scanned.

- Page 168 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

fseek
Syntax

#i ncl ude <stdi o. h>

int fseek(FILE*file, I ong offset, int node);

Description
This function moves the file pointer for file according to mode:

SEEK_SET
The file pointer is moved to the offset specified.

SEEK_CUR
The file pointer is moved relative to its current position.

SEEK_END
The file pointer is moved to a position offset bytes from the end of the file. The offset is usualy
nonpositive in this case.

Warning! The ANS| standard only allows values of zero for offset when mode is not SEEK_SET and the file has
been opened as a text file. Although this restriction is not enforced, beware that there is not a one-to-one
correspondence between file characters and text characters under MS-DOS, so some f seek operations may not do
exactly what you expect.

Also, since | seek under DOS does not return an error indication when you try to move the file pointer before the
beginning of the file, neither will f seek. Portable programs should call ftel | after f seek to get the actua
position of the file pointer.

Note that DOS does not mind if you seek before the beginning of the file, like seeking from the end of the file by
more than the file's size. Therefore, | seek will not return with an error in such cases either.

Return Vaue

Zero if successful, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
fseek(stdin, 12, SEEK CUR); /* skip 12 bytes */

fsetpos
Syntax

#i ncl ude <stdi o. h>

int fsetpos(FILE*file, const fpos t *offset);

Description
This function moves the file pointer for file to position offset, as recorded by f get pos.

See fgetpos. See fseek.

Return Vaue

Zero if successful, nonzero if not.

- Page 169 -

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

_ FSEXT add open_handler
Syntax

#i ncl ude <sys/fsext. h>

int __ FSEXT_add_open_handl er (__FSEXT_Function *_function);

Description
This function is part of the See File System Extensions It is used to add a handler for functions that do not get
passed descriptors, such as _open and _creat.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

static int
_my_handl er (__FSEXT_Fnunber n, int *rv, va_list args)
{

i nt mai n()

__FSEXT_add_open_handl er (_my_handl er);
}

__FSEXT adloc fd
Syntax

#i ncl ude <sys/ fsext. h>

int _ FSEXT alloc fd(__FSEXT Function *_function);

Description

This function is part of the See File System Extensions It is used by extensions that fully emulate the 1/0
functions, and thus don’t have a corresponding DOS file handle. Upon the first cal, this function opens DOS's NUL
device, so as to alocate a handle that DOS won't then reuse. Upon subsequent calls, that handle is duplicated by
calling the DOS dup function; this makes al of the handles use a single entry in the System File Table, and thus
be independent of what the FI LES= parameter of CONFI G. SYS says. __ FSEXT al | oc_f d also assigns the
handler function for the handle it returns.

The module is responsible for calling _cl ose on the descriptor after setting the handler function to zero in the
extended close handler.

Return Vaue

If successful, a new file descriptor is returned. On error, a negative number is returned and errno is set to indicate
the error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXKXKXXXXXKXXKXXKXXKXXXXXXX NO No

- Page 170 -

Example

i nt socket ()

fd=__ FSEXT alloc_fd(socket handler);
_socket (fd);
n fd;

t
[
t f

® 353

t
ur

— o ——

__FSEXT call _open_handlers
Syntax

#i ncl ude <sys/fsext. h>

i nt FSEXT_cal | _open_handl er s(__FSEXT_Fnunber _functi on_numnber,

int *rv, va_list _args);

Description

This function is part of the See File System Extensions It is used internaly to libc.a to alow extensions to get an
opportunity to override the _open and _creat functions.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
__FSEXT _get_data

Syntax

#i ncl ude <sys/ fsext. h>
void* FSEXT get data(int fd);

Description

This function is part of the See File System Extensions It is used to retrieve a descriptor-specific pointer that was
previously stored by FSEXT set data (See _ FSEXT_set data). The pointer is not otherwise used.

See FSEXT set _data for an example of how this may be used.

Return Vaue

Returns the stored pointer, or NULL if there was an error (or no pointer had been stored).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

__FSEXT get_function
Syntax

#i ncl ude <sys/ fsext. h>
_ FSEXT _Function *_FSEXT get function(int fd);

This function is part of the See File System Extensions It is used internal to libc.a to redirect 1/0O requests to the
appropriate extensions.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

_read(int fd, void *buf, int |len)

- Page 171 -

__ FSEXT _Function *func = __ FSEXT _get function(fd);
i f (func)

{

int rv;

if (func(__FSEXT read, &rv, & d))

returnrv;

/* rest of read() */

}

_ FSEXT _set _data
Syntax

#i ncl ude <sys/fsext. h>

void* _ FSEXT_set _data(int _fd, void *_data);

Description
This function is part of the See File System Extensions It is used to store a descriptor-specific pointer that can later
be retrieved by __ FSEXT_get dat a (See _ FSEXT_get data). The pointer is not otherwise used.

This is useful when writing an extension that may be handling several open pseudo-files. ~ FSEXT _set data can
be used when creating or opening the file to store a pointer to data about the specific file. Later, when specific
operation needs to be done (e.g. read, write, etc.) a pointer to pseudo-file associated with the file descriptor can be
fetched with _ FSEXT get dat a.

Return Value
Returns the pointer you passed it, or NULL if there was an error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Example
t ypedef struct

voi d* Ptr;

off t Current_O s;
size_ t Size;

} _memfile_t;

int my fsext(__FSEXT Fnunber Op, int* RV, va_list Args)
{
const char* Pat h;

voi d* Buffer;
size t Size;

int fd;
~memfile t* MPtr;
switch (Op)

case _ FSEXT creat:
/* Create a newnenory file */

Path =va_list(Args, const char*);

/* Check to seeif we should create a newfile */
if (strnicnp("/tnp/", Path, 5) '=0) return O;

/* Al'l ocate sone nenory to keep i nfo on our fake file */

- Page 172 -

MPtr = mal |l oc(sizeof (_memfile_t));
if (!'MPtr) return O;

menset (MPtr, 0, sizeof (_nemfile_t));

/* Get afile descriptor we can use */
fd=_ FSEXT_alloc_fd(ny_fsext);

if (fd<0)

{

free(MPtr);

return O;

}

/* Now store our note about this file descriptor sowe can
* ook it up quickly later. */
__FSEXT_set _data(fd, MPtr);

/* Returnthe file descriptor
*RV = fd;
return 1;

case __ FSEXT read:

/* Read fromour nenory file. */
fd=va_list(Args, int);

Buf fer =va_list(Args, void*);
Size=va |list(Args, size t);

/* Look up the information about thisfile */
MPtr = _ FSEXT_get _data(fd);
if (VMPtr)

*RV = -1;
return 1;

}

if (MPtr->Current O s >= MPtr->Si ze)
{

*RV = 0;

return 1;

}

if (Size>(Mtr->Size - MPtr->Current_O s))
Size = MPtr->Size - MPtr->Current_O s;

mencpy(Buffer, (char*) MPtr->Ptr+MPtr->Current O s, Size);
MPtr->Current O s += Si ze;

*RV = Si ze;
return 1;
}

}

_ FSEXT set function
Syntax

#i ncl ude <sys/ fsext. h>
int FSEXT set function(int fd, _ FSEXT Function* _function);

Description

This function is part of the See File System Extensions It is used to set the handler function for those extensions
that use DOS files for 1/0. One situation where you might need this is when you must catch output to the terminal
and play some tricks with it, like colorize it or redirect it to another device.

- Page 173 -

Return Vaue

Zero in case of success, non-zero in case of failure (like if _fd is negative).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

#i ncl ude <sys/ fsext. h>
#i ncl ude <coni o. h>

/* Asinmple exanple of awite handl er which converts DOS1/Oto the
screenintodirect wites to video RAM */

static int
nmy_screen_wite (__FSEXT Fnunmber func, int *retval, va_list rest_args)
{

char *buf, *nybuf;
size_t buflen;
int fd =va_ arg (rest_args, int);

if (func!=__ FSEXT wite || !'isatty (fd))
returnO; /* and the usual DOScall will be issued */

buf =va_arg (rest_args, char *);

bufl en =va_arg (rest_args, size t);

nmybuf = alloca (buflen + 1);

mencpy (nybuf, buf, buflen);

nybuf [buflen] ="\0";

cputs (nybuf);

*retval = buflen;

return l; /* nmeaning that we handl ed the cal |l */

}

/* Install our handler. The ‘attribute constructor’ causes this
function to be called by the startup code. */

staticvoid __attribute_((constructor))

install _screen_ wite handl er (void)

{

_ FSEXT _set _function (fileno (stdout), nmy_screen wite);

}

fstat
Syntax

#i ncl ude <sys/stat. h>
int fstat(int file, struct stat *sbuf);

Description

This function obtains the status of the open file file and stores it in sbuf. See stat, for the description of members
of struct stat.

The st _si ze member is an signed 32-bit integer type, so it will overflow on FAT32 volumes for files that are
larger than 2GB. Therefore, if your program needs to support large files, you should treat the value of st _si ze as
an unsigned value.

For some drives st _bl ksi ze has a default value, to improve performance. The floppy drives A: and B: default to
a block size of 512 bytes. Network drives default to a block size of 4096 bytes.

- Page 174 -

Some members of struct stat are very expensive to compute. If your application is a heavy user of f st at and
is too slow, you can disable computation of the members your application doesn't need, as described in See
_djstat_flags.

Return Vaue

Zero on success, nonzero on failure (and errno set).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXEXHXIXXXIXHXIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

struct stat s;

fstat(fileno(stdin), &s);

if (S_I SREGQs.st_node))

puts("STDINis aredirected disk file");
elseif (S_ISCHR(s.st_node))
puts("STDINis a character device");

Bugs
If a file was open in write-only mode, its execute and symlink mode bits might be incorrectly reported as if the file

were non-executable or non-symlink. This is because executables and symlinks are only recognized by reading their
first few bytes, which cannot be done for files open in write-only mode.

For f st at to return correct info, you should make sure that al the data written to the file has been delivered to the
operating system, e.g. by calling both ffl ush and f sync. Otherwise, the buffering of the library 1/0 functions
and the OS might cause stale info to be returned.

Implementation Notes

Supplying a 100% Unix-compatible f st at function under DOS is an implementation nightmare. The following
notes describe some of the obscure points specific to f st ats behavior in DIGPP.

1. The dri ve for character devices (like con, / dev/ nul | and others is returned as -1. For drives networked by
Novell Netware, it is returned as -2.

2. The starting cluster number of a file serves as its inode number. For files whose starting cluster number is
inaccessible (empty files, al files on Windows, files on networked drives, etc.) the st _i node field will be invented
in a way which guarantees that no two different files will get the same inode number (thus it is unique). This
invented inode will aso be different from any real cluster number of any local file. However, only for local,
non-empty files/directories the inode is guaranteed to be consistent between st at and f st at function calls. (Note
that files on different drives can have identical inode numbers, and thus comparing files for identity should include
comparison of the st _dev member.)

3. On all versions of Windows except Windows 3.X, the inode number is invented using the file name. f st at
can probably use the file name that was used to open the file, when generating the inode. This is done such that
the same inode will be generated irrespective of the actual path used to open the file (eg.: f oo. t xt, ./foo0.txt,
../ sonedir/foo.txt). If file names cannot be used, f st at aways returns different inode numbers for any two
files open on different handles, even if the same file is open twice on two different handles.

4. The WRITE access mode hit is set only for the user (unless the file is read-only, hidden or system). EXECUTE
bit is set for directories, files which can be executed from the DOS prompt (batch files, .com, .dIl and .exe
executables) or run by go32-v2. exe. For files which reside on networked drives under Novell Netware, this can
sometimes fail, in which case only the read access hit is set.

5. The variable _dj stat_fl ags (See _djstat_flags) controls what hard-to-get fields of struct stat are needed
by the application.

fstatvfs
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/statvfs. h>

int fstatvfs (int fd, struct statvfs *sbuf);

- Page 175 -

Description
This function returns information about the ‘‘filesystem’’ (FS) containing the file referred to by the file descriptor fd
and stores it in sbuf, which has the structure below:

struct statvfs {

unsi gned l ong f_bsi ze; /* FS bl ock si ze */

unsi gned long f_frsize; /* fundanental bl ock size */

fshbl kent _t f _blocks; /* # of bl ocks onfilesystem*/

fsbl kent _t f_bfree; /* # of free bl ocks on FS */

fsblkent _t f _bavail; /* # of free bl ocks on FSfor

* unprivil eged users */

fsfilent_t f_files; /* # of file serial nunbers */
fsfilcnt _t f ffree; /* # of freefile serial nunbers */
fsfilent _t f favail; /* # of freefile serial nunbers

* for unprivil eged users */

unsigned long f_fsid; /* FSidentifier */

unsigned long f _flag; /* FSflags: bitw se ORof ST _NOSUI D,
* ST_RDONLY */

unsi gned | ong f _nanenmax; /* Maxi numfile nane | ength on FS */

Note that if INT 21h is hooked by a TSR, the total size is limited to approximately 2GB (See statvfs).

Return Vaue

Zero on success, nonzero on failure (and errno set).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
fsync

Syntax

#i ncl ude <uni std. h>
int fsync(int file);

Description

Forces al information about the file with the given descriptor to be synchronized with the disk image. Works by
caling DOS function 0x68. Warning External disk caches are not flushed by this function.

f sync does not support directories.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
fsync(fileno(stdout));

ftell
Syntax

#i ncl ude <stdi o. h>
long ftell (FILE *file);
Description
Returns the current file position for fil e. This is suitable for a future cal to f seek.

- Page 176 -

Return Vaue

The file position, or -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXIXHKIXKXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
long p=ftell(stdout);

ftime
Syntax

#i ncl ude <sys/tineb. h>

int ftime(struct timeb *buf);

Description
This function stores the current time in the structure buf. The format of struct ti neb is

struct tineb {

time_t time; /* seconds since 00:00: 00 GVIT 1/ 1/ 1970 */

unsi gned short mllitm /* mlliseconds */

short tinmezone; /* difference between GMI and | ocal ,

* mnutes */

short dstflag; /* set if daylight savingstinmein affect */

Return Vaue

Zero on SUCCess, NoNzero on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

struct tinmebt;
ftime(&t);

ftruncate
Syntax

#i ncl ude <uni std. h>
int ftruncate(int handle, off_t where);

Description

This function truncates the file open on handle at byte position where. The file pointer associated with handle is
not changed.

Note that this function knows nothing about buffering by stdio functions like fwrite and f printf, soif handle
comes from a FI LE object, you need to call ffl ush before calling this function.

ftruncat e does not support directories.

Return Vaue

Zero for success, nonzero for failure.
Portability

- Page 177 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

int x =open("data", O VWRONLY);
ftruncat e(x, 1000);
cl ose(x);

ftw
Syntax

#i ncl ude <ftw. h>

int ftw(const char *dir,
int (*func)(const char *path, struct stat *stbuf, int flag),
i nt depth);

Description

This function recursively descends the directory hierarchy which starts with dir. For each file in the hierarchy, ftw
cals the user-defined function func which is passed a pointer to a NULL-terminated character array in path holding
the full pathname of the file, a pointer to a st at structure (See stat) stbuf with a filesystem information about that
file, and an integer flag. Possible values of flag are:

FTW F
This is a regular file.

FTW D
This is a directory.

FTW VL
This is a volume label.

FTW _DNR
This is a directory which cannot be read with readdi r (). (This will never happen in DJGPP.)

FTW NS
This file exists, but st at fails for it.

If flag is FTW DNR the descendants of that directory won't be processed. If flag is FTW NS, then stbuf will be
garbled.

This function always visits a directory before any of its siblings. The argument dir must be a directory, or ftw will
fall and set errno to ENOTDI R The function func is called with dir as its argument before the recursive descent
begins.

The depth argument has no meaning in the DJGPP implementation and is aways ignored.

The tree traversal continues until one of the following events:

(1) The tree is exhausted (i.e., al descendants of dir are processed). In this case, ft w returns O, meaning a success.

(2) An invocation of func returns a non-zero value. In this case, ft w stops the tree traversal and returns whatever
func returned.

(3) An error is detected within ftw In that case, ftw returns -1 and sets er r no (See errno) to a suitable value.

Return Vaue

Zero in case the entire tree was successfully traversed, -1 if ft w detected some error during its operation, or any
other non-zero value which was returned by the user-defined function func.

Implementation Notes

This function uses mal | oc (See malloc) for dynamic memory alocation during its operation. If func disrupts the
norma flow of code execution by eg. calling | ongj unp or if an interrupt handler which never returns is
executed, this memory will remain permanently allocated.

- Page 178 -

This function calls opendi r () and readdi r () functions to read the directory entries. Therefore, you can control
what files will your func get by setting the appropriate bits in the external variable _ opendir_flags See opendir,
for description of these bits.

This function also calls st at for every directory entry it passes to func. If your application only needs some part
of the information returned in the st at structure, you can make your application significantly faster by setting bits

in the externa variable _djstat_flags (See _djstat_flags for details). The most expensive st at features are
_STAT_EXEC_MAG C and _STAT_DI RSI ZE

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXKXXKXXXKXXXKXXXXXXXXXXX NO No
Example

#i ncl ude <stdlib. h>

i nt

file_ wal ker(const char *path, struct stat *sb, int flag)

char *base;

printf("%:\t%\t", path, sb->st_size);
if (S_ ISLABEL(sb >st _node))

printf("V");
if (S_ISD R(sb >st _node))
printf("D");
if (S| SCHR(sb- >st _node))
printf("C");
if (sb->st_node &S | RUSR)
printf("r");
i f (sb->st_nobde & S | WUSR)
printf("w");
i f (sb->st_node & S_| XUSR)
printf("x");

|f(flag = FTW.NS)
printf(" IIno stat!!");
printf("\n");

base = strrchr(path, '/’);

i f (base ==

base:strrchr(path, "\,

if (base =

base—strrchr(path),

if (strcnp(base == 0 ? path : base + 1, "xxxxx") == 0)
return 42,

return O;

}

i nt

mai n(i nt argc, char *argv[])
if (argc > 1)

char nsg[80];

sprintf(msg, "file_tree_wal k: %",
ftw(argv[1], file_wal ker, 0));
if (errno)

perror(nsg);

el se

put s(msg);

}

el se

- Page 179 -

printf("Usage: % dir\n", argv[O0]);

return O;

}

_fwalk
Syntax

#i nclude <libc/file.h>

void fwal k(void (*function)(FILE*file));

Description
For each open file in the system, the given function is called, passing the file pointer as its only argument.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXKXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

voi d pfil e(FI LE *x)
{ printf("FILEat %\n", x); }

__fwal k(pfile);
fwrite
Syntax

#i ncl ude <stdi o. h>

size_t fwite(void *buffer, size_t size, size_t nunber, FILE *file);

Description
This function writes sizeé*number characters from buffer to file

Return Vaue

The number of items of size size written, or less if there was an error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHHXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
i nt foo[10];

fwrite(foo, sizeof(int), 10, stdin);
gevt
Syntax

#i ncl ude <stdlib. h>

char * gcvt (doubl e value, int ndigits, char *buf)

Description

This function converts its argument value into a null-terminated string of ndigits significant digits in buf. buf should
have enough space to hold at least ndi gi ts + 7 characters. The result roughly corresponds to what is obtained by
the following snippet:

- Page 180 -

(void) sprintf(buf, "%*g", ndigits, val ue);
except that trailing zeros and trailing decimal point are suppressed.
The least-significant digit in buf is rounded.

ecvt buf produces the string ‘*“NaN"" if value is a NaN, and *‘Inf"’ if value is an infinity.

Return Value
A pointer to buf.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <mmat h. h>
char vbuf[20];

/* Thisw |l print " 3.14159". */
printf ("%", gcvt (MPI, 5, buf));

_get_dev_info
Syntax

#i ncl ude <i 0. h>
short _get_dev_i nfo(int handl e);

Description

Given a file handle in handle this function returns the info word from DOS IOCTL function O (Int 21h/AX=4400h).
handle must refer to an open file or device, otherwise the call will fal (and set errno to EBADF).

In case of success, the returned value is the coded information from the system about the character device or the
file which is referenced by the file handle handle The header <I i bc/ get di nf 0. h> defines constants for the
individual bits in the return value. The following table shows the meaning of the individual bits in the return value:
For a character device:

{Bit(s) { DEV_STDQOUT {Device can process IOCTL functions 02h and 03h Constant Description

_DEV_1 OCTRL Device can process IOCTL functions 02h and 03h

Device supports output-until-busy

Device supports OPEN/CLOSE calls

Unknown; set by MS-DOS 6.2x KEYBxx. COM

_DEV_CDEV Always set for character devices

End of file on input

_DEV_RAWIf set, device is in raw (binary) mode

_DEV_RAWIf clear, device is in cooked (text) mode

Device uses Int 29h

_DEV_CLQOCK Clock device

_DEV_NUL NUL device

- Page 181 -

_DEV_STDOUT Standard output device

_DEV_STDI N Standard input device

For a block device (a disk file):

{Bit(s) {_DEV_STDQUT {Generate Int 24h if full disk or read past EOF Constant Description

_DEV_REMOTE Device is remote (networked drive)

Don't set file time stamp on close

If set, non-removable media

If clear, media is removable (e.g. floppy disk)

Generate Int 24h if full disk or read past EOF

_DEV_CDEV Always clear for disk files

File has not been written to

Drive number (0 = A:)

Note that the functionality indicated by bit 8 for the block devices is only supported by DOS version 4.

Cooked mode means that on input C-C, C-P, C-S and C-Z are processed, on output TABs are expanded into spaces
and CR character is added before each LF, and input is terminated when the RET key is pressed. In contrast, in raw

mode, al the specia characters are passed verbatim, and the read operation waits until the specified number of
characters has been read.

Return Vaue

The device information word described above. In case of error, -1 is returned and err no is set to EBADF.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Example
int fd=open ("CLOCK$", O RDONLY | O Bl NARY);
int clock_info=_get_dev_info (fd);

_get_dos version
Syntax

#i ncl ude <dos. h>

ext ern unsi gned short _osmaj or, _osni nhor;
ext ern unsi gned short _os_trueversion;
extern const char * os_flavor;

unsi gned short _get _dos_version(int true_version);

Description

This function gets the host OS version and flavor. If the argument true version is non-zero, it will return a true
version number, which is unaffected by possible tinkering with SETVER TSR program. (This is only available in
DOS 5.0 or later.)

The external variables _osnaj or and _osmi nor will aways be set to the major and minor parts of the advertised
version number. The external variable _os_truever si on will aways be set to the true version number.

_osmj or, _osm nor and _os_trueversi on may possibly be changed by SETVER even if true version is
non-zero.

You typically need the true version when you need an intimate knowledge of the host OS internals, like when using
undocumented features. Note that some DOS clones (notably, DR-DOS) do not support DOS function required to
report the true DOS version; for these, the version reported might be affected by SETVER even if true version is

- Page 182 -

non-zero.

The external variable _os_fl avor will point to a string which describes the OEM name of the host OS variety.

Return Vaue

_get _dos_version() returns the version number (true version number, if true version is non-zero) as a 16-bit
number: the major part of the version in the upper 8 bits, the minor part in the lower 8 bits. For instance, DOS
version 6.20 will be returned as 0x0614.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXXIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
Example

unsi gned short true_dos_version = get _dos_version(1l);

if (true_dos_version < 0x0614) /* require DOS 6.20 or |ater */

put s("Thi s programneeds DOS 6. 20 or later to run");

el se
printf("You are running % variety of DOS\n", _os_flavor);

__get_extended _key string
Syntax

#i ncl ude <pc. h>

const unsi gned char * __get extended_key string(int xkey_ code);
Description
Returns an ECMA-48 compliant representation of an extended key’'s scan code in xkey_ code.
See getkey. See getxkey.
Return Value
A string based on the extended key’s scan code xkey code:
{Page Down {ESC[24~ {with Shift {with Ctrl {ESC[80~
ESC[A ESC] 37~ ESC] 59~
ESC] B ESC] 38~ ESC] 60~
ESC C ESC 39~ ESC] 61~
ESC[D ESC] 40~ ESC] 62~
ESC 1~ ESC 41~ ESC 63~
ESC 2~ ESC 42~ ESC] 64~
ESC[3~ ESC] 43~ ESC] 65~
ESC] 4~ ESC 44~ ESC] 66~
ESC 5~ ESC 45~ ESC] 67~
ESC] 6~ ESC| 46~ ESC| 68~
ESC] [A ESC 25~ ESC 47~ ESC 69~
ESC [B ESC] 26~ ESC| 48~ ESC[70~
ESC [C ESC] 27~ ESC] 49~ ESC| 71~

- Page 183 -

ESC [D ESC 28~ ESC] 50~ ESC 72~

ESC[[E EST 29~ ESC 51~ ESC] 73~

ESC| 17~ ESC| 30~ ESC| 52~ ESC| 74~

ESC 18~ ESC] 31~ ESC] 53~ ESC 75~

ESC[19~ ESC 32~ ESC 54~ ESC| 76~

ESC| 20~ ESC| 33~ ESC| 55~ ESC| 77~

ESC 21~ ESC] 34~ ESC[56~ ESC 78~

ESC[23~ ESC 35~ ESC| 57~ ESC[79~

ESC| 24~ ESC| 36~ ESC| 58~ ESC| 80~

{Alt-A {ESC] 83~ {Al t - Z {ESC] 113~ Alt-N ESC[94~ Alt-O ESC[95~ Alt-P ESC] 96~ Alt-Q ESC] 97~ Alt-R
ESC] 98~ Alt-S ESC] 99~ Alt-T ESC] 100~ Alt-U ESC[101~ Alt-V ESC[102~ Alt-W ESC] 103~ Alt-X
ESC 104~ Alt-Y ESC 105~ Alt-Z ESC] 106~

NULL is returned if xkey code has no trandlation.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXXIXKIXKXXXKXXKXXXXXXXXXXX NO No

Example

#i ncl ude <pc. h>
#i ncl ude <stdi o. h>

i nt key;

i nt main()

key = get xkey();
i f (key < 0x100)

put c(key, stdout);
putc('\r’, stdout);

el se

{

const unsigned char *str = __get _extended_key_string(key);
if (str)

puts(str);

el se

put s(" <unknown>");

ffl ush(stdout);

#i ncl ude <pc. h>
#i ncl ude <stdi o. h>
#i ncl ude <dpm . h>

i nt mai n()

__dpm _regs r;
const unsi gned char *str;
int i s_extended key;

- Page 184 -

/* Wit for keypress. */

r.h.ah = 0x11;

__dpm _int(0x16, &r);

/* Print the encodi ng for function keys (F1, F2, etc.)
and ot her extended keys (Home, End, etc.). */

i s_extended_key = (r.h.al ==0x00 || r.h.al == 0xe0);
if (is_extended_key)

{
str = __get_extended_key_string((int)r.h.ah)
printf("Key encodi ng: %", str);
}
_Qget fat_size

Syntax

#i ncl ude <dos. h>
int get fat_size(const int drive);

Description

This function tries to determine the number of bits used to enumerate the clusters by the FAT on drive number
drive 1 == A:, 2 == B, etc., 0 == default drive.

This function will not succeed on DOS version < 4, setting errno to ENOSYS. It is also known to have trouble
detecting the file system type of disks formatted with a later version of DOS than the version it isrun on. E. g.
floppies with LFN entries can cause this function to fail or detect the fat size as 16 if used in plain DOS.

If you are looking for a function that is able to detect other file systems, perhaps the function get fs type (See
_get_fs type) can be of use.

Return Vaue

The number of bits used by the FAT (12, 16 or 32). 0 if the drive was formatted with FAT but of unknown size
(NT reports that on FAT16). -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

int size;

size = _get _fat _size('C -"A +1);
if(0<=size)

{
printf("The size of FATon C. is %d bits.\n", size);
}

exit(0);
}

__get fd flags
Syntax

#i nclude <li bc/fd_props. h>

- Page 185 -

unsigned long _ get _fd flags(int fd);

Description

This internal functions gets the flags associated with file descriptor fd, if any. The flags are some properties that
may be associated with a file descriptor (See __set fd_properties).

This function will return zero, if no flags are associated with fd. The caler should first check that there are flags
associated with fd using __has_fd_properti es (See __has fd properties), before calling __get _fd_fl ags.
This will allow the cases of no flags and the flags being zero to be distinguished.

Return Vaue

The flags, if any; otherwise zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

__get fd name
Syntax

#i nclude <li bc/fd_props. h>

const char *__get_fd_nane(int fd);

Description

This internal function gets the file name associated with the file descriptor fd, if any. The file name is one property
that may be associated with a file descriptor (See __set_fd properties).

Return Vaue

A pointer to the file name, if any; otherwise NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

_get_fs type
Syntax

#i ncl ude <dos. h>

int _get fs type(const int drive,
char *const result_str);

Description

This function tries to extract the file system type of the drive number drive, 1 == A:, 2 == B:, etc., 0 == default
drive. It does this by calling INT21, AX=0x6900, Get Disk Serial Number (sic!), which returns, among other
things, an eight character field which is set while formatting the drive. Now, this field can be set to whatever the
formatting program wishes, but so far every FAT formatted drive has returned a string starting with "FAT".

If successful the result is put in result_str which must be at least 9 characters long. If unsuccessful errno is set.
This function will not succeed on DOS version < 4, setting errno to ENOSYS. It is also known to have trouble
detecting the file system type of disks formatted with a later version of DOS than the version it isrun on. E. g.
floppies with LFN entries can cause this function to fail or detect the floppy as FAT16 if used in plain DOS.

If you are interested in which kind of FAT file system that is in use try the function _get fat_size (See
_get fat_size) which will reliably detect the right kind of FAT file system.

Return Value
0 if the file system type was extracted successfully; otherwise -1.

Portability

- Page 186 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

char buffer[9];
if(! get fs type(3, buffer))
printf("The file systemon C is %’ .\n", buffer);

exit(0);
}

_get_volume _info
Syntax

#i ncl ude <fcntl . h>

unsi gned _get _vol une_i nfo (const char *path,

int *max_file_len, int *max_pat h_I en,

char *fsystype);
Description
This function returns filesystem information about the volume where path resides. Only the root directory name part
is actually used; if path does not specify the drive explicitly, or is a NULL pointer, the current drive is used. Upon
return, the variable pointed to by max_file len contains the maximum length of a filename (including the terminating
zero), the variable pointed to by max_path len contains the maximum length of a pathname (including the
terminating zero), and a string that identifies the filesystem type (e.g., “'FAT"’, '‘NTFS"’ etc.) is placed into the
buffer pointed to by fsystype, which should be long enough (32 bytes are usualy enough). If any of these pointers
is a NULL pointer, it will be ignored. The function returns various flags that describe features supported by the
given filesystem as a bit-mapped number. The following bits are currently defined:

_FI LESYS_CASE_SENSI TI VE
Specifies that file searches are case-sensitive.

_FI LESYS_CASE_PRESERVED
Filename letter-case is preserved in directory entries.

_FI LESYS_UNI CODE
Filesystem uses Unicode characters in file and directory names.

_FI LESYS_LFN_SUPPORTED
Filesystem supports the Long File Name (LFN) API.

_FI LESYS_VOL_COWRESSED
This volume is compressed.

_FI LESYS_UNKNOMN
The underlying system call failed. This usually means that the drive letter is invalid, like when a floppy
drive is empty or a drive with that letter doesn’t exist.

Return vaue

A combination of the above hits if the LFN API is supported, or 0 (and errno set to ENOSYS) if the LFN APl is
not supported by the OS. If the LFN API is supported, but the drive letter is invalid, the function returns
_FI LESYS_UNKNOWN and sets er r no to either ENODEV or ENXI Q

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

- Page 187 -

getc
Syntax

#i ncl ude <stdi 0. h>
int getc(FILE*file);

Description
Get one character from file

Return Vaue
The character ([0..255]) or ECF if eof or error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int c;
while ((c=getc(stdin)) !=EOF)
putc(c, stdout);

getcbrk
Syntax

#i ncl ude <dos. h>

i nt getcbrk(void);
Description
Get the setting of the Ctrl-C checking flag in MS-DOS.
See setcbrk.

Return Value
0 if not checking, 1 if checking.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXXXXKXXKXXXXXXXX NO No

getch
Syntax

#i ncl ude <coni o. h>
i nt getch(void);

Description

A single character from the predefined standard input handle is read and returned. The input is not buffered. If
there is a character pending from unget ch (See ungetch), it is returned instead. The character is not echoed to the
screen. This function doesn't check for special characters like CtrlC.

If the standard input handle is connected to the console, any pending output in the st dout and st derr streams is
flushed before reading the input, if these streams are connected to the console.

Return Vaue

The character.

- Page 188 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

getchar
Syntax

#i ncl ude <stdi 0. h>

i nt getchar(void);

Description
The same as f get c(st di n) (See fgeto).

Return Vaue
The character, or ECF.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

getche
Syntax

#i ncl ude <coni o. h>

i nt getche(void);

Description

A single character from the predefined standard input handle is read and returned. The input is not buffered. If
there is a character pending from unget ch (See ungetch), it is returned instead. The character is echoed to the
screen. This function doesn't check for special characters like Ctrl<€.

If the standard input handle is connected to the console, any pending output in the st dout and st derr streams is
flushed before reading the input, if these streams are connected to the console.

Return Vaue

The character.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

- Page 189 -

getcwd
Syntax

#i ncl ude <uni std. h>

char *getcwd(char *buffer, int max);
Description
Get the current directory. The return value includes the drive specifier.

If buffer is NULL, get cwd allocates a buffer of size max with mal | oc. This is an extension of the POSIX
standard, which is compatible with the behaviour of glibc (the C library used on Linux).

This call fails if more than max characters are required to specify the current directory.

Return Vaue

The buffer, either buffer or a newly-allocated buffer, or NULL on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. The behaviour when buffer is NULL is unspecified for POSIX.

Example

char *buf = (char *)nmal | oc(PATH _MAX) ;
i f (buf && getcwd(buf, PATH MAX))
{

printf("cwdis %\n", buf);
free(buf);
}

getdate
Syntax

#i ncl ude <dos. h>
voi d getdate(struct date *);
Description
This function gets the current date. The return structure is as follows:
struct date {
short da_year;

char da_day;
char da_non;

b
See setdate See gettime

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 190 -

Example

struct date d;
get dat e(&d) ;

getdfree
Syntax

#i ncl ude <dos. h>

voi d get df ree(unsi gned char drive, struct dfree *ptr);

Description

This function gets information about the size and fullness of the given drive (O=default, 1=A:, etc). The return
structure is as follows:

struct dfree {

unsi gned df _avail; /* nunber of avail abl e clusters */
unsi gned df _total; /* total nunber of clusters */
unsi gned df _bsec; /* bytes per sector */

unsi gned df sclus; /* sectors per cluster */

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

struct dfree d;
getdfree(3, &); /* drive C. */

getdisk
Syntax

#i ncl ude <dir. h>

i nt getdisk(void);
Description
Gets the current disk (0=A).
See setdisk.

Return Vaue

The current disk number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

printf("This driveis %:\n", getdisk() + A);
getdtablesize
Syntax

#i ncl ude <uni std. h>

i nt getdtabl esize(void);

- Page 191 -

Description
Get the maximum number of open file descriptors the system supports.

Return Vaue
255
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

getegid
Syntax

#i ncl ude <uni std. h>
i nt getegid(void);

Description
Get the effective group id.

Return Vaue
42

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXKXXXEXXXEXXXKXXIXHXXHXXIXHKXXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

getenv
Syntax

#i ncl ude <stdlib. h>

char *getenv(const char *nane);

Description

Get the setting of the environment variable name Do not alter or free the returned value.
Return Value

The value, or NULL if that variable does not exist.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char *term= getenv("TERM');
geteuid
Syntax

#i ncl ude <uni std. h>

i nt geteuid(void);

Description
Gets the effective UID.

Return Vaue

- Page 192 -

42

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

getftime
Syntax

#i ncl ude <dos. h>

int getftime(int handle, struct ftime *ptr);
Description
Get the timestamp for the given file handle. The return structure is as follows:
struct ftinme {
unsi gned ft_tsec:5; /* 0-29, double to get real seconds */
unsigned ft_mn:6; /* 0-59 */
unsi gned ft_hour:5; /* 0-23 */
unsi gned ft_day:5; /* 1-31 */
unsi gned ft_nonth:4; /* 1-12 */

unsi gned ft_year:7; /* since 1980 */
}

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

struct ftinet;
getftime(fd, &);

getgid
Syntax

#i ncl ude <uni std. h>
int getgid(void);

Description
Get the current group id.

Return Vaue
42

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIIXHXHKIEXXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
getgrent

Syntax

#i ncl ude <grp. h>

struct group *getgrent(void);
Description

- Page 193 -

This function returns the next available group entry. Note that for MS-DOS, this is simulated. If the environment
variable GROUP is set, that is the name of the only group returned, else the only group is "dos'. Thus, under DOS,
get grent will aways fail on the second and subsequent calls.

The return type of this and related function is as follows:
struct group {
gid_t gr_gid; /* result of getgid() */
char ** gr_mem /* gr_meni 0] p0| nts to
getenv("USER'/"LOGNAME") or "user" */

char * gr_nane; /* getenv("GROUP") or "dos" */
char * gr passmd [*
b

Return Vaue
The next structure, or NULL at the end of the list.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No
Example

struct group *g;

setgrent();

while ((g=getgrent()) !'=NULL)
{

printf("group % gid %\ n", g->gr_name, g->gr_gid);
}

endgrent ();

getgrgid
Syntax

#i ncl ude <grp. h>
extern struct group *getgrgi d(int gid);

Description
This function returns the group entry that matches gid See getgrent, for the description of st ruct group.

Return Value
The matching group, or NULL if none match.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
getgrnam

Syntax

#i ncl ude <grp. h>

struct group *get grnanm(char *nane);

Description
This function returns the group entry for the group named name See getgrent, for the description of struct
group.

Return Vaue

- Page 194 -

The matching group, or NULL if none match.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

getgroups
Syntax

#i ncl ude <uni std. h>

i nt getgroups(int size, gid_t *grouplist);

Description
This function always returns zero. It exists to assist porting from Unix.

Return Vaue

Zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXEXHXIXHXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

gethostname
Syntax

#i ncl ude <uni std. h>
#i ncl ude <sys/ param h>

i nt gethostnane (char *buf, int size);

Description

Get the name of the host the program is executing on. This name is obtained from the network software, if present,
otherwise from the " HOSTNAME" environment variable, if present, finally defaulting to " pc".

The cal fails if more than size characters are required to specify the host name. A buffer size of
MAXGETHOSTNAME is guaranteed to be enough.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
char *buf = (char *) mal | oc (MAXGETHOSTNAME) ;
i f (buf & 0 == get host nane (buf, MAXGETHOSTNAME))
printf ("We're on %\ n", buf);
i f (buf) free(buf);
getitimer
Syntax

#i ncl ude <sys/tine. h>
int getitiner(int which, struct itinerval *val ue);
Description

This function gets the current value of the interval timer specified by which into structure value Variable which
can have the value of | TI MER_REAL or | TI MER_PROF. See setitimer, for more details about timers.

- Page 195 -

Upon return, the i t _val ue member of value will hold the amount of time left until timer expiration, or zero if
the timer has expired or was stopped by a previous call to setitiner. Theit _interval member will hold the
interval between two successive darms as set by the last call to setiti mer (but note that interval values less than
the system clock granularity are rounded up to that granularity). The value returned in it _i nt er val member is
not set to zero when the timer is stopped, it always retains the interval that was last in use.

Return Vaue

Returns 0 on success, -1 on failure (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXXIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

getkey
Syntax

#i ncl ude <pc. h>
#i ncl ude <keys. h>

i nt getkey(void);

Description

Waits for the user to press one key, then returns that key. Alt-key combinations have 0x100 added to them.
Extended keys return their non-extended codes.

The file keys. h has symbolic names for many of the keys.
See getxkey.

Return Value
The key pressed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Example
while (getkey() '= K At_3)

do_sonet hi ng();
getlogin
Syntax

#i ncl ude <uni std. h>
char *getl ogi n(void);

Description
Get the login ID of the user.

Return Vaue

Returns the value of the USERNAME environment variable if it is defined, else the LOGNAME environment variable,
else the USER environment variable, else " dosuser".

USERNAME s set automatically by Windows NT and Windows 2000. None of these environment variables are set
automatically on DOS, Windows 95 or Windows 98.

The stock version of the file DIJGPP. ENV defines USER with the value " dosuser".

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXIXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXX No 1003.2-1992; 1003.1-2001

- Page 196 -

Example
printf("l am%\n", getlogin());

getlongpass
Syntax

#i ncl ude <stdlib. h>
i nt getl ongpass(const char *pronpt, char *password, i nt max_| ength)

Description

This function reads up to a Newline (CR or LF) or EOF (Ctrl-D or Ctrl-Z) from the standard input, without an
echo, after prompting with a null-terminated string prompt. It puts a null-terminated string of at most max_length -
1 first characters typed by the user into a buffer pointed to by password. Pressing Ctrl-C or Ctrl-Break will cause
the calling program to exi t (1).

Return Vaue

Zero if successful, -1 on error (and err no is set to an appropriate value).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

char passwor d[MAX_PASS] ;

(voi d) get | ongpass("Password: ", password, MAX PASS);

getmntent
Syntax

#i ncl ude <mtent. h>
struct mtent *getmmtent (FILE *fil ep);

Description

This function returns information about the various drives that are available to your program. Beginning with drive
A, information is retrieved for successive drives with successive calls to get rmt ent. Note that drives A: and B:
will only be returned if there is an MS-DOS formatted disk in the drive; empty drives are skipped. For systems
with a single floppy drive, it is returned as if it were mounted on A:/ or B:/, depending on how it was last
referenced (and if there is a disk in the drive).

The argument filep should be a FI LE* pointer returned by set rt ent (See setmntent).
For each drive scanned, a pointer to a static structure of the following type is returned:

struct mmt ent

{

char * mt _fsnane; /* The nane of this file system*/

char * mt _dir; /* Theroot directory of thisfile system*/
char * mt _type; /* Fil esystemtype */

char * mt _opts; /* Options, see bel ow*/

int mt freq; /* -1*/
int mt_passno; /* -1*/
longmt _time; /* -1%*/

1
DJGPP implementation returns the following in the first 4 fields of st ruct mmt ent:

mt _f snane
“For networked and CD-ROM drives, this is the name of root directory in the form \ \ HOST\ PATH (this is
caled a UNC name).

- Page 197 -

For drives compressed with DoubleSpace, mt _f snamne is the string X \ DBLSPACE. NNN where X is the
drive letter of the host drive and NNN is the sequence number of the Compressed Volume File.

For drives compressed with Stacker, mt _f snane is the string X \ STACVOL. NNN where X and NNN are
as for DoubleSpace drives.

For drives compressed with Jam (a shareware disk compression software), rmt _f snane is the full name of
the Jam archive file.

For SUBSTed drives, mt _f snane is the actual directory name that that was SUBSTed to emulate a drive.

JOINed drives get their mt _f snane as if they were NOT JOINed (i.e., ether the label name or the
default Dri ve X).

For drives with a volume label, mt _f snan®e is the name of the label; otherwise the string Dri ve X,
where X is the drive letter.

mt _dir
“For most drives, this is the name of its root directory X / (where X is the drive letter), except that JOINed
drives get mt _di r as the name of the directory to which they were JOINed.

For systems with a single floppy drive (which can be referenced as either a: / or b: /), the mount directory
will be returned as one of these, depending on which drive letter was last used to reference that drive.

mt _type
"fd" for floppy disks
"hd" for hard di sks
"dbl sp" for disks conmpressed wi t h Doubl eSpace
"stac" for di sks conpressed with Stacker
"jam' for di sks conpressed with Jam
"cdront for CD-ROMdrives
“rant for RAMdi sks
"subst" for SUBSTed directories
"join" for JA Ned di sks
"net" for networked drives

mmt _opts
The string r o, dev=XX for CD-ROM drives, r w, dev=XX for al the others, where XX is the hexadecimal
drive number of the REAL drive on which this filesystem resides. That is, if you cal st at on
mnt_fsname, you will get the numeric equivalent of XX in st _dev member of struct stat. E.g., for
drive C. you will get rw, dev=02. Note that SUBSTed and JOINed drives get the drive numbers as if
SUBST and JOIN were not in effect.

Return Value
This function returns a pointer to a st ruct mmt ent, or NULL if there are no more drives to report on.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No
Example

struct nmtent *m

FI LE *f;

f =setmtent ("/etc/mttab", "r");

while ((m=getmtent (f)))
printf("Drive %, nanme %s\n", m>mt _dir, m>mt_fsnane);
endmtent (f);

getopt
Syntax

#i ncl ude <uni std. h>

int getopt(int argc, char * const *argv, const char *options);
extern char *optarg;

externint optind, opterr, optopt;

- Page 198 -

Description

Parse options from the command line. options is a string of valid option characters. If a given option takes an
argument, that character should be followed by a colon.

For each valid switch, this function sets opt ar g to the argument (if the switch takes one), sets opti nd to the
index in argv that it is using, sets opt opt to the option letter found, and returns the option letter found.

If an unexpected option is found, a question mark (?) is returned. If an option argument is missing, a colon () is
returned if the first character in options is a colon, otherwise a question mark is returned. In both cases, if opterr
is nonzero and the first character in options is not a colon, an error message is printed to st derr.

The example below shows how ? can till be used as an option (e.g., to request a summary of program usage) in
addition to flagging an unexpected option and a missing argument.

Return Vaue

The option character is returned when found. -1 is returned when there are no more options. A colon (1) is
returned when an option argument is missing and the first character in options is a colon. A question mark (?) is
returned when an invalid option is found or an option argument is missing and the first character in options is not a
colon.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXKEXXXIXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
int c;
opterr =0;
while ((c=getopt(argc, argv, ":?vbf:")) I=-1)
{

switch (c)

case 'V’ :

verbose_fl ag ++;

br eak;

case 'b':

bi nary_fl ag ++;

br eak;

case 'f':

out put _fil ename = opt arg;

br eak;

case ' :’:

printf ("M ssing argunent %\n", optopt);
usage();

exit(1l);

case’' ?':

if (optopt =="72") {

usage();

exit(0);

} el se

{
printf("Unknown option %\ n", optopt);
)
)

getpagesize
Syntax

#i ncl ude <uni std. h>

i nt get pagesi ze(void);

- Page 199 -

Description
Return the size of the native virtual memory page size.

Return Value

4096 for the i386 and higher processors.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No
getpass

Syntax

#i ncl ude <stdlib. h>

char * get pass(const char *pronpt)

Description

This function reads up to a Newline (CR or LF) or EOF (Ctrl-D or Ctrl-Z) from the standard input, without an
echo, after prompting with a null-terminated string prompt. It returns the string of at most 8 characters typed by the
user. Pressing Ctrl-C or Ctrl-Break will cause the calling program to exit (1).

Return Vaue

A pointer to a static buffer which holds the user’s response. The buffer will be overwritten by each new cal. In
case of any error in the lower I/O routines, a NULL pointer will be returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

char *password = get pass("Password: ");
getpgrp
Syntax

#i ncl ude <uni std. h>
i nt getpgrp(void);

Description
Gets the process group, which is currently the same as the pid.

Return Vaue

The process group.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
getpid

Syntax

#i ncl ude <uni std. h>

i nt getpid(void);

Description
Get the process ID, which uniquely identifies each program running on the system.

Return Vaue

- Page 200 -

The process ID.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

getppid
Syntax

#i ncl ude <uni std. h>

i nt get ppi d(void);

Description
Get the parent process ID. Currently this is always 1, indicating that the parent process is no longer running.

Return Vaue

The parent process ID.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXEXHXIXHXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

getpwent
Syntax

#i ncl ude <pwd. h>

struct passwd *get pwent (voi d);

Description

This function retrieves the next available password file entry. For MS-DOS, this is simulated by providing exactly
one entry:

struct passwd {

char * pw_nane; /* getlogin() */

int pwuid; /* getuid() */

int pw.gid; /* getgid() */

char * pwdir; /*"/" or getenv("HOVE") */

char * pw_shell; /* "/bin/sh" or getenv("SHELL") */

char * pw_gecos; /* getlogin() */

char * pw_passwd; /* "" */
The pw_nane and pw_gecos members are returned as described under get | ogi n (See getlogin). The pw_ui d
member is returned as described under get ui d (See getuid). pw_gi d is returned as described under get gi d (See
getgid). The pw_passwd member is set to the empty string. The pw_di r member is set to the value of the
environment variable HOVE if it is defined, or to / otherwise. pw_shel | is set as follows:

. If the environment variable SHELL is set, the value of SHELL.
. If SHELL is not set, but the environment variable COVSPEC is, the value of COVSPEC

e If neither of the above variables is defined, pw _shel | is set to "sh".

Return Vaue

The next passwd entry, or NULL if there are no more.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
Example

- Page 201 -

struct passwd *p;

set pwent () ;

while ((p =getpwent()) !'= NULL)
{

printf("user % nane %\ n", p->pw _nanme, p->pw_gecos);

endpwent () ;

getpwnam
Syntax

#i ncl ude <pwd. h>

struct passwd *get pwnan{const char *nane);

Description

This function gets the password file entry matching name See See getpwent, for the description of struct
passwd.

Return Value
The matching record, or NULL if none match.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXXXXXKXXEXXXEKXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

getpwuid
Syntax

#i ncl ude <pwd. h>
struct passwd *get pwui d(uid_t uid);

Description
This function gets the password file entry matching uid. See See getpwent, for the description of st ruct passwd.

Return Vaue
The matching record, or NULL if none match.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXKXXXIXEXHXHKIEXHXHKIXEKHXXIXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

getrlimit
Syntax

#i ncl ude <sys/resource. h>

int getrlimt (int rltype, struct rlimt *rlimtp);

Description
This function gets the resource limit specified by rltype and stores it in the buffer pointed to by rlimitp. The
rlimt structure is defined on sys/resource. h as follows:

struct rlimt {
long rlimcur; /* current (soft) limt */
long rlimmax; /* maxi mumval ue for rlimcur */

The following resource types can be passed in rltype

- Page 202 -

RLIM T_CPU
CPU time in milliseconds.

RLIM T_FSI ZE
Maximum file size.

RLI M T_DATA
Data size.

RLI M T_STACK
Stack size.

RLI M T_CORE
Core file size.

RLI M T_RSS
Resident set size.

RLIM T_MEM.OCK
Locked-in-memory address space.

RLI M T_NPROC
Number of processes.

RLI M T_NCFI LE
Number of open files.

Currently, only the RLI M T_STACK and RLI M T_NOFI LE are meaningful: the first returns the value of _st kl en
(See _stklen), the second the value returned by sysconf (_SC OPEN _NMAX) (See sysconf). All other members of
the rl1imt structure are set to RLI M_I NFI NI TY, defined in sys/resource. h as 2431 - 1.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Example

struct rlimt rlimtbuf;
int rc=getrlimt (RLIMT_STACK, & limtbuf);

getrusage
Syntax

#i ncl ude <sys/tine. h>
#i ncl ude <sys/resource. h>

i nt getrusage(int who, struct rusage *rusage);

Description

This function returns information about the running process. The structure struct rusage is defined on
<sys/resour ce. h> as follows:

struct rusage {

struct tineval ru_utine; /* user tinme used */

struct tineval ru_stime; /* systemtinme used */

| ong ru_nmaxrss; /* integral max resident set size */
long ru_ixrss; /* integral shared text menory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_mnflt; page recl ainms */

long ru_majflt; /* page faults */

| ong ru_nswap; /* swaps */

[ong ru_inbl ock; /* bl ock i nput operations */

*
*
*
/*

- Page 203 -

| ong ru_oubl ock; /* bl ock out put operations */

| ong ru_nsgsnd; /* nessages sent */

I ong ru_nsgrcv; /* nessages received */

long ru_nsignals; /* signal s received */

I ong ru_nvcsw, /* voluntary context switches */
long ru_nivesw, /* involuntary context sw tches */

b

Currently, the only field that is computed is ru_uti ne. It is computed as the total elapsed time used by the
caling program. The remainder of the fields are set to zero.

The who parameter must be RUSAGE_SELF or RUSAGE_CHI LDREN

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

struct rusager;
get rusage(RUSAGE_SELF, &r);

gets
Syntax

#i ncl ude <stdi 0. h>

char *gets(char *buffer);

Description

Reads characters from st di n, storing them in buffer, until either end of file or a newline is encountered. If any
characters were stored, the buffer is then NULL terminated and its address is returned, else NULL is returned.

Return Vaue
The address of the buffer, or NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char buf[1000];
whi | e (get s(buf))
put s(buf);

gettext
Syntax

#i ncl ude <coni o. h>

int gettext(int left, int top, int right, int bottom
void *_destin);

Description

Retrieve a block of screen characters into a buffer. gettext is a macro defined in coni 0. h that will expand into
_coni o_gettext (See _conio_gettext). This is needed to resolve the name conflict existing between the get t ext
function from |'i bi ntl. a defined in |'i bi ntl. h and this one defined in coni 0. h. If you want to use both

get t ext functions in the same source file you must use _coni o_gett ext (See conio_gettext) to get the

get t ext function from coni 0. h. This means that if both headers are included in the same source file the

- Page 204 -

get t ext keyword will aways be reserved for the get t ext function defined in | i bi ntl. h and indeed will
always make reference to the get t ext function from li bintl. a

Return Vaue
1
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

gettextinfo
Syntax

#i ncl ude <coni o. h>

voi d gettextinfo(struct text_info*_r);

Description
This function returns the parameters of the current window on the screen. The return structure is this:

struct text_info {

unsi gned char winleft;
unsi gned char w nt op;

unsi gned char wi nri ght;
unsi gned char w nbottom
unsi gned char attri bute;
unsi gned char normattr;
unsi gned char curr node;
unsi gned char screenhei ght;
unsi gned char screenwi dt h;
unsi gned char curx;

unsi gned char cury;

The nornattr field is the text attribute which was in effect before the program started.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

gettime
Syntax

#i ncl ude <dos. h>

void gettime(struct tine *);

- Page 205 -

Description
This function gets the current time. The return structure is as follows:

struct tine {

unsi gned char ti_nmn;
unsi gned char ti _hour;
unsi gned char ti _hund;
unsi gned char ti _sec;

1
See settime See getdate

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

struct timet;

gettime(&t);
gettimeofday
Syntax

#i ncl ude <ti ne. h>

i nt gettimeofday(struct tineval *tp, struct tinezone *tzp);

Description
Gets the current GMT time and the local timezone information. The return structures are as follows:

struct tineval {
| ong tv_sec; /* seconds since 00: 00: 00 GMI 1/ 1/ 1970 */
| ong tv_usec; /* mcroseconds */

struct timezone {
int tz mnuteswest; /* west of GVI */
int tz dsttinme; /* set if daylight savingtineinaffect */

b
If either tp or tzp are NULL, that information is not provided.
Note that although this function returns microseconds for compatibility reasons, the values are precise to less than
1/20 of a second only. The underlying DOS function has 1/20 second granularity, as it is calculated from the 55 ms
timer tick count, so you won't get better than that with gettimeofday().
See settimeofday.
Return Value

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

getuid
Syntax

#i ncl ude <uni std. h>
i nt getuid(void);

- Page 206 -

Description
Returns the user ID.

Return Vaue
42
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXKXIEXHXHKIEXHXHXIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

getw
Syntax

#i ncl ude <stdi o. h>
int getw(FILE *file);

Description

Reads a single 32-bit binary word in native format from file. This function is provided for compatibility with other
32-bit environments, so it reads a 32-bit i nt, not a 16-bit short, like some 16-bit DOS compilers do.

See putw.
Return Vaue

The value read, or EOF for end-of-file or error. Since EOF is a valid integer, you should use f eof or ferror to
detect this situation.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example
int i =getw(stdin);
getwd

Syntax

#i ncl ude <uni std. h>
char *getwd(char *buffer);

Description
Get the current directory and put it in buffer. The return value includes the drive specifier.

Return Vaue
buffer is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

char buf [PATH_MAX] ;
get wd(buf);

getxkey
Syntax

#i ncl ude <pc. h>
#i ncl ude <keys. h>

- Page 207 -

i nt get xkey(void);

Description

Waits for the user to press one key, then returns that key. Alt-key combinations have 0x100 added to them, and
extended keys have 0x200 added to them.

The file keys. h has symbolic names for many of the keys.

See getkey.

Return Value
The key pressed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

whi | e (get xkey() ! = K _EEnd)
do_sonet hing();

glob

Syntax
#i ncl ude <gl ob. h>

i nt glob(const char *pattern, int flags,
int (*errfunc)(const char *epath, int eerrno), glob_t *pglob);

Description

This function expands a filename wildcard which is passed as pattern. The pattern may include these special
characters:

*

Matches zero of more characters.
Matches exactly one character (any character).

Matches one character from a group of characters. If the first character is !, matches any character not in
the group. A group is defined as a list of characters between the brackets, e.g. [dkl _], or by two
characters separated by - to indicate all characters between and including these two. For example, [a- d]
matches a, b, ¢, or d, and [! a- zA- Z0- 9] matches any character that is not aphanumeric.

" Matches all the subdirectories, recursively (VMS aficionados, rejoice!).

Causes the next character to not be treated as special. For example, \ [matches a literal [. If flags includes
GLOB_NOESCAPE, this quoting is disabled and \ is handled as a simple character.

The variable flags controls certain options of the expansion process. Possible values for flags are as follows:

GLOB_APPEND
Append the matches to those aready present in the array pgl ob- >gl pat hv. By default, gl ob discards all
previous contents of pgl ob- >gl pat hv and alocates a new memory block for it. If you use
GLOB_APPEND pgl ob should point to a structure returned by a previous call to gl ob.

GLOB_DOCFFS
Skip pgl ob->gl _of fs entries in gl _pat hv and put new matches after that point. By default, gl ob puts
the new matches beginning at pgl ob->gl pat hv[0]. You can use this flag both with GLOB_APPEND (in
which case the new matches will be put after the first pgl ob- >gl _of f s matches from previous cal to
gl ob), or without it (in which case the first pgl ob- >gl _of f s entries in pgl ob- >gl _pat hv will be

- Page 208 -

filled by NULL pointers).

GLOB_ERR
Stop when an unreadable directory is encountered and call user-defined function errfunc. This cannot happen

under DOS (and thus errfunc is never used).

G.O0B_MARK
Append a slash to each pathname that is a directory.

G.0B_NOCHECK
If no matches are found, return the pattern itself as the only match. By default, gl ob doesn’t change pgl ob

if no matches are found.

GLOB_NOESCAPE
Disable blackslash as an escape character. By default, backslash quotes specia meta-characters in wildcards

described above.

GLOB_NOSORT
Do not sort the returned list. By default, the list is sorted alphabetically. This flag causes the files to be
returned in the order they were found in the directory.

Given the pattern and the flags, gl ob expands the pattern and returns a list of files that match the pattern in a
structure a pointer to which is passed via pglob. This structure is like this:

t ypedef struct {
size_t gl _pathc;
char **gl _pat hv;
size_t gl _offs;
} glob_t;

In the structure, the gl _pat hc field holds the number of filenames in gl _pat hv list; this includes the filenames
produced by this call, plus any previous filenames if GLOB_APPEND or GLOB_DOOFFS were set in flags The list
of matches is returned as an array of pointers to the filenames; gl _pat hv holds the address of the array. Thus,
the filenames which match the pattern can be accessed as gl _pat hv[0], gl _pat hv[1], etc. If GLOB_DOOFFS
was set in flags, the new matches begin at offset given by gl _of fs.

gl ob alocates memory to hold the filenames. This memory should be freed by calling gl obf r ee (See globfree).
Return Value
Zero on success, or one of these codes:

GLOB_ABORTED
Not used in DJGPP implementation.

GLOB_NOVATCH
No files matched the given pattern.

GLOB_NOSPACE
Not enough memory to accomodate expanded filenames.

GLOB_ERR
Never happens on MSDOS, see above.

Notes
gl ob will not match names of volume labels.

On MSDOS, filenames are aways matched case-insensitively. On filesystems that preserve letter-case in filenames
(such as Windows 9x), matches are case-insensitive unless the pattern includes uppercase characters.

On MSDOS, the list of expanded filenames will be returned in lower case, if al the characters of the pattern
(except those between brackets [...]) are lower-case; if some of them are upper-case, the expanded filenames will be
also in upper case. On filesystems that preserve letter-case in filenames, long filenames are returned as they are
found in the directory entry; DOS-style 8+3 filenames are returned as on MSDOS (in lower case if the pattern
doesn’t include any upper-case letters, in upper case otherwise).

When the environment variable LFN is set to n, gl ob behaves on Windows 9x exactly as it does on MSDOS.

- Page 209 -

Setting the environment variable FNCASE to y, or setting the _ CRTO_FLAG PRESERVE FI LENAME_CASE bit in
the _crt0_startup fl ags variable (See _crt0_startup_flags) suppresses any letter-case conversions in filenames
and forces case-sensitive filename matching. See _preserve fncase

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXIXXXXKXXEXXXEXXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXX No 1003.2-1992; 1003.1-2001
Example

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <gl ob. h>

/* Convert awldcard patterninto alist of bl ank-separated
fil enames which match the wil dcard. */

char * gl ob_pattern(char *wi | dcard)

char *gfil enane;
size_t cnt, |ength;
glob_t glob results;
char **p;

gl ob(wi | dcard, GLOB_NOCHECK, 0, &gl ob_results);

/* How much space do we need? */

for (p=glob results.gl _pathv, cnt =glob_results. gl _pathc;
cnt; p++, cnt--)

length +=strlen(*p) + 1;

/* Al'l ocate the space and generate the list. */

gfi l enane = (char *) cal l oc(l ength, sizeof(char));

for (p=glob results.gl _pathv, cnt = glob_results. gl _pathc;
cnt; p++, cnt--)

strcat (gfil enane, *p);

if (cnt >1)
strcat(gfilenane, " ");

gl obfree(&gl ob_results);
return gfil enane;

globfree
Syntax

#i ncl ude <gl ob. h>

voi d gl obfree(gl ob_t *pgl ob);

Description
Frees the memory associated with pglob, which should have been allocated by a call to gl ob (See glob).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXIXEXHXXXIXEXXXIXIXHXKKIEXHXIXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

gmtime
Syntax

#i ncl ude <ti ne. h>

- Page 210 -

struct tm*gntime(const time_t *tod);

Description
Converts the time represented by tod into a structure.

The return structure has this format:

struct tm¢{

int tmsec; /* seconds after the nm nute [0-60] */
inttmmn; /* minutes after the hour [0-59] */
int tmhour; /* hours since mdnight [0-23] */
int tmnday; /* day of the nonth [1-31] */

int tmnmon; /* nonths since January [0-11] */
int tmyear; /* years since 1900 */

int tmwday; /* days since Sunday [0-6] */

i nt tmyday; /* days since January 1 [0-365] */
int tmisdst; /* Daylight Savings Tine flag */
long tmgntoff; /* offset fromGMI i n seconds */
char * tm zone; /* timezone abbreviation */

}.

Return Vaue

A pointer to a static structure which is overwritten with each call.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

time_t x;
struct tm*t;
ti me(&x);

t =gntinme(&);

~g032_conventional_mem_selector
Syntax

#i ncl ude <go32. h>

u_short _go32_conventi onal _nem sel ector();

Description

This function returns a selector which has a physical base address corresponding to the beginning of conventional
memory. This selector can be used as a parameter to novedat a (See movedatd) to manipulate memory in the
conventional address space.

Return Vaue
The selector.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

short bl ank_row buf[ScreenCol s()];

/* scroll screen */

novedat a(_go32_conventional _nem sel ector (), 0xb8000 + ScreenCol s()*2,
_go32_conventi onal _mem sel ector (), 0xb8000,

ScreenCol s() * (ScreenRows()-1) * 2);

[* fill last row*/

novedat a(_go32_ny_ds, (int)blank_row buf,

~go32_conventional _nmem sel ector(),

- Page 211 -

0xb8000 + ScreenCol s() *(ScreenRows()-1)*2,
ScreenCol s() * 2);

0032 _dpmi_allocate dos memory

Syntax

#i ncl ude <dpm . h>

int go32 dpmi _allocate _dos nenory(_go32 dpm _seginfo *info);

Description
See DPMI Overview.

Allocate a part of the conventional memory area (the first 640K). Set the si ze field of info to the number of
paragraphs requested (this is (size in bytes + 15)/16), then call. The r m segnent field of info contains the
segment of the allocated memory.

The memory may be resized with _go32_dpm _resi ze _dos_nenory and must be freed with
~go32_dpm free_dos_nenory.

If there isn't enough memory in the system, the si ze field of info has the largest available size, and an error is
returned.

See adso See dosmemput, and See dosmemget.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
~go32_dpm _segi nfoinfo;
i nfo.size = (want_size+15) / 16;
~go32_dpm _al | ocate_dos_mnenory(& nf o) ;
dosnmenput (buffer, want_size, i nfo.rm segnent*16);
~go32_dpm free_dos_nenory(& nfo);

~go32_dpmi_allocate iret_wrapper
Syntax

#i ncl ude <dpm . h>

int _go32 dpm _allocate_iret_wapper(_go32_dpm _seginfo *info);
Description
See DPMI Overview.
This function creates a small assembler function that handles the overhead of servicing an interrupt. To use, put the
address of your servicing function in the pm of f set field of info and cal this function. The pm fi el d will get
replaced with the address of the wrapper function, which you pass to both
~go32_dpm _set _protected node_interrupt _vector and go32 dpm free_ iret_w apper.

Warning! Because of the way DPMI works, you may not | ongj np out of an interrupt handler or perform any
system calls (such as pri nt f) from within an interrupt handler.

Do not enable interrupts with enabl e() or asm("sti") in your function.

See also See _go32_dpmi_set_protected _mode interrupt_vector, and See _go32_dpmi_free iret_wrapper.
Return Value

Zero on success, nonzero on failure.

- Page 212 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

~go32_dpm _segi nfo info;

i nfo. pm offset = ny_handl er;

~go32_dpm _allocate_iret_wapper (& nfo);

_go32_dpm _set _protected _node_interrupt_handl er (0x75, & nfo);

:QOSZ_dpm' _free_iret_wapper (& nfo);

~go32_dpmi_allocate real mode callback iret
Syntax

#i ncl ude <dpm . h>

int _go32 dpm _allocate_real node_call back_iret(
~go32_dpm _seginfo *info, go32 dpm _registers *regs

Description
See DPMI Overview.

This function allocates a "real-mode callback". Fill in the pm of f set field of info and call this function. It will
fill in the rm segnent and r m of f set fields. Any time a rea-mode program calls the real-mode address, your
function gets called. The registers in effect will be stored in regs which should be a global, and will be passed to
your function. Any changes in regs will be reflected back into real mode. A wrapper will be added to your
function to simulate the effects of an i r et instruction, so this function is useful for trapping real-mode software
interrupts (like Ox1b - CtrlBreak hit).

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

~go32_dpm _registers regs;

ny_handl er (_go32_dpm _registers *r)
{

r->d. eax = 4;

}

set up()
{

~go32_dpm _segi nfo info;

_go32_dpm _segi nfo ol d_vector;

~go32_dpm _get real node_interrupt_vector(0x84, &old vector);
i nfo.pm offset =ny_handl er;

_go32_dpm _al l ocate_real node_cal | back_iret (& nfo, & egs);
~go32_dpm _set _real node_interrupt_vector(0x84, & nfo);
do_stuff();

_go32_dpm _set _real node_interrupt_vector(0x84, &old_vector);
~go32_dpm free_real node call back(& nfo);

0032 _dpmi_allocate real mode callback_retf

- Page 213 -

Syntax

#i ncl ude <dpm . h>

int go32 dpmi _allocate real node call back retf(
_go32_dpm _seginfo *info, _go32_dpm _registers *regs

Description
See DPMI Overview.

This function alocates a "real-mode callback”. Fill in the pm of f set field of info and call this function. It will
fill in the rm segnent and r m of f set fields. Any time a real-mode program calls the real-mode address, your
function gets called. The registers in effect will be stored in regs which should be a global, and will be passed to
your function. Any changes in regs will be reflected back into real mode. A wrapper will be added to your
function to simulate the effects of a far return, such as the callback for the packet driver receiver.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXEXKIIXXXXXXXKXXXXXKXXKXXXXXXXX NO No

Example

See _go32_dpmi_allocate real_mode callback_iret, for an example of usage.
0032 _dpmi_chain_protected mode _interrupt_vector
Syntax

#i ncl ude <dpm . h>

int go32 dpm _chain_protected node_interrupt_vector(
int vector, go32 dpm _seginfo *info
)

Description
See DPMI Overview.

This function is used to chain a protected mode interrupt. It will build a suitable wrapper that will call your
function and then jump to the next handler. Your function need not perform any specia handling.

Warning! Because of the way DPMI works, you may not | ongj np out of an interrupt handler or perform any
system calls (such as pri nt f) from within an interrupt handler.

Do not enable interrupts with enabl e() or asn("sti") in your function.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
See 032 dpmi_set protected mode interrupt_vector.

0032 _dpmi_free_dos memory
Syntax

#i ncl ude <dpm . h>

int go32 dpm free_dos_nenory(_go32 dpm _seginfo *info);
- Page 214 -

Description
See DPMI Overview.

This function frees the conventional memory alocated by _go32_dpmi _al | ocat e_real _node_nenory. You
should pass it the same structure as was used to alocate it.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXKXIEKHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
~go32_dpm _segi nfo info;
i nfo.size =100;
_go32_dpm _al | ocat e_dos_mnenory(& nf o) ;
~go32 _dpm free_dos _nenory(& nfo);

0032 _dpmi_free iret_wrapper
Syntax

#i ncl ude <dpm . h>

int go32 dpmi free_ iret_wapper(_go32 dpm _seginfo *info);

Description
See DPMI Overview.

This function frees the memory used by the wrapper created by _go32_dpmi _al |l ocate_iret_wrapper. You
should not free a wrapper that is till in use.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
See go32 dpmi_allocate iret_wrapper.

0032 _dpmi_free rea _mode_callback
Syntax

#i ncl ude <dpmi . h>

int go32 dpm free_real node cal | back(_go32 dpm _segi nfo *i nfo);
Description
See DPMI Overview.
This function frees the real-mode callbacks and wrappers allocated by

_go32_dpm _al |l ocate_real node_cal | back_iret and
~go32 _dpm _al l ocate real node _cal | back retf.

Return Vaue

Zero on success, nonzero on failure.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
- Page 215 -

Example
See go32 dpmi_allocate real_mode callback iret, for an example of usage.

0032 _dpmi_get free_memory_information
Syntax

#i ncl ude <dpm . h
int go32 dpmi get free nmenory_information(_go32 dpm _rnemninfo *info);

Description
This function fills in the following structure:

t ypedef struct {

u_l ong avail abl e_nenory;

u_l ong avail abl e_pages;

| ong avai |l abl e_| ockabl e_pages;
ong | i near _space;

ong unl ocked_pages;

ng avai l abl e_physi cal _pages;
ng total physical pages;

ng free |inear_space;

ng max_pages_i n_pagi ng _file;
ong reserved| 3] ;

~go32_dpm _neni nf o;

|
B
l o
lo
lo
l o
|

u
u
u
u
u
u
u
u
}

The only field that is guaranteed to have useful data is avai | abl e_nmenory. Any unavailable field has -1 in it.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
i{nt phys_mem | eft ()

~go32_dpm _neninfo info;

~go32_dpm _get _free nenory_information(& nfo);
if (info.avail abl e_physi cal _pages !=-1)

return info.avail abl e_physi cal pages * 4096;
return info.avail abl e_nmenory;

}

0032 _dpmi_get_protected mode interrupt_vector
Syntax

#i ncl ude <dpm . h>

t go32 dpm get protected node interrupt_vector(
t

n
nt vector, _go32_dpmni _seginfo *info

i
i
)
Description

See DPMI Overview.

This function puts the selector and offset of the specified interrupt vector into the pm sel ect or and pm of f set
fields of info. This structure can be saved and later passed to
~go32_dpm _set _protected node_interrupt_vector to restore a vector.

- Page 216 -

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
See o032 dpmi_set protected mode interrupt_vector, for an example of usage.

0032 _dpmi_get_real_mode _interrupt_vector
Syntax

#i ncl ude <dpm . h>
int go32 dpm _get_real _node_interrupt_vector(
int vector, go32 dpm _seginfo *info

Description
See DPMI Overview.

This function gets the real-mode interrupt vector specified into the address in the r m segnment and r m of f set
fields in info.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

See go32 dpmi_allocate real_mode callback iret, for an example of usage.
0032 _dpmi_lock code

Syntax

#i ncl ude <dpm . h>

int go32 dpm | ock code(void *l ockaddr, unsigned | ong | ocksi ze);

Description

Locks the given region of code, starting at lockaddr for locksize bytes. lockaddr is a regular pointer in your
program, such as the address of a function.

Return Vaue
0 if success, -1 if failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
Example

voi d nmy_handl er ()
{

- Page 217 -

voi d | ock_ny_handl er ()
{

_go32_dpm _| ock_code(my_handl er,
(unsigned | ong) (I ock_ny_handl er - ny_handl er));
}

0032 _dpmi_lock data
Syntax

#i ncl ude <dpmi . h>
int go32 dpm | ock data(void *l ockaddr, unsigned | ong | ocksi ze);

Description

Locks the given region of data, starting at lockaddr for locksize bytes. lockaddr is a regular pointer in your
program, such as the address of a variable.

Return Vaue

0 if success, -1 if falure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

i nt semaphor e=0;

voi d | ock_ny_handl er ()
{

~go32_dpm _| ock_dat a(&enmaphore, 4);
}

~go32_dpmi_remaining_physical_memory
Syntax

#i ncl ude <dpm . h>
unsi gned | ong _go32_dpm _r emai ni ng_physi cal _nmenory(void);

Description
Returns the amount of physical memory that is still available in the system.

Return Vaue

The amount in bytes.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

0032 _dpmi_remaining_virtual_memory
Syntax

#i ncl ude <dpm . h>
unsi gned | ong _go32_dpm _renai ni ng_virtual _nmenory(void);

Description
Returns the amount of virtual memory that is till available in the system.

- Page 218 -

Return Vaue

The amount in bytes.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

0032 _dpmi_resize_ dos_memory
Syntax

#i ncl ude <dpmi . h>
int go32 dpm resize dos _nenory(_go32 dpm _seginfo *info);

Description
See DPMI Overview.

The info structure is the same one used to alocate the memory. Fill in a new vaue for si ze and cal this
function. If there is not enough memory to satisfy the request, the largest size is filled in to the si ze field, the
memory is not resized, and this function fails.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
~go32_dpm _segi nfoinfo;
i nfo.size =10;
~go32_dpm _al | ocate_dos_menory(& nf o) ;
i nfo.size = 20;
~go32_dpm _resize _dos_nenory(& nfo);
~go32_dpm _free_dos_nenory(& nfo);

0032 _dpmi_set_protected mode _interrupt_vector
Syntax

#i ncl ude <dpm . h>

int go32 dpm _set protected node interrupt_vector(
int vector, go32 dpmi _seginfo *info
)

Description
See DPMI Overview.

This function sets the protected mode interrupt vector specified to point to the given function. The pm of f set and
pm sel ect or fields of info must be filled in (See _go32 my cs). The following should be noted:

. You may not | ongj np out of an interrupt handler.

. You may not make any function calls that require system calls, such as pri nt f.

. This function will not wrap the handler for you. The go32 dpmi _all ocate iret_ wapper and
_go32_dpm _chai n_protected_node_i nterrupt_vect or functions can wrap your function if you
want.

. You must set the pm_selector field of info. Use go32_rmny_cs to get a selector valid for your functions.

Return Vaue

- Page 219 -

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

volatileint tics =0;

ti mer _handl er ()

{

tics++;

}
i nt main()

~go32_dpm _segi nfo ol d_handl er, new_handl er;

printf("grabbingtimer interrupt\n");

~go32 _dpm _get protected node_interrupt_vector (8, &l d _handler);
new_handl er. pm offset = (int)tic_handler;

new_handl er. pm sel ector = _go32_ny_cs();

~go32_dpm _chain_protected node_interrupt_vector (8, &ew handler);

getkey();

printf("releasingtiner interrupt\n");
~go32_dpm _set _protected_node_interrupt_vector (8, &l d_handl er);

return O;

}

0032 _dpmi_set real_mode _interrupt_vector
Syntax

#i ncl ude <dpm . h>

int go32 dpm _set_real _node_interrupt_vector(
int vector, go32 dpm _seginfo *info
)

Description

See DPMI Overview.

This function sets the real-mode interrupt vector specified to point to the address in the r m segnent and
rm of f set fields in info.

Return Vaue
Zero on success, nonzero on failure.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No

Example
See _go32_dpmi_allocate real_mode callback_iret, for an example of usage.

0032 _dpmi_simulate fcall
Syntax

- Page 220 -

#i ncl ude <dpm . h>

int go32 dpm sinmulate fcall(_go32 dpni registers *regs);

Description
See DPMI Overview.
This function simulates a real-mode far call to a function that returns with a far return. The registers are set up

from regs including CS and | P, which indicate the address of the call. Any registers the function modifies are
reflected in regs on return.

If SS and SP are both zero, a small temporary stack is used when in real mode. If not, they are used asis It's a
good idea to use menset to initiaize the register structure before using it.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

~go32_dpm _registersr;

r.x.ax = 47,

r.Xx.cs = some_segnent;
r.x.ip=some_offset;

r.x.ss =r.x.sp=0;

~go32 _dpm _sinulate fcall (&r);
printf("returns %@\ n", r.x.ax);

0032 _dpmi_simulate fcall iret
Syntax

#i ncl ude <dpm . h>

int go32 dpm _simulate fcall _iret(_go32 _dpm _registers *regs);
Description
See DPMI Overview.
This function simulates a real-mode far call to a function that returns with an i r et instruction. The registers are
set up from regs including CS and | P, which indicate the address of the call. Any registers the function modifies
are reflected in regs on return.

If SS and SP are both zero, a small temporary stack is used when in real mode. If not, they are used asis It's a
good idea to use menset to initialize the register structure before using it.

Return Value
Zero on success, nonzero on failure.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No
Example
_go32_dpm _registersr;
r.x.ax = 47,
r.x.cs = sone_segnent;
r.x.ip =sone_offset;
r.x.ss =r.x.sp=0;

~go32 _dpm _sinulate fcall iret(&r);
printf("returns %@\ n", r.x.ax);

- Page 221 -

0032 _dpmi_simulate int
Syntax

#i ncl ude <dpm . h>

int go32 dpmi simulate_ int(int vector, go32 dpm _registers *regs);

Description
See DPMI Overview.

This function simulates a real-mode interrup. The registers are set up from regs including CS and | P, which
indicate the address of the call. Any registers the function modifies are reflected in regs on return.

If SS and SP are both zero, a small temporary stack is used when in real mode. If not, they are used asis It's a
good idea to use menset to initialize the register structure before using it.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

~go32_dpm _registersr;

r.h.ah = 0x08;

r.h.dl =0x80; /* drive C */

r.x.ss =r.x.sp=0;

~go32 _dpm _sinulate_int(0x13, &r);
printf("diskis %l cyl, %d head, % sect\n",
r.h.ch| ((r.x.cl<<2)&0x300),

r.h.dh, r.h.cl &0x3f));

~go32_info_block
Syntax

#i ncl ude <go32. h>
extern _ Go32_Info_Block _go32_info_bl ock;

Description

The go32 information block is a mechanism for go32 to pass information to the application. Some of this
information is generally useful, such as the pid or the transfer buffer, while some is used internally to | i bc. a
only.

The structure has this format:

t ypedef struct {

unsi gned | ong si ze_of _this_structure_in_bytes;
unsi gned |l ong | i near _address_of _prinmary_screen;
unsi gned |l ong | i near _address_of secondary_screen;
unsi gned |l ong | i near _address_of _transfer_buffer;
unsi gned | ong si ze_of transfer_buffer;

unsi gned | ong pi d;

unsi gned char master _interrupt_control |l er_base;
unsi gned char slave_interrupt _controll er_base;
unsi gned short sel ector_for _|inear_nenory;

unsi gned |l ong | i near _address_of _stub_i nfo_structure;
unsi gned |l ong | i near _address_of origi nal _psp;

unsi gned short run_node;

unsi gned short run_node_i nf o;

} Go32_Info_ Bl ock;

- Page 222 -

The linear address fields provide values that are suitable for dosnmenget, dosmenput, and novedat a. The
selector_for_linear_memory is suitable for <sys/ f ar ptr. h> selector parameters.

Due to the length of these fields, and their popularity, the following macros are available:

dos_ds
~ This expands to _go32_info_block.selector_for_linear_memory

th
" This expands to _go32_info_block.linear_address of transfer_buffer

__tb_size
This expands to _go32_info_block.size of transfer_buffer

The run_node field indicates the mode that the program is running in. The following modes are defined:

_GC32_RUN_MODE_UNDEF
This indicates that the extender did not (or could not) determine or provide the mode information. The most
probable reason is that it's an older extender that does not support this field. The program should not assume
anything about the run mode if it is this value.

_G082_RUN_MODE_RAW
This indicates that no CPU manager is being used, and no XMS manager is present. The CPU is being
managed directly from the extender, and memory was alocated from the extended memory pool.

_G082_RUN_MODE_XMS
This indicates that the extender is managing the CPU, but an XMS driver is managing the memory pool.

_G082_RUN_MODE_VCPI
This indicates that a VCPI server (like enmB86 or genm) is managing both the CPU and the memory.

_G082_RUN_MODE_DPM
This indicates that a DPMI server (like qdpmi or Windows) is managing both the CPU and memory.
Programs may rely on this value to determine if it is safe to use DPMI 0.9 functions.

If this value is set, the run_node_i nf o field has the DPMI specification version, in hex, shifted eight bits.
For example, DPMI 0.9 has Ox005A in the r un_node_i nf o field.

Note that the program should not assume that the value will be one of the listed values. If the program is running

with an extender that provides some other mode (say, a newly released extender) then the program should be able to
handle that case gracefully.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

dosnmenget (_go32_info_bl ock.linear_address_of prinmary_screen,
80*25*2, buf);

0032 _interrupt_stack size
Syntax

#i ncl ude <dpmi . h>

ext ern unsi gned | ong _go32_interrupt_stack_si ze;

Description
The default size of the interrupt handler’s stack. Defaults to 32k.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
~go32_my_cs

- Page 223 -

Syntax

#i ncl ude <go32. h>
u_short go32 ny cs();

Description
Returns the current CS. This is useful for setting up interrupt vectors and such.

Return Vaue
CS

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
~go32_ my _ds

Syntax

#i ncl ude <go32. h>
u_short _go32_ny _ds();

Description
Returns the current DS. This is useful for moving memory and such.

Return Vaue
DS

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No
~go32_my_ss

Syntax

#i ncl ude <go32. h>

u_short _go32_ny_ss();

Description
Returns the current SS. This is useful for moving memory and such.

Return Vaue
Ss

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

0032 _rmch_stack size
Syntax

#i ncl ude <dpm . h>

ext ern unsi gned | ong _go32_rnthb_stack_si ze;

Description
The default size of the rea mode callback handler’s stack. Defaults to 32k.

Portability

- Page 224 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

0032 _want_ctrl _break
Syntax

#i ncl ude <go32. h>

void go32 want _ctrl _break(int yes);

Description

This function tells go32 whether or not it wants Ctrl-Breakto be an exception or passed to the application. If you
pass a nonzero value for yes, pressing Ctrl-Breakwill set a flag that can be detected with

~go32_was_ctrl _break hit (See go32 was ctrl_break hit). If you pass zero for yes, when you press
Ctrl-Breakthe program will be terminated.

Note that if you cal go32 was_ctrl _break hit, this function automatically gets called to ask for Ctrl-Break
events.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

_0g32_want _ctrl _break(1);
do_sonet hing_l ong();
~g32_want _ctrl _break(0);

_go32_was ctrl_break hit
Syntax

#i ncl ude <go32. h>
unsi gned _go32_was_ctrl _break_hit(void);

Description

This function returns the number of times that Ctrl-Breakwas hit since the last call to this function or
~go32_want _ctrl _break (See _go32 want_ctrl_break).

Return Vaue

Zero if Ctrl-Breakhasn't been hit, nonzero to indicate how many times if it has been hit.

Note that _go32_want _ctrl _break is automatically called to request these events, so you don’'t have to set up
for this call.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

while (!_go32 was_ctrl _break _hit())
do_sonet hing();

gotoxy
Syntax

#i ncl ude <coni o. h>

voi d gotoxy(int x, int y);

- Page 225 -

Description
Move the cursor to row y, column x. The upper left corner of the current window is (1,1).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

gppconio_init
Syntax

#i ncl ude <coni o. h>
voi d gppconi o_init(void);

Description

Initialize the screen. This is caled automatically at program start-up if you use any of the coni o functions, but
there may be times when you need to cal it again, typically after calling some video BIOS function which affects
screen parameters.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No
__has fd properties

Syntax

#i ncl ude <li bc/fd_props. h>
int __has fd properties(int fd);

Description
This internal function checks whether there are any properties associated with the file descriptor fd.

Return Vaue

Non-zero if fd has any properties, zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

hasmntopt
Syntax

#i ncl ude <mtent . h>

char *hasmt opt (const struct mmtent *nmmt, const char *opt);

Description

This function scans the mt _opt s field of the mt ent structure pointed to by mnt for a substring that matches
opt. See getmntent

Return Vaue

- Page 226 -

This function returns the address of the substring if a match is found, or NULL otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
highvideo

Syntax

#i ncl ude <coni o. h>

voi d hi ghvi deo(voi d);

Description
Causes any new characters put on the screen to be bright.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

htonl
Syntax

#i ncl ude <netinet/in. h>
unsi gned | ong htonl (unsi gned | ong val) ;

Description

This function converts from host formatted longs to network formatted longs. For the i386 and higher processors,
this means that the bytes are swapped from 1234 order to 4321 order.

Return Vaue
The network-order value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
packet . i paddr = htonl (ip);
htons

Syntax

#i ncl ude <netinet/in. h>

unsi gned short htons(unsi gned short val);
Description
This function converts from host formatted shorts to network formatted shorts. For the i386 and higher processors,
this means that the bytes are swapped from 12 order to 21 order.

Return Vaue

- Page 227 -

The network-order value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
tcp. port = htons(port);

hypot
Syntax

#i ncl ude <mat h. h>

doubl e hypot (doubl e x, doubl e y);

Description

This function computes sqrt (x*x + y*y), the length of a hypotenuse of a right triangle whose shorter sides are x
and y. In other words, it computes the Euclidean distance between the points (0, 0) and (x,y). Since the
computation is done in extended precision, there is no danger of overflow or underflow when sguaring the
arguments, whereas direct computation of sqrt (x*x + y*y) could cause overflow or underflow for extreme (very
large or very small) values of x and .

Return Vaue

The value of sqrt (x*x + y*y). If both arguments are finite, but the result is so large that it would overflow a
doubl e, the return value is | nf, and errno is set to ERANGE If one of the arguments is | nf, the return value is
I nf and the value of errno is left unchanged. If one of the arguments is NaN the return value is NaN and
errno is set to EDOM

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

imaxabs
Syntax

#i ncl ude <i nttypes. h>

i ntmax_t i maxabs (i ntmax_t x);
Description
This function takes the absolute value of x.

abs (See abs) operates on an i nt. This function operates on a greatest-width integer.

Return Vaue

I x|

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXXXKXXIXHXXHXXIXHXXXXXXXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Imaxdiv
Syntax
#i ncl ude <i nttypes. h>
i maxdi v_t imaxdiv (intmax_t numerator, intmax_t denoni nator);
Description
Returns the quotient and remainder of the division numerator divided by denominator. The return type is as follows:

- Page 228 -

t ypedef struct {
i nt max_t quot ;
intmax_t rem

} i maxdiv_t;

Return Vaue

The results of the division are returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXKXXEXXXKXXEXXXXKXXXXXXXXKXXKXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example
i maxdiv_t | =imaxdiv(42, 3);
printf("42 =% PRIAJMAX" x 3 + 9% PRIdMAX"\n", |.quot, |.ren);
i maxdi v(+40, +3) ={ +13, +1}
i maxdi v(+40, -3) ={ -13, -1}
i maxdi v(-40, +3) ={ -13, -1}
i maxdi v(-40, -3) ={ +13, -1}

inb
Syntax

#i ncl ude <pc. h>
unsi gned char i nb(unsi gned short port);

Description
Calls See inportb. Provided only for compatibility.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

index
Syntax

#i ncl ude <strings. h>
char *index(const char *string, int ch);

Description

Returns a pointer to the first occurrence of ch in string. Note that the NULL character counts, so if you pass zero
as ch you'll get a pointer to the end of the string back.

Return Vaue

A pointer to the character, or NULL if it wasn't found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

if (index(path, '*"))
do_wi | dcards(path);

initstate
Syntax

#i ncl ude <stdlib. h>

- Page 229 -

char *initstate(unsigned seed, char *arg_state, int n);

Description

Initializes the random number generator (See random) with pointer arg_state to array of n bytes, then calls srandom
with seed.

Return Vaue

Pointer to old state information.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

inp
Syntax
#i ncl ude <pc. h>
unsi gned char i np(unsi gned short port);

Description
Calls See inportb. Provided only for compatibility.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
inportb

Syntax

#i ncl ude <pc. h>

unsi gned char i nportb(unsi gned short port);
Description
Read a single 8-bit 1/O port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Return Value
The vaue returned through the port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No
inportl

Syntax

#i ncl ude <pc. h>

unsi gned |l ong i nportl (unsi gned short port);

Description
This function reads a single 32-bit 1/0O port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Return Vaue

- Page 230 -

The value returned from the port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Inportsb

Syntax

#i ncl ude <pc. h>
voi d i nportsb(unsi gned short _port, unsigned char *_buf, unsigned _|en);

Description
Reads the 8-bit _port _len times, and stores the bytes in buf.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No
inportsl

Syntax

#i ncl ude <pc. h>
voi d i nportsl (unsi gned short port, unsigned|ong * buf, unsigned |en);

Description
Reads the 32-bit _port _len times, and stores the bytes in buf.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No
inportsw

Syntax

#i ncl ude <pc. h>

voi d i nportswunsi gned short _port,
unsi gned short * _buf, unsigned | en);

Description
Reads the 16-bit _port _len times, and stores the bytes in buf.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No
inportw

Syntax

#i ncl ude <pc. h>

unsi gned short i nportw(unsi gned short port);

Description
Read a single 16-bit I/O port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Return Vaue

- Page 231 -

The value returned through the port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Inpw
Syntax

#i ncl ude <pc. h>

unsi gned short i npw(unsi gned short _port);

Description
Calls See inportw. Provided only for compatibility.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No
insline
Syntax

#i ncl ude <coni o. h>

voi d i nsline(void);

Description
A blank line is inserted at the current cursor position. The previous line and lines below it scroll down.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

insque
Syntax

#i ncl ude <search. h>
voi d i nsque(struct gel em*el em struct gel em*pred);

Description

This function manipulates queues built from doubly linked lists. Each element in the queue must be in the form of
struct gel emwhich is defined thus:

struct gel em{

struct gel em*q_forw,
struct gel em*q_back;
char q_data[0];

}

This function inserts elem in a queue immediately after pred.

- Page 232 -

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
install_dev_full
Syntax
#i ncl ude <sys/ xdevi ces. h>
int __install_dev full (void);

Description

This function activates support for the special file / dev/ful |. When read, dev/ful | aways returns \ 0
characters. Writes to / dev/ ful | will fail with errno set to ENOSPC Seeks on / dev/ful | aways succeed.

The DJGPP debug support functions will interfere with / dev/ ful | (See File System Extensions.

Return Vaue

On success, a non-zero value is returned; on failure, zero is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No
__install _dev_zero
Syntax

#i ncl ude <sys/ xdevi ces. h>

int __install_dev_zero (void);

Description

This function activates support for the special file / dev/ zer o. When read, dev/ zer o aways returns \ O
characters. When written, / dev/ zer o discards the data. Seeks on / dev/ zer o will always succeed.

The DJGPP debug support functions will interfere with / dev/ zer o (See File System Extensions).

Return Vaue

On success, a non-zero value is returned; on failure, zero is returned.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
iNt386
Syntax

#i ncl ude <dos. h>

int int386(int ivec, union REGS *in, uni on REGS *out);

Description
This function is equal to i nt 86 function. See See int86, for further description.

Return Vaue
The returned value of EAX

- Page 233 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

INt386x
Syntax

#i ncl ude <dos. h>

int int386x(int ivec, union REGS *in, uni on REGS *out,
struct SREGS *seg);

Description
This function is equal to i nt 86x. See See int86, for further description.

Return Vaue
The value of EAX is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

INt86
Syntax

#i ncl ude <dos. h>

int int86(int ivec, union REGS *in, union REGS *out);

Description
The uni on REGS is defined by <dos. h> as follows:

struct DWORDREGS {
unsi gned | ong edi ;
unsi gned | ong esi ;
unsi gned | ong ebp;
unsi gned | ong cfl ag;
unsi gned | ong ebx;
unsi gned | ong edx;
unsi gned | ong ecx;
unsi gned | ong eax;
unsi gned short efl ags;

struct DWORDREGS W({
unsi gned | ong di ;
unsi gned | ong si ;
unsi gned | ong bp;
unsi gned | ong cfl ag;
unsi gned | ong bx;
unsi gned | ong dx;
unsi gned | ong cx;
unsi gned | ong ax;
unsi gned short fl ags;

b

struct WORDREGS {

unsi gned short di, _upper_di;

unsi gned short si, _upper_si;

unsi gned short bp, _upper_bp;

unsi gned short cflag, _upper_cfl ag;
unsi gned short bx, _upper_bx;

unsi gned short dx, _upper_dx;

unsi gned short cx, _upper_cx;

- Page 234 -

unsi gned short ax, _upper_ax;
unsi gned short fl ags;

b

struct BYTEREGS {

unsi gned short di, _upper _di;
unsi gned short si, _upper_si;
unsi gned short bp, _upper_bp;
unsi gned | ong cfl ag;

unsi gned char bl ;

unsi gned char bh;

unsi gned short _upper _bx;
unsi gned char dl ;

unsi gned char dh;

unsi gned short _upper _dx;
unsi gned char cl;

unsi gned char ch;

unsi gned short _upper_cx;
unsi gned char al ;

unsi gned char ah;

unsi gned short _upper_ax;
unsi gned short fl ags;

uni on REGS {

struct DWORDREGS d;

#i fdef _NAI VE_DOS REGS
struct WORDREGS Xx;

#el se

#i f def _BORLAND DOS REGS
struct DWORDREGS Xx;

#el se

struct DWORDREGS WX;
#endi f

#endi f

struct WORDREGS w,
struct BYTEREGS h;

}s

Note: The . x. branch is a problem generator. Most programs expect the . x. branch to have eg. ". x. ax"
members, and that they are 16-bit. If you know you want 32-bit values, use the . d. eax members. If you know
you want 16-bit values, use the . w. ax members. The . x. members behave according to #def i nes, as follows:

def aul t
If you specify no #def i ne, the . x. branch has "ax" members and is 32-bit. This is compatible with
previous versions of djgpp.

_NAI VE_DOS_REGS
This define gives you . x. ax, but they are 16-bit. This is probably what most programs ported from 16-bit
dos compilers will want.

_BORLAND DOs_REGS
This define gives you . x. eax which are 32-bit. This is compatible with Borland's 32-bit compilers.

This function simulates a software interrupt. Note that, unlike the __dpm _i nt function, requests that go through

i nt 86 and similar functions are specially processed to make them suitable for invoking real-mode interrupts from
protected-mode programs. For example, if a particular routine takes a pointer in BX i nt 86 expects you to put a
(protected-mode) pointer in EBX Therefore, i nt 86 should have specific support for every interrupt and function you
invoke this way. Currently, it supports only a subset of al available interrupts and functions:

1) All functions of any interrupt which expects only scalar arguments registers (i.e., no pointers to buffers).

2) In addition, the following functions of interrupt 21h are supported: 9, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Fh, 40h, 41h,
43h, 47h, 56h.

When the interrupt is invoked, the CPU registers are copied from in. After the interrupt, the CPU registers are
copied to out.

- Page 235 -

This function is just like i nt 86x (See int86x) except that suitable default values are used for the segment registers.
See also See int86x, See intdos and See bdos

Return Vaue
The returned value of EAX

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXKXXXXXXXXXXX NO No

Example

uni on REGS r;

r.x.ax = 0x0100;
r.h.dl ='c¢;

i nt 86(0x21, &r, &r);

INt86x
Syntax

#i ncl ude <dos. h>

int int86x(int ivec, union REGS *in, uni on REGS *out,
struct SREGS *seg);

Description
The struct SREGS is defined by <dos. h> as follows:

struct SREGS {

unsi gned short es;
unsi gned short ds;
unsi gned short fs;
unsi gned short gs;
unsi gned short cs;
unsi gned short ss;

b

This function is just like i nt 86 (See int86) except that values you pass in seg are used for the segment registers
instead of the defaults.

See also See int86, See intdos, and See bdos

Return Value
The value of EAX is returned.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No
Example
uni on REGS r;
struct SREGS s;
r.h.ah = 0x31;
r.h.dl ='¢’;
r.x.si =si_val;

s.ds =ds_val;
i nt 86x(0x21, &, &, &s);

intdos
Syntax

#i ncl ude <dos. h>

- Page 236 -

i nt intdos(union REGS *in, uni on REGS *out);

Description
This function is just like i nt 86 (See int86x) except that the interrupt vector is 0x21.

Return Vaue
EAX

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

intdosx
Syntax

#i ncl ude <dos. h>

i nt intdosx(union REGS *i n, uni on REGS *out, struct SREGS *s);

Description
This function is just like i nt 86x (See int86x) except that the interrupt vector is 0x21.

Return Vaue
EAX

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Intensevideo
Syntax

#i ncl ude <coni o. h>

voi d i nt ensevi deo(voi d);

Description

Bit 7 (MSB) of the character attribute byte has two possible effects on EGA and VGA displays. it can either make
the character blink or change the background color to bright (thus alowing for 16 background colors as opposed to
the usual 8). This function sets that bit to display bright background colors. After a call to this function, every
character written to the screen with bit 7 of the attribute byte set, will have a bright background color. The
companion function bl i nkvi deo (See blinkvideo) has the opposite effect.

Note that there is no BIOS function to get the current status of this bit, but bit 5 of the byte at 0040h: 0065h in
the BIOS area indicates the current state: if it's 1 (the default), blinking characters will be displayed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

__internal_readlink
Syntax

#i ncl ude <li bc/synink. h>

int __internal _readlink(const char * path, int fhandle,
char * buf, size_ t max)

Description

In general applications shouldn’t call this function; use r eadl i nk instead (See readlink). However, there is one
exception: if you have a FSEXT f st at file handler, and do not want do anything special about symlinks. In this

- Page 237 -

case you should call this function from your handler to set properly S | FLNK bit in st _node. This function
operates on either path or fhandle In any case, the other arg should be set to NULL or O.

Return Vaue

Number of copied characters; value -1 is returned in case of error and err no is set. When value returned is equa
to size, you cannot determine if there was enough room to copy whole name. So increase size and try again.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXKXXXXXXXXXXX NO No

Example
char buf [FI LENAVE MAX + 1];
if (__internal _readlink(0, "/dev/env/DJDl R/ bin/sh.exe",
buf, FI LENAVE_MAX) == -1)
if (errno == ElI NVAL)
put s("/dev/env/DIDI R/ bin/sh.exeis not asynboliclink.");
_invent_inode

Syntax

i no_t
_invent _i node(const char *nane, unsigned tine_stanp,
unsi gned | ong fsi ze)

Description

This invents an inode number for those files which don't have valid DOS cluster number. These could be:
. devices like / dev/ nul | or file system extensions (See File System Extensions

. empty files which were not allocated disk space yet

. or files on networked drives, for which the redirector doesn't bring the cluster number.
To ensure proper operation of this function, you must call it with a filename in some canonical form. E.g., with a
name returned by t ruenane() (See _truename), or that returned by fi xpat h() (See _fixpath). The point here

is that the entire program must abide by these conventions through its operation, or else you risk getting different
inode numbers for the same file.

Return Vaue

0 on error, otherwise the invented inode number for the file.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No

ioctl (DOS)

The DOSish version of i oct| performs an interrupt 0x21, function 0x44. It takes care of supplying transfer buffers

in low address regions, if they are needed. For an exhaustive description of the various commands and
subcommands, see Ralf Brown's interrupt list.

It is highly recommended to use only the DOS * functions listed in sys/i octl . h.
Syntax

#i ncl ude <sys/ioctl. h>

int ioctl(int fd, int cnd, ...);

Description

The parameter f d must refer to a file descriptor for character device functions, or the number of a block device
(usually current=0, A:=1, ...

The following constants can be used for the cnd parameter:

- Page 238 -

DCS_GETDEVDATA
Get device information. Returns the device information word from DX The call to i oct| should look like
this:

int ret_val =ioctl (fd, DOS_GETDEVDATA);
For another way of achieving the same effect, see _get _dev_i nf o (See _get_dev_info).

DOS_SETDEVDATA
Set device information. Returns the new device information word form DX or -1. The call to i oct| should
look like this:

int ret_val =ioctl (fd, DOS_SETDEVDATA, 0, dev_info);

DOS_RCVDATA
Read from character device control channel. After crd must follow the number of regquested bytes to read
and a pointer to a buffer. Returns the number of bytes actually read or -1 on error. The cal to i oct |
should look like this:

unsi gned char buf[bytes to_read];

int ret_val =ioctl (fd, DOS_RCVDATA, bytes to_read, &buf);

DOS_SNDDATA
Write to character device control channel. After cnd must follow the number of bytes to write and a pointer
to a buffer holding the data. Returns the number of bytes actually written. An example of a call:

unsi gned char buf[bytes to wite];

int ret_val =ioctl (fd, DOS_SNDDATA, bytes_to wite, &buf);

DOS_RCVCTLDATA
Read from block device control channel. See DOS_RCVDATA

DOS_SNDCTLDATA
Write to block device control channel. See DOS_SNDDATA

DOS_CHKI NSTAT
Check the input status of a file. Returns O if not ready of at EOF, Oxff if file is ready. Here's an
example of how to call:

int ret_val =ioctl (fd, DOS_CHKI NSTAT);
A more portable way of doing this is by calling sel ect. See select.
DOS_CHKOUTSTAT
Check the output status of a file. Returns O if not ready of at EOF, Oxff if file is ready. sel ect (See
select) is another, more portable way of doing the same.

DOS_| SCHANGEABLE
Check if a block device is changeable. Returns O for removable or 1 for fixed. An example of a call:

int ret_val =ioctl (fd, DOS_|I SCHANGEABLE) ;
DOS_| SREDI RBLK
Check if a block device is remote o local. The function is renote_drive (See _is remote drive is
another way of returning the same info.

DOS | SREDI RHND
Check if a file handle refers to a local or remote device. See _i s_renote_handl e (See
_is remote_handle) for another way of doing this.

DOS_SETRETRY
Set the sharing retry count. The first extra parameter specifies the pause between retries, the second number
of retries. An example:

int ret_val =ioctl (fd, DOS_SETRETRY, pause_between retri es,
max_retries);

DOS_GENCHARREQ

- Page 239 -

Generic character device request. Example:
int ret_val =ioctl (fd, DOS_GENCHARREQ category_and_functi on,
&par am bl ock, si_val ue, di _val ue,
par am bl ock_si ze);
Refer to Ralf Brown's Interrupt List for the details about each function and relevant parameter block layout.

DOS_GENBLKREQ
Generic block device request. Example of the call:

int ret_val =ioctl (drive _no, DOS GENBLKREQ category _and function,
&par am bl ock, si_val ue, di _val ue,
par am bl ock_si ze);

Note that instead of the handle, the first argument is the disk drive number (0 = default, 1 = A:, etc.).

DOS_GLDRVIVAP
Get logical drive map. A call like the following:

int ret_val =ioctl (drive_no, DOS GLDRVNVAP);
will return O if the block device has only one logical drive assigned, or a number in the range 1..26 which
is the last drive numer used to reference that drive (1 = A:, etc.). Thus, on a machine which has a single
floppy drive, calling i oct| (1, DOS_GLDRVMAP) ; will return 2 if the floppy was last refered to as B:.
This function and the next one can be used together to prevent DOS from popping the ugly prompt saying
"Insert diskette for drive B: and press any key when ready".

DOS_SLDRVIVAP
Set logical drive map. For example, a cal like this:

ioctl (1, DOS_SLDRVMVAP);
will cause drive A: to be mapped to drive B:.
DOS_Q4G OCTLCAPH
Query generic ioctl capability (handle). Test if a handle supports ioctl functions beyond those in the standard
DOS 3.2 set. Cdl like this:
int ret_val =ioctl (fd, DOS_Q3 OCTLCAPH, category_and_functi on);
This will return zero if the specified IOCTL function is supported, 1 if not.
DOS_Q4A OCTLCAPD
Query generic ioctl capability (drive). Test if a drive supports ioctl functions beyond those in the standard
DOS 3.2 set. Used same as DOS _QGIOCTLCAPH, but the first argument is a drive number (0 = default, 1
= A:, etc.), not a handle.

If your specific device driver requires different commands, they must be or’ed together with the flags listed in
<sys/ioctl . h> to tell the drive about transfer buffers and what to return.

Return Vaue
See description above.

Device information word
The bit$doDthecdetiioeci réannmetdoessMadd hiavesthestollowing meaning:\\ Character device:

13 output until busy supported

11 driver supports OPEN/CLOSE calls
7 set (indicates device)

6 EOF on input

5 raw (binary) mode

- Page 240 -

4 device is special (uses INT 29)
3 clock device
2 NUL device
1 standard output
0 standard input
Disk filEs file is remote (DOS 3.0+)
14 don't set file date/time on closing (DOS 3.0+)
11 media not removable
8 (DOS 4 only) generate INT 24 if no disk space on write or read past end of file
7 clear (indicates file)
6 file has not been written
5-0 drive number (0 = A:)
Example

#i ncl ude <sys/ioctl. h>
int mai n(int argc, char **argv)

char buf[6];
short *s;

open(fd, " EMMQXXX0", O_RDONLY) ;

nmybuf[0] ='\0";

s = nybuf ;

ioctl (fd, DOS_SNDDATA, 6, (int) &mybuf);

i f(*s ==0x25)printf("EMVB86 >=4.45\n");

nmybuf [0] =" \ x02" ;

ioctl (fd, DOS_SNDDATA, 2, (i nt) &mrybuf);

printf("EMMVersion %. %\ n", (int)mybuf[0], (int) nybuf[1]);
cl ose(fd);

}

ioctl (General description)

i octl performs low level calls to communicate with device drivers. As there are lots of different device drivers,
no really general description is possible.

The DJGPP version tries to cope with two different flavors of i oct|, a DOSish and a UNIXish way. To
distinguish between DOS-like and UNIX-like calls, al valid DOS commands have al 3 MSB set to 0, the UNIX
command have at least one of the 3 MSB set to 1.

ioctl (UNIX)
Syntax

#i ncl ude <sys/ioctl. h>

int ioctl(int fd, int cnd, ...);
Description

The UNIX version first checks if an FSEXT handler is associated with the file descriptor fd. If so, it calls the
handler in the usual way (See File System Extensions).

Otherwise,the operation specified by cmd is performed on the file open on handle fd. The following operations are
defined by the header sys/ioctl . h:

- Page 241 -

TI OCGW NSZ
Fill in the wi nsi ze structure pointed to by the third argument with the screen width and height.

The wi nsi ze structure is defined in sys/i octl . h as follows:

struct w nsi ze

unsi gned short ws_row;, /* rows, in characters */

unsi gned short ws_col; /* columms, in characters */
unsi gned short ws_xpi xel ; /* horizontal size, pixels */
unsi gned short ws_ypi xel ; /* vertical size, pixels */

b
Return Vaue
Zero for TI OCGWN NSZ. Otherwise, -1 is returned and err no is set to ENOSYS for al others.

Example
#i ncl ude <sys/ioctl. h>
#i ncl ude <st di 0. h>
int mai n(int argc, char **argv)
struct w nsize sz;
ioctl (0, TIOCGWN NSz, &screen_si ze);

printf("Screen wi dth: % Screen height: %\n", sz.ws_col, sz.ws_row);
return O;

}

_is_cdrom_drive
Syntax

#i ncl ude <dos. h>
int is_cdromdrive(const int drive);

Description

This function checks if drive number drive (1 == A:, 2 == B:, etc.) is a CD-ROM drive. It works with MSCDEX
2x and Windows 9X built-in CDFS support.

Return Vaue
1 if the drive is a CDROM drive, otherwise O.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

if(is_cdromdrive('R -"A +1))
{

printf("C is a CDROMdrive.\n");

}

el se

{
printf("C is not a COROMdrive.\n");
}

- Page 242 -

exit(0);
}

_is DOS83
Syntax

#i ncl ude <fcntl . h>

int _is _DOS83 (const char *fname);

Description

This function checks the filename pointed to by fname to determine if it is a standard short (8+3) form file name.
The filename should only include the name part of the file. It is expected the filename will contain a valid long or
short file name (no validation is done to exclude path characters or characters always illegal in any file name).
Note: If the filename contains lower case characters the name is considered to be a long name and not a standard
short name (and the function will return 0).

The function will return O (failure) if there are more than 8 characters before a period, more than 3 characters after
a period, more than one period, starts with a period, any lower case characters, or any of the special characters + ,
; =[], or aspace. The special names . and .. are exceptions and will return success.

This function could be called to determine if a filename is valid on DOS before long file name support. If this
function returns 1 the filename probably does not have a long name entry on a FAT file system. The library
internally calls this function to determine if a file should have its name lower cased when See preserve fncase is
fase.

Return value
The function returns an integer 0 (not DOS 8.3) or 1 (DOS 8.3)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

_is_executable
Syntax

#i ncl ude <sys/stat. h>

int _is_executabl e(const char *path, int fhandle,
const char *extension);

Description

This function determines if a file is executable under DOS/DJGPP environment. The file may be given either by its
path or its file handle fhandle If extension is non-NULL and non-empty, it is used first to look up in a list of
known extensions which determine whether the file is executable. (If the _STAT EXEC EXT bit of the
_djstat_fl ags global variable (See _djstat flags) is not set, this step is skipped.) If extension is unavailable or
not enough to determine the result, the first 2 bytes of the file are checked to contain one of the known magic
numbers identifying the file as executable. If the file's 2 first bytes need to be read but the read fails, O is returned
and errno is set. (The file is only searched for magic number if the _STAT_EXEC MAQ C hit of the
_djstat_flags variable is set.)

Note that if _STAT_EXEC _MAG Cis set, but _ STAT_EXEC_EXT is not, some files which shouldn't be flagged as
executables (e.g.,, COFF *. o object files) will have their execute bit set, because they have the magic number
signature at their beginning. Therefore, only use the above combination if you want to debug the list of extensions
provided in i s_exec. ¢ file from the library sources.

If the file passed by its handle was open as write-only, and the extension alone isn't enough to determine whether
the file is executable, then this function returns 0, because it cannot look at the magic number.

This function is used internally by f ?st at; you are not supposed to cal it directly. However, if you cal it, and
pass file through path, it's up to you to resolve symlinks there.

Return Vaue

- Page 243 -

1 for executable file, O otherwise (including in case of errors in accessing the file).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
_is fat32

Syntax

#i ncl ude <dos. h>
int _is_fat32(const int drive);
Description
This function checks if drive number drive (1 == A:, 2 == B:, etc.) is formatted with FAT32.

For performance reasons the result is cached, hence if a drive is reformatted either from or to FAT32 a DJGPP
program must be restarted.

Return Vaue
1 if the drive is formatted with FAT32, otherwise O.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXXIXKIXKXXXKXXKXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

if(_is_fat32('C -"A +1))
printf("C is aFAT32 drive.\n");
}

el se

{
printf("C is not a FAT32 drive.\n");
}

exit(0);
}

_is ram drive
Syntax

#i ncl ude <dos. h>

int _is_ ramdrive(const int drive);

Description

This function checks if drive nhumber drive (1 == A:, 2 == B:, etc.) is a RAM disk. It is done by checking if the
number of FAT copies (in the Device Parameter Block) is 1, which is typica of RAM disks. This doesn't have to
be so, but if it's good enough for Andrew Schulman et a (Undocumented DOS, 2nd edition), we can use this as
well.

Return Vaue

1 if the drive is a RAM drive, otherwise 0.

- Page 244 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

int i =4;

printf("%: is a RAMdrive: %d.\n", "A" - 1+i, _is_ramdrive(i))

_is remote drive
Syntax

int _is renote _drive(int drv);

Description

Given the drive number in drv (A: = 0, B: = 1, etc.), this function returns non-zero if the drive is treated by DOS
as a remote (networked) drive, or zero otherwise. It does so by calling subfunction 09h of the DOS IOCTL
function (interrupt 21h, AX=4409h) and looking at bit 12 of the device attribute word returned in the DX register.

Note that DOS treats CD-ROM drives as remote.

Return Vaue

Zero for local drives, non-zero for remote and CD-ROM drives.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

_is remote _handle
Syntax

int is renote_handl e(int fhandle);

Description

Given the file handle of an open file in fhandle this function returns non-zero if the drive where that file resides is
treated by DOS as a remote (networked) drive, or zero otherwise. It does so by caling subfunction OAh of the
DOS IOCTL function (interrupt 21h, AX=440Ah) and looking at bit 15 of the device attribute word returned in the
DX register.

Note that DOS treats CD-ROM drives as remote.

Return Value

Zero for files on loca drives, non-zero for files on remote and CD-ROM drives.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

isalnum
Syntax

#i ncl ude <ctype. h>

int isalnum(int c);

Description
Tells if c is any letter or digit.

- Page 245 -

Return Vaue

Nonzero if c is a letter or digit, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

isalpha
Syntax

#i ncl ude <ct ype. h>
i nt isalpha(int c);

Description
Tells if c is a letter.

Return Vaue

Nonzero if c is a letter, €lse zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

|SasCl|
Syntax
#i ncl ude <ctype. h>

int isascii(int c);

Description

Tells if ¢ is an ASCII character (0x00 to Ox7f).

Return Value

Nonzero if ¢ is ASCII, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
|satty

Syntax

#i ncl ude <uni std. h>

int isatty(int fd);

Description
Tells if the file descriptor refers to a terminal device or not.

Return Vaue

Nonzero if fd is a terminal device, zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

- Page 246 -

if (isatty(l))
fflush(stdout);

isblank
Syntax

#i ncl ude <ct ype. h>
i nt isblank(int c);

Description
Tells if ¢ is a blank character. A blank character is used to separate words, e.g.: or \t.

Return Vaue

Nonzero if ¢ is a blank character, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXIXKXXKXXEXXXEXXXKHXEXXXIXHXXIXXXXXXXXXXKXXXXXXXX C99; not C89 1003.2-1992;
1003.1-2001

iscntrl
Syntax

#i ncl ude <ctype. h>
int iscntrl(int c);

Description
Tells if ¢ is a control character.

Return Vaue

Nonzero if ¢ is a control character, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXIXKXXKXXXXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

isdigit
Syntax
#i ncl ude <ctype. h>
int isdigit(int c);
Description
Tels if c is a digit.

Return Vaue

Nonzero if c is a digit, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Isgraph
Syntax

#i ncl ude <ct ype. h>

- Page 247 -

i nt isgraph(int c);

Description
Tells if c is a visible printing character. Space is not included.

Return Vaue

Nonzero if c is a visible printing character, else zero.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Islower
Syntax

#i ncl ude <ct ype. h>
int islower(int c);

Description
Tells if ¢ is lower case or not.

Return Vaue

Nonzero if c is lower case, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXKXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

isprint

Syntax
#i ncl ude <ct ype. h>
int isprint(int c);

Description
Tells if ¢ is a printing character, which includes the space character.

Return Vaue

Nonzero if c is a printing character, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

ispunct
Syntax

#i ncl ude <ctype. h>

int ispunct(int c);

Description
Tells if ¢ is any printing character except space and those indicated by i sal hum

Return Vaue

- Page 248 -

Nonzero if ¢ is punctuation, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Isspace
Syntax

#i ncl ude <ctype. h>

i nt isspace(int c);

Description

Tells if ¢ is whitespace, that is, carriage return, newline, form feed, tab, vertical tab, or space.
Return Value

Nonzero if ¢ is whitespace, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEXXXKXXEXKXIXKXXKXXKXXKXXKXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

isupper
Syntax

#i ncl ude <ctype. h>
i nt isupper(int c);

Description
Tells if ¢ is an upper case character or not.

Return Vaue

Nonzero if c is upper case, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHKHXEXXXEXXXEXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Isxdigit

Syntax
#i ncl ude <ctype. h>
int isxdigit(int c);

Description
Tells if ¢ is a valid hexadecimal digit or not. This includes [0- 9a-f A- F].

Return Vaue

Nonzero if c is a hex digit, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

itoa

- Page 249 -

Syntax

#i ncl ude <stdlib. h>

char * itoa(int value, char *string, int radix)

Description

This function converts its argument value into a null-terminated character string using radix as the base of the
number system. The resulting string with a length of upto 33 bytes (including the optional sign and the terminating
NULL is put into the buffer whose address is given by string. For radixes other than 10, value is treated as an
unsigned int (i.e., the sign bit is not interpreted as such). The argument radix should specify the base, between 2
and 36, in which the string reprsentation of value is requested.

Return Value
A pointer to string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
Example
char binary str[33];

(void)itoa(num binary str, 2);

kbhit
Syntax

#i ncl ude <pc. h>

i nt kbhit(void);

Description

If the user has hit a key, this function will detect it. This function is very fast when there is no key waiting, so it
may be used inside loops as needed.

If you test shift/alt/ctrl status with bios calls (e.g., using bi oskey (2) or bi oskey (0x12)) then you should also

use bios calls for testing for keys. This can be done with by bi oskey (1) or bi oskey (0x11). Failing to do
SO can cause trouble in multitasking environments like DESQview/X.

Return Vaue

Nonzero if a key has been hit, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

Example

while (!'kbhit())
do_stuff();

kill
Syntax

#i ncl ude <si gnal . h>

int kKill(pid_t _pid, int _sig);

Description
If pid is the current get pi d(), the given _sig is raised with See raise

- Page 250 -

Return Vaue

-1 on error, ese zero.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
|64a

Syntax

#i ncl ude <stdlib. h>

char *1 64a(l ong val ue);

Description

This function takes a | ong argument and returns a pointer to its radix-64 representation. Negative values are
supported as well. The resulting string can be turned back into a | ong value by the a641 function (See a64l).

Return Vaue

A pointer to a static buffer containing the radix-64 representation of value Subsequent calls will overwrite the
contents of this buffer. If value is OL, this function returns an empty string.

Radix-64

The radix-64 ASCII representation is a notation whereby 32-bit integers are represented by up to 6 Ascii characters;
each character represents a single radix-64 digit. Radix-64 refers to the fact that each digit in this representation can
take 64 different values. If the | ong type is more than 32 bits in size, only the low-order 32 bits are used. The
characters used to represent digits are . (dot) for 0, / for 1, O through 9 for 2 to 11, A through Z for 12 to 37,
and a through z for 38 to 63.

Note that this is not the same encoding used by either uuencode or the MIME base64 encoding.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXKKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. This function is new to the Posix 1003.1-200x draft

labs
Syntax

#i ncl ude <stdlib. h>
I ong | abs(1l ong x);

Description
This function takes the absolute value of x. See abs.

Return Vaue

x|

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEKXXEXXXEXKXIXKXXKXXKXXKXXKXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

[chown
Syntax

#i ncl ude <uni std. h>

- Page 251 -

i nt 1 chown(const char *file, int ower, int group);

Description
This function does nothing under MS-DOS.

Return Vaue

This function always returns zero if the file exists (it does not follow symbolic links), else it returns -1 and sets
errno to ENCENT.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

|dexp
Syntax

#i ncl ude <mat h. h>

doubl e | dexp(doubl e val , int exp);

Description
This function computes val* 2"exp.

Return Vaue

va*2’exp. | dexp(0., exp) returns O for all values of exp, without setting er r no. For non-zero values of val,
errno is set to ERANGE if the result cannot be accurately represented by a doubl e, and the return value is then
the nearest representable doubl e (possibly, an | nf). If val is a NaN or | nf, the return value is NaN and err no
is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEXHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

| dexp(3.5,4) == 3.5 * (274) == 56.0
Idiv
Syntax

#i ncl ude <stdlib. h>
[div_t Idiv(long nunerator, | ong denom nator);
Description
Returns the quotient and remainder of the division numerator divided by denominator. The return type is as follows:
t ypedef struct {
| ong quot ;

| ong rem
}ldiv_t;

Return Vaue

The results of the division are returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

- Page 252 -

Idiv_t | =1div(42, 3);
printf("42=%dx3+%d\n", |.quot, |.rem;

| di v(+40, +3) ={ +13, +1}
| div(+40, -3) ={ -13, +1}
| di v(-40, +3) ={ -13, -1}
I div(-40, -3) ={ +13, -1}

Ifilelength
Syntax

#i ncl ude <i 0. h>

long long I filelength(int fhandle);

Description

This function returns the size, in bytes, of a file whose handle is specified in the argument fhandle To get the
handle of a file opened by f open (See fopen) or f r eopen (See freopen), you can use fi |l eno macro (See fileno).

Return Value
The size of the file in bytes, or (if any error occured) -1LL and err no set to a value describing the cause of the
failure.

The return value is of type | ong | ong which alows file sizes of 2"63-1 bytes to be returned. Note that FAT16
limits files to near 231 bytes and FAT32 limits files to 232-2 bytes.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

printf("Sizeof filetowhich STDINisr redirectedis % d\n",
[filelength(0));

_Ifn_gen _short_fname
Syntax

#i ncl ude <fcntl . h>

char * _Ifn_gen_short_fname (const char *long_fnane, char *short_fnane);

Description

This function generates a short (8+3) filename alias for the long filename pointed to by long fname and puts it into
the buffer pointed to by short_fname It uses the same agorithm that Windows 9x uses, with the exception that the
returned short name will never have a numeric tail, because this function doesn’'t check the directory to see whether
the generated short name will collide with any other file in the di rectory. Note that long_fname must contain only
the name part of a file; elements of a full pathname (like : or / are not allowed (they will cause the function to
fail). short_fname will be returned upper-cased, since that is how 8+3 filenames are stored in directory entries.

When the LFN API is not supported (See _use Ifn), the function simply converts up to 12 characters of long fname
to upper-case and returns that. It will do the same if long_fname includes any characters illegal in a filename.

This function returns incorrect results on Windows 2000 and Windows XP due to bugs in the implementation of the
DPMI call on those platforms. Do not use this function in those environments.

You might need to call this function if you want to know whether a given filename is vaid on MSDOS: if a
case-sengitive string comparison function such as strcnp (See stremp) returns a O when it compares the origina
long filename with the short one returned by | fn_gen_short f nane, then the filename is a valid DOS name.
(Note that if long fname is in lower case, it might not compare equal with short_fname because of the case
difference)

Return value

- Page 253 -

The function returns a pointer to short_fname

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <fcntl . h>

i nt dos_check (char *fnane)

{

char fshort[13];

int retval;

if (stricnmp (_Ifn_gen_short fnane (fname, fshort), fnane) == 0)
printf ("% is avalid MSDOS 8+3 fil enane\n", fnane);

retval =1;

el se

{
printf ("% w Il have to be changed f or MSDOS\ n*, fnane);
retval = 0;

returnretval ;

}

_Ifn_get_ftime
Syntax

#i ncl ude <fcntl . h>

char _Ifn_get ftinme (int fhandle, int flag);

Description

This function returns creation and access time for files that reside on a filesystem which supports long filenames
(such as Windows 95). Files which reside on native FAT filesystems will cause this function to fail. The fhandle
parameter is the file handle as returned by one of the functions which open or create files. The flag parameter
determines which time (creation or access) is returned. It can be set to one of the following:

_LFEN_ATI ME
Causes _| fn_get_ftime to return the time when the file was last accessed. (Currently, it actually only
returns the date of last access; the time bits are all zeroed.)

LFN_CTI ME
~ Causes _|fn_get ftime to return the time when the file was created. Note that if the file was created by
a program which doesn’t support long filenames, this time will be zero.

Return value
The file time stamp, as a packed unsigned int value:

Bits 0-4
seconds divided by 2

Bits 5-10
minutes (0-59)

Bits 11-15
hours (0-23)

Bits 16-20

- Page 254 -

day of the month (1-31)

Bits 21-24
month (1 = January)

Bits 25-31
year offset from 1980 (add 1980 to get the actual year)

If the underlying system calls fail, the function will return O and set err no to an appropriate value.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example
unsigned file_stanp = _|fn_get ftime (handle, _LFN CTI ME);

__libc_termios_exist_queue
Syntax

#include <libc/ttyprvt. h>

int _libc_term os_exist_queue (void);

Description

This function checks whether there are any characters buffered in the termios internal queue. Functions that work on
file handles which might be hooked by termios should call this function before they invoke system calls which test
if there are any characters available for input.

Return Vaue

Non-zero if some characters are buffered, zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No
__libc_termios init

Syntax

#include <libc/ttyprvt. h>

void libc termos_init (void);

Description

This function sets read/write hooks for the termios emulation and import parameters. Currently importing parameters
is not supported, the emulation is resolved by only internal(static) parameters. Note that this function is automatically
caled by the other termios functions.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No
libm

Syntax

#i ncl ude <l i bm mat h. h>

enumfdversion {fdlibmieee=-1, fdlibmsvid, fdlibm xopen,
fdlibm posix};

#define _LI B VERSI ON_TYPE enumf dver si on
#define LIB VERSION fdlib_version

extern _LIB VERSION_TYPE _LIB_VERSI ON,
- Page 255 -

#define |EEE fdlibm.ieee
#define SVID_fdlibmsvid
#define XOPEN_fdlibm 1 Xopen

#define _POSI X_fdlibm posix
_LIB VERSION TYPE LIB VERSI ON= |EEE ;

Description

The aternate math library, | i bm a, originally written by Cygnus support, provides versions of mathematical
functions which comply to several different standards of behavior in abnormal cases, and are sometimes more
accurate than those included in the default | i bc. a library, in particular when elaborate argument reduction is
required to avoid precision loss. Functions in | i bm a allow to create programs with well-defined and
standard-compliant behavior when numerical errors occur, and provide the application with a means to control their
behavior in abnormal cases via the mat herr callback. They amost never rely on the features specific to the x87
FPU, and are thus slower and sometimes dlightly less accurate than the functions from | i bc. a.

In contrast, the functions in the default | i bc. a library are written for maximum speed and exploitation of the x87
FPU features, do not call mat herr, and are therefore much faster and sometimes more accurate (due to the
extended 80-bit precision with which the x87 FPU carries its calculations).

Another aspect of differences between functions in | i bc. a and in |i bm a is the value returned when the result
overflows a doubl e. The functions from | i bc. a aways return a suitably signed infinity, | nf, whereas for
functions from | i bm a an application can arrange for a large but finite value to be returned. Getting finite return
values might be important in certain kinds of mathematical computations where the specia rules defined for infinities
(e.g., Inf + a = Inf) might be inappropriate.

Refer to See Math, description of the | i bm a functions, Mathematical Functions, libm, The Cygnus C Math Library,
for detailed documentation of the individual functions from | i bm a. This section explains the genera setup of
using those functions from DJGPP programs.

To use the dternate math library with your program, you need to do the following:

e Include the header <l i bm mat h. h>. Alternatively, you can include <nmat h. h> as usua and compile with
-D_USE_LI BM_MATH _H option to gcc, which will cause it to use | i bl nat h. h instead of the default
mat h. h. (The second possibility leaves the source ANSI-compliant.)

e Set the globa variable fdlib_version to a vaue other than the default | EEE . The possible values
are listed and explained below.

e At the beginning of your mai n function, set the FPU to a predictable state by calling _cl ear 87 (See
_clear87) and _f preset (See _fpreset) library functions. (Another possibility is to make these calls in a
function declared with __attribute__((constructor)), so it will be caled before mai n.)

e Link your program with the | i bm a library, e.g. by specifying - | mon the link command line.

The functions in | i bm a can emulate different standards. You can select to which standard your program will
comply by setting the global variable _fdl i b_versi on (or the macro LI B_VERSI ON which evaluates to it) to
one of the values below. This will only affect the behavior of the math functions when an error is signaled by the
FPU.

| EEE
The default value, specifies IEEE-compliant operation. In case of an error, this version will immediately
return whatever result is computed by the FPU, and will not set errno. If the result overflows, an | nf is
returned. This version gives the fastest code.

_PCsI X
In case of an error, this version will set errno to the appropriate value (EDOM or ERANGE) and return to
the caller, without calling the mat herr function (See matherr). If the result overflows, an | nf is returned.
This version should be used for maximum POSIX- and ANSI-compliance.

_SvVID
This version is compliant with the System V Interface Definition. This is the slowest version. In case of an
error, it calls the mat herr function (See matherr), which can be customized to the specific application needs.
If mat herr returns zero, a message is printed to the standard error stream which states the name of the
function that generated the error and the error type, and errno is set. If mat herr returns non-zero, there
will be no message and er r no will be left unaltered. If the result overflows, this version returns HUGE, a
large but finite value defined by | i bm mat h. h.

- Page 256 -

XOPEN
Complies to the X/Open specifications. It behaves exactly like _SVI D, but it never prints an error message,
even if mat herr returns zero, and | nf us returned when a result overflows.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No
Example

/* Testing errno == EDOMafter sqrt(-1).
P MUST conpilewith -Im!!tl */

#i ncl ude <assert. h>

#i ncl ude <errno. h>

#i ncl ude <stdi o. h>

#i nclude <li bm math. h>/* or #define USE LI BM MATH H
* and #i ncl ude <mat h. h> */

#i ncl ude <fl oat. h>

/* Setting _LIB VERSIONto anything but IEEE will turn on
* errno handl i ng. */
_LIB VERSION TYPE LIB VERSION=_POCSI X_;

int main (void)

/* Reset the FPU (possi bl e previ ous FP probl ens). */
_clear87 ();

_fpreset ();

/* Run the test. */

errno = 0;

assert(errno == 0);

sqrt(-1.0);

assert(errno == EDOM); /* this |line shoul d NOT cause
* the assertionto fail */

return(0);

link
Syntax

#i ncl ude <uni std. h>
int 1ink(const char *exi sts, const char *new);

Description

Because of limitations of MS-DOS, this function doesn't realy link two files together. However, it simulates a redl
I i nk by copying the file at exists to new.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

link("foo.c", "foo.bak");

- Page 257 -

[labs
Syntax

#i ncl ude <stdlib. h>

long long int Ilabs(long!longx);

Description
This function takes the absolute value of x. See abs.

Return Vaue

x|

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXIXKXIXKXXEKXXEXXXEXXXEXHXIXKXIXHKXIXXXXXXXXXXKXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

[Idiv
Syntax

#i ncl ude <stdlib. h>

I1div_t Ildiv(longlongint nunerator, long longint denom nator);

Description

Returns the quotient and remainder of the division numerator divided by denominator. The return type is as follows:
t ypedef struct {
| ong | ong i nt quot;

long long int rem
}Iidiv_t;

Return Vaue

The results of the division are returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHXXXXXXKXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

42, 3);
Xx3+%ld\n", |.quot, |.rem;

Yo+ +
[l el ol
e e e

[lockf
Syntax

#i ncl ude <uni std. h>
int Ilockf (int fildes, int function, offset _t size);
Description

The | | ockf function is a simplified interface to the locking facilities of f cnt| (see See fentl, for more detailed
information).

- Page 258 -

The I | ockf function performs exactly the same functions as | ockf (See lockf), with exactly the same input
commands and results, but the input size parameter is of type of fset _t instead of of f _t, and the fcnt| calls
are made using functions F_GETLK64, F_SETLK64 and F_SETLKW64, where | ockf uses 'functions F -~ GETLK
F_SETLK and F_SETLKW

The | | ockf function is intended to permit using f cnt | functions with size values greater than 231 - 1.
fildes is an open file descriptor.

function is a control value which specifies the action to be taken. The permissible values for function are defined in
<unistd.h> as follows:

#define F_ULOCK O /* Unl ock a previously | ocked section */
#define F_ LOCK 1 /* Lock a section for excl usive use */

#define F_TLOCK 2 /* Test and | ock a section for excl usive use */
#define F_TEST 3 /* Test section for other | ocks */

All other values of function are reserved for future extensions and will result in an error return if not implemented,
with errno set to EI NVAL.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at the current
offset in the file and extends forward for a positive size and backward for a negative size (the preceding bytes up to
but not including the current offset). If size is zero, the section from the current offset through the largest file offset
is locked (i.e. from the current offset through the end of file).

The functions defined for | | ockf are as follows:

F_TEST
"~ This function is used to detect if the specified section is already locked.

F_LOCK

F_TLOCK
F LOCK and F_TLOCK both lock a section of a file, if the section is available. These two function requests
differ only by the action taken if the resource is not available. F_LOCK will cause the calling program to
wait until the resource is available. F_TLOCK will cause the function to return a -1 and set errno to
EACCES if the section is aready locked.

F_ULOCK

F_ULOCK removes locks from a section of the file. This function will release locked sections controlled by
the program.

The | | ockf function will fail, returning -1 and setting er r no to the following error values if the associated
condition is true:

EBADF
Parameter fildes is not a valid open file.

EACCES
Parameter function is F_TLOCK or F_TEST and the section is aready locked.

El NVAL

Parameter function is not one of the implemented functions. Or: An attempt was made to lock a directory,
which is not supported.

All lock requests in this implementation are coded as exclusive locks (i.e. al locks use the f cnt| request
F_VRLCK).

It is therefore wise to code | | ockf by using function F_TLOCK with all lock requests, and to test the return value

to determine if the lock was obtained or not. Using F_TLOCK will cause the implementation to use F_SETLK
instead of F_SETLKW which will return an error if the lock cannot be obtained.

Return Vaue

On success, zero is returned. On error, -1 is returned, and er r no is set appropriately, as described above.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 259 -

Example

/* Request alock onfile handle fd fromthe current positionto
the end of the file */

errno = 0;
retval =11lockf(fd, F LOCK, 0);
/* Request a non- bl ocking lock onfile handle fd */
errno = 0;
retval =11ockf(fd, F TLOCK, 0);
/* Test alock onfile handle fd */
errno = 0;
retval =11ockf(fd, F_TEST, 0);
/* Rel ease alock onfile handle fd */
errno = 0;
retval =11ockf(fd, F_ ULOCK, 0);
[1seek
Syntax

#i ncl ude <uni std. h>

of fset t |Ilseek(int fd, offset t offset, i nt whence);

Description
This function moves the file pointer for fd according to whence

SEEK_SET
The file pointer is moved to the offset specified.

SEEK_CUR
The file pointer is moved relative to its current position.

SEEK_END
The file pointer is moved to a position offset bytes from the end of the file. The offset is usually
nonpositive in this case.

offset is of type long long, thus enabling you to seek with offsets as large as ~2"63 (FAT16 limits this to ~2/31;
FAT32 limits this to 2/32-2).

Return Vaue

The new offset is returned. Note that due to limitations in the underlying DOS implementation the offset wraps
around to O at offset 2432. -1 means the call failed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Example
long |l ong ret;
ret =I11seek(fd, (1<<32), SEEK SET); /* Nowret equals O
* (unfortunately). */
ret =11seek(fd, -1, SEEK CUR); /* Nowret equals 2*32-1 (good!). */
ret =11seek(fd, 0, SEEK SET); /* Nowret equals 0 (good!). */
ret =11seek(fd, -1, SEEK CUR); /* Nowret equal s 2"32-1 (bad). */
load npx
Syntax

#i ncl ude <debug/ dbgcom h>

ext ern NPX npx;

- Page 260 -

voi d | oad_npx (void);

Description

This function restores the state of the x87 numeric processor from the data saved in the externa variable npx. This
variable is a structure defined as follows in the header debug/ dbgcom h:

t ypedef struct {

unsi gned short si go0;

unsi gned short sigl;

unsi gned short sig2;

unsi gned short sig3;

unsi gned short exponent: 15;
unsi gned short sign:1;

} NPXREG,

t ypedef struct {

unsi gned | ong control ;
unsi gned | ong st at us;
unsi gned | ong t ag;
unsi gned | ong ei p;

unsi gned | ong cs;

unsi gned | ong dat aptr;
unsi gned | ong dat asel ;
NPXREG r eq[8] ;

| ong doubl e st[8];
char st_valid[8];

| ong doubl e mx| 8] ;
char i n_mmx_node;

char top;

} NPX;

| oad_npx should be caled immediately after run_chi | d (See run_child) is called to begin or resume the
debugged program, and provided that a call to save_ npx was issued before run_chi | d was called. See save npx.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXX NO No

Example

save_npx ();
run_child ();
| oad_npx ();

|ocaleconv
Syntax

#i ncl ude <l ocal e. h>

struct | conv *| ocal econv(void);

Description

This function returns a pointer to a static structure that contains information about the current locale. The structure
contains these fields:

char *currency_synbol
A string that should be used when printing local currency.

char *deci mal _poi nt
A string that is used to separate the integer and fractional portions of real numbers in pri ntf. Currently,
only the first character is significant.

char *groupi ng
An array of numbers indicating the size of groupings for non-monetary values to the left of the decimal
point. The first number is the size of the grouping just before the decimal point. A number of zero means
to repeat the previous number indefinitely. A number of CHAR_MAX means to group the remainder of the

- Page 261 -

digits together.

char *int_curr_synbol
A string that should be used when formatting monetary values for local currency when the result will be used
internationally.

char *nmon_deci mal _poi nt
A string that separates the interger and fractional parts of monetary values.

char *mon_groupi ng
Same as grouping, but for monetary values.

char *negative_sign
A string that is used to represent negative monetary values.

char *positive_sign
A string that is used to represent positive monetary values.

char *t housands_sep
The grouping separator for non-monetary values.

char frac_digits
The number of digits to the right of the decima point for monetary values.

char int_frac_digits
Like frac_digits, but when formatting for international use.

char n_cs_precedes
If nonzero, the currency string should precede the monetary value if the monetary value is negative.

char n_sep_by_space
If nonzero, the currency string and the monetary value should be separated by a space if the monetary value
iS negative.

char n_sign_posn
Determines the placement of the negative indication string if the monetary value is negative.

0 ($value), (valued)
: -$vaue, -values
’ $vaue-, values-
° -$value, value-$
) $-value, values-

char p_cs_precedes
char p_sep_by_ space
char p_sign_posn
These are the same as n_*, but for when the monetary value is positive.

Note that any numeric field may have a value of CHAR MAX which indicates that no information is available.

Return Vaue

A pointer to the st ruct | conv structure.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
struct | conv *|I =1ocal econv;
printf("%%\n", |->negative_sign, val ue);

- Page 262 -

localtime
Syntax

#i ncl ude <tine. h>
struct tm*localtime(const tinme_t *tod);

Description

Converts the time represented by tod into a structure, correcting for the local timezone. See See gmtime, for the
description of struct tm

Return Vaue

A pointer to a static structure which is overwritten with each call.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

lock
Syntax

#i ncl ude <i 0. h>
int lock(int fd, Iong offset, I ong | ength);

Description

Locks a region in file fd using MS-DOS file sharing interface. The region of length bytes, starting from offset, will
become entirely inaccessible to other processes. If multiple locks are used on a single file they must be
non-overlapping. The lock must be removed before the file is closed.

This function will fail unless shar e, or a network software providing similar interface, is installed. This function is
compatible with Borland C

++

function of the same name.

See unlock.

Return Vaue

Zero if successful, nonzero if not.

Portability

- Page 263 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

lock64
Syntax

#i ncl ude <i 0. h>

int lock64(int fd, long long offset, long longlength);

Description

Locks a region in file fd using MS-DOS file sharing interface. The region of length bytes, starting from offset, will
become entirely inaccessible to other processes. If multiple locks are used on a single file they must be
non-overlapping. The lock must be removed before the file is closed.

This function will fail unless SHARE, or a network software providing similar interface, is installed.

Arguments offset and length must be of type | ong | ong, thus enabling you to lock with offsets and lengths as
large as ~2"63 (FAT16 limits this to ~2"31; FAT32 limits this to 2/32-2).

See unlock64.

Return Vaue

Zero if successful, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKKKIXKXXXXXKXXKXXKXXXXXXXXXX NO No

|ockf
Syntax

#i ncl ude <uni std. h>

int lockf (int fildes, int function, off_t size);

Description

The | ockf function is a simplified interface to the locking facilities of fcnt| (see See fentl, for more detailed
information).

fildes is an open file descriptor.

function is a control value which specifies the action to be taken. The permissible values for function are defined in
<unistd.h> as follows:

#define F_ULOCK O /* Unl ock a previously | ocked section */
#define F_ LOCK 1 /* Lock a section for excl usive use */

#define F_TLOCK 2 /* Test and | ock a section for excl usive use */
#define F_TEST 3 /* Test section for other | ocks */

All other values of function are reserved for future extensions and will result in an error return if not implemented,
with errno set to EI NVAL.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at the current
offset in the file and extends forward for a positive size and backward for a negative size (the preceding bytes up to
but not including the current offset). If size is zero, the section from the current offset through the largest file offset
is locked (i.e. from the current offset through the end of file).

The functions defined for | ockf are as follows:

F_TEST
"~ This function is used to detect if the specified section is already locked.

F_LOCK
F_TLOCK
F_LOCK and F_TLOCK both lock a section of a file, if the section is available. These two function reguests

- Page 264 -

differ only by the action taken if the resource is not available. F_LOCK will cause the calling program to
wait until the resource is available. F_TLOCK will cause the function to return a -1 and set err no to
EACCES if the section is aready locked.

F_ULOCK
F_ULOCK removes locks from a section of the file. This function will release locked sections controlled by
the program.

The | ockf function will fail, returning -1 and setting er r no to the following error values if the associated
condition is true:

EBADF
Parameter fildes is not a valid open file.

EACCES
Parameter function is F_TLOCK or F_TEST and the section is aready locked.

El NVAL

Parameter function is not one of the implemented functions. Or: An attempt was made to lock a directory,
which is not supported.

All lock requests in this implementation are coded as exclusive locks (i.e. al locks use the f cnt| request
F_VRLCK).

It is therefore wise to code | ockf by using function F_TLOCK with all lock requests, and to test the return value
to determine if the lock was obtained or not. Using F_TLOCK will cause the implementation to use F_SETLK
instead of F_SETLKW which will return an error if the lock cannot be obtained.

Return Vaue

On success, zero is returned. On error, -1 is returned, and er r no is set appropriately, as described above.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

Example

/* Request alock onfile handle fd fromthe current positionto
the end of thefile */

errno = 0;

retval =1ockf(fd, F LOCK, 0);

/* Request a non-bl ocking lock onfile handle fd */
errno = 0;
retval =1ockf(fd, F_TLOCK, 0);

/* Test alock onfile handle fd */
errno = 0;

retval =1ockf(fd, F _TEST, 0);

/* Rel ease alock onfile handle fd */

errno = 0;
retval =1ockf(fd, F_ULOCK, 0);

log
Syntax

#i ncl ude <mat h. h>

doubl e | og(doubl e x);

Description
This function computes the natural logarithm of x.

Return Vaue
The natural logarithm of x. If x is zero, a negative infinity is returned and err no is set to ERANGE If x is

- Page 265 -

negative or +I nf or a NaN the return value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

log10
Syntax

#i ncl ude <mmat h. h>

doubl e | 0og10(doubl e x);

Description
This function computes the base-10 logarithm of x.

Return Vaue

The logarithm base 10 of x. If x is zero, a negative infinity is returned and errno is set to ERANGE If x is
negative or +I nf or a NaN the return value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXIXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

loglp
Syntax

#i ncl ude <mat h. h>
doubl e | oglp(doubl e x);

Description
This function computes the natural logarithm of 1 + x. It is more accurate than | og(1 + x) for small values of x.

Return Vaue

The natural logarithm of 1 + x. If x is -1, a negative infinity is returned and errno is set to ERANGE If x is less
than -1 or +I nf or a NaN the return value is NaN and err no is set to EDOV

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No
log2

Syntax

#i ncl ude <mat h. h>

doubl e | og2(doubl e x);

Description
This function computes the base-2 logarithm of x.

Return Vaue

The base-2 logarithm of x. If X is zero, a negative infinity is returned and err no is set to ERANGE If x is
negative or +I nf or a NaN the return value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

- Page 266 -

longimp
Syntax

#i ncl ude <setj np. h>
voi d | ongj mp(j np_buf env, int val);

Description

This function reverts back to a CPU state that was stored in env by setj np (See setjmp). The state includes all
CPU registers, so any variable in a register when set j mp was called will be preserved, and al else will be
indeterminate.

The value passed as val will be the return value of setj nmp when it resumes processing there. If val is zero, the
return value will be one.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEXXXKXXEXKXIXKXXKXXKXXKXXKXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
jmp_buf j;
if (setjmp(j))
return;
do_sonet hing();

I ongj mp(j, 1);

lowvideo
Syntax

#i ncl ude <coni o. h>
voi d | owi deo(void);

Description
Causes any new characters put on the screen to be dim.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

| seek
Syntax

#i ncl ude <uni std. h>

off t Iseek(int fd, off _t offset, int whence);
Description

- Page 267 -

This function moves the file pointer for handle fd according to whence

SEEK_SET
The file pointer is moved to the offset specified.

SEEK_CUR
The file pointer is moved offset bytes relative to its current position.

SEEK_END
The file pointer is moved to a position offset bytes from the end of the file. The value of offset is usually

nonpositive in this case.

Return Vaue

The new offset is returned, or -1 and err no set on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXIXEXXXXIXEXKXIEXHXKKIEXHXXKIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example
| seek(fd, 12, SEEK CUR); /* skip 12 bytes */

|stat
Syntax

#i ncl ude <sys/stat. h>

int | stat(const char *file, struct stat *sbuf);

Description

This function obtains the status of the file file and stores it in sbuf. If file is a symbolic link, then | st at returns
information about the symbolic link. To get information about the target of a symbolic link, use st at (See staf)
instead.

shuf has this structure:

struct stat {

time_t st_atinme; /* time of | ast access */

time_ t st ctime; /* time of file s creation*/

dev_t st _dev; /* The drive nunber (0 =a:) */

gidt st gid; /* what getgid() returns */

ino_t st_ino; /* starting cluster or unique identifier */
mode_t st dee /* filenmode - S IF* and S_| RUSR/ S_| WUSR */
time_t st_mtime; /* timethat the file was last witten */
nlink_t st_nllnk [* 2 + nunber of subdirs, or 1 for files */
off t st _size; /* sizeof fileinbytes */

bl ksi ze t st bI ksi ze; /* bl ock size in bytes*/

uid t st_uid; /* what getuid() returns */

dev_t st_rdev /* The drive nunber (0 =a:) */

The st _atinme, st_ctinme and st_nti me have different values only when long file names are supported (e.g. on
Windows 9X); otherwise, they al have the same value: the time that the file was last written Even when long file
names are supported, the three time values returned by | st at might be identical if the file was last written by a
program which used legacy DOS functions that don't know about long file names.. Most Windows 9X VFAT
filesystems only support the date of the file's last access (the time is set to zero); therefore, the DIGPP
implementation of | st at sets the st _at i ne member to the same value as st _nt i ne if the time part of

st _ati ne returned by the filesystem is zero (to prevent the situation where the file appears to have been created
after it was last accessed, which doesn't look good).

The st _si ze member is an signed 32-bit integer type, so it will overflow on FAT32 volumes for files that are
larger than 2GB. Therefore, if your program needs to support large files, you should treat the value of st _si ze as
an unsigned value.

For some drives st _bl ksi ze has a default value, to improve performance. The floppy drives A: and B: default to

- Page 268 -

a block size of 512 bytes. Network drives default to a block size of 4096 bytes.

Some members of struct stat are very expensive to compute. If your application is a heavy user of | st at and
is too slow, you can disable computation of the members your application doesn't need, as described in See
_djstat_flags.

Return Vaue

Zero on success, nonzero on failure (and err no set).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXXIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

struct stat s;

| stat("data.txt", &s);

if (S_ISDR(s.st_node))
printf("is directory\n");

Implementation Notes

Supplying a 100% Unix-compatible | st at function under DOS is an implementation nightmare. The following
notes describe some of the obscure points specific to | st ats behavior in DIJGPP.

1. The dri ve for character devices (like con, / dev/ nul | and others is returned as -1. For drives networked by
Novell Netware, it is returned as -2.

2. The dtarting cluster number of a file serves as its inode number. For files whose starting cluster number is
inaccessible (empty files, files on Windows 9X, on networked drives, etc.) the st _i node field will be invented in
a way which guarantees that no two different files will get the same inode number (thus it is unique). This invented
inode will also be different from any real cluster number of any loca file. However, only on plain DOS, and only
for local, non-empty files/directories the inode is guaranteed to be consistent between st at, fstat and | st at
function calls. (Note that two files whose names are identical but for the drive letter, will get the same invented
inode, since each filesystem has its own independent inode numbering, and comparing files for identity should
include the value of st _dev.)

3. The WRITE access mode bit is set only for the user (unless the file is read-only, hidden or system). EXECUTE
bit is set for directories, files which can be executed from the DOS prompt (batch files, .com, .dIl and .exe
executables) or run by go32-v2.

(3} []

4. Size of directories is reported as the number of its files (sans *.” and ‘..’ entries) multiplied by 32 bytes (the
size of directory entry). On FAT filesystems that support the LFN API (such as Windows 9X), the reported size of
the directory accounts for additional space used to store the long file names.

5. Time stamp for root directories is taken from the volume label entry, if that's available; otherwise, it is reported
as 1-Jan-1980.

6. The variable _dj stat_fl ags (See _djstat_flags) controls what hard-to-get fields of struct stat are needed
by the application.

7. | stat should not be used to get an up-to-date info about a file which is open and has been written to, because
| stat will only return correct data after the file is closed. Use f st at (See fstat) while the file is open.
Alternatively, you can cal ffl ush and f sync to make the OS flush all the file's data to the disk, before calling

| stat.

8. The number of links st _nl i nk is always 1 for files other than directories. For directories, it is the number of
subdirectories plus 2. This is so that programs written for Unix that depend on this to optimize recursive traversal of
the directory tree, will still work.

mallinfo
Syntax

#i ncl ude <stdlib. h>

struct mallinfo mallinfo(void);

Description

- Page 269 -

This function returns information about heap space usage. It is intended to be used for debugging dynamic memory
allocation and tracking heap usage. The struct nmal | i nf o structure is defined by st dl i b. h as follows:

struct mallinfo {
i nt arena;

i nt ordbl ks;
i nt snbl ks;

i nt hbl ks;

i nt hbl khd;

i nt usnbl ks;
i nt fsnbl ks;
i nt uordbl ks;
i nt fordblks;
i nt keepcost;

whose members are:

arena
The total amount of space, in bytes, handed by sbrk to mal | oc. Note that this is not the same as
sbrk(0), since sbrk alocates memory in large chunks and then subdivides them and passes them to
mal | oc as required. In particular, the result of sbrk(0) might be much larger than the ar ena member of
struct mal |1 nf o when the DPMI host allocates memory in non-contiguous regions (happens on
MS-Windows).

or dbl ks
The number of ‘‘ordinary blocks'’: the total number of alocated and free blocks maintained by mal | oc.

snbl ks
The number of ‘‘small blocks’. This is normally zero, unless nal | oc was compiled with the symbol
NUMSMVALL defined to a non-zero value. Doing so activates an optional agorithm which serves small
allocations quickly from a special pool. If this option is activated, the snbl ks member returns the number
of free small blocks (the alocated small blocks are included in the value of or dbl ks).

hbl ks
hbl khd
Always zero, kept for compatibility with other systems.

usmbl ks
The space (in bytes) in ‘‘small blocks’ that are in use. This is always zero in the DJGPP implementation.

f smbl ks
The space in free *‘small blocks’. Non-zero only of mal | oc was compiled with NUVSMALL defined to a
non-zero value. In that case, gives the amount of space in bytes in free small blocks.

uor dbl ks
The amount of space, in bytes, in the heap space currently used by the application. This does not include the
small overhead (8 bytes per block) used by mal | oc to maintain its hidden information in each alocated
block.

f or dbl ks
The amount of free heap space maintained by mal | oc in its free list.

keepcost
Always zero, kept for compatibility.

Return Vaue

The mal | i nf o structure filled with information.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEKXXEXXXKXXXIXXXXXXXKXXKXXXKXXXXXXXXXX No No (see note 1)
Notes:

1. This function is available on many Unix systems.

- Page 270 -

Example

struct mallinfoinfo=mallinfo();

printf("Menory in use: % bytes\n",
i nfo. usnbl ks + i nfo. uordbl ks);
printf("Total heap size: % bytes\n", info.arena);

malloc
Syntax

#i ncl ude <stdlib. h>

void *mal | oc(size_t size);

Description

This function allocates a chunk of memory from the heap large enough to hold any object that is size bytes in
length. This memory must be returned to the heap with f r ee (See free).

Note: this version of malloc is designed to reduce memory usage. A faster but less efficient version is available in
the libc sources (dj | sr*. zi p) in the file src/libc/ansi/stdlib/fmalloc. c.

Return Value
A pointer to the alocated memory, or NULL if there isn't enough free memory to satisfy the request.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXIEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char *c¢ = (char *)mal | oc(100);

malloc hook functions
Syntax

#i ncl ude <stdlib. h>
#i ncl ude <li bc/ mal | oc. h>

void (*__libc_mall oc_hook)(size t size, void *bl ock);
void (*_ libc_malloc fail hook)(size t size);

void (*__libc_free_hook)(void *bl ock);

void (*__libc_free_null_hook)(void);

void (*_libc_realloc_hook)(void *bl ock, size t size);

Description

These hooks are provided for building custom mal | oc debugging packages. Such packages typically need to be
notified when memory is allocated and freed by the application, in order to be able to find memory leaks, code that
writes beyond the limits of alocated buffers or attempts to free buffers which were not allocated by mal | oc, etc.
These hooks can be used to define callback functions which will be called by the library at strategic points. Each
callback is only called if it is non-NULL; by default, al of them are initialized to a NULL value.

__libc_mall oc_hook
Called just before a chunk of memory is about to be returned to the application in response to an allocation
request. size is the size requested by the application (not the actua size of the allocated buffer, which may
be larger). block is a pointer to the block that was allocated, which is 4 bytes before the pointer that
mal | oc will return to the application; these 4 bytes are used to record the actual size of the buffer. An
additional copy of the block’s size is recorded immediately after the buffer's end. Thus, * (si ze_t
*)((char *)block + 4 + (BLOCK *) bl ock->si ze) gives the second copy of the block’s size.

__libc_malloc_fail_hook

Cadlled if mal | oc falled to find a free block large enough to satisfy a request, and also failed to obtain
additional memory from sbr k. size is the requested alocation size.

- Page 271 -

l'i bc_free_hook
Called when a buffer is about to be freed. block is a pointer 4 bytes before the address passed to f r ee by
the application, i.e. it is a pointer to the beginning of the size information maintained before the user buffer.

__libc_free_null _hook
Called whenever a NULL pointer is passed to free. ANSI C specificaly rules that this is alowed and
should have no effect, but you might want to catch such cases if your program needs to be portable to old
compilers whose libraries don’'t like NULL pointers in f r ee.

_libc_reall oc_hook
Called at entry to real | oc, before the actual reallocation. block is a pointer 4 bytes before the address
passed to f r ee by the application, i.e. it is a pointer to the beginning of the size information maintained
before the user buffer. size is the new size requested by the application. (This hook is called in addition to
the other hooks which will be called by free and mal | oc if and when real | oc calls them.)

The BLOCK data type is used by mal | oc and free to maintain the heap. The only member which is always
guaranteed to be valid is si ze (the additional copy of the size, recorded beyond the buffer's end, is also guaranteed
to be valid). The next member is valid in all blocks that are part of the free list. This means that

__libc_mall oc_hook can use the next member, but | i bc_free_ hook cannot.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

These hooks are specific to DJGPP.

malloc_debug

Syntax
#i ncl ude <stdlib. h>

i nt mal | oc_debug(int |evel);

Description

This function sets the level of error diagnosis and reporting during subsequent calls to mal | oc, free, real |l oc,
and al functions which call them internally. The argument level is interpreted as follows:

Level O
No checking; the memory allocation functions behave as they do if mal | oc_debug was never called.
Memory in use by the application which was allocated while level 0 was in effect cannot be checked by
mal | oc_verify unlessit is freed first.

Level 1
Each one of the allocated blocks is recorded in a specia structure, where nal | oc_veri fy can test them for
corruption, even if these blocks were not yet freed. If errors are detected by mal | oc_veri fy, it prints
diagnostic messages to the standard error stream, with address and size of the offending block and other
pertinent information. This level slows down memory allocation to some extent due to additional overhead of
calling specia functions which record extra debugging info.

Level 2
Like level 1, but in addition the consistency of the entire heap is verified (by calling mal | oc_verify) on
every call to the memory allocation functions. Warning: this may significantly slow down the application.

Level 3
Like level 2, except that the program is aborted whenever a heap corruption is detected. In addition, failed
allocations (i.e. when mal | oc returns NULL because it cannot satisfy a request) are reported to standard
error. Also, if the storage where allocated blocks are recorded is exhausted, a message to that effect is
printed.

Level 4
Like level 3, but calls to f ree with a NULL pointer as an argument are also reported.

When mal | oc_debug is first called with a positive argument, it alocates storage for recording blocks in use. To
avoid reentrancy problems, this storage is alocated via a direct call to sbrk, and its size is fixed. The size used to
allocate this storage is by default 400KB, which is enough to record 100 thousand allocated blocks. You can tailor
the size to your needs by setting the environment variable MALLOC DEBUG to the maximum number of blocks you
want to be able to track. (The value of MALLOC DEBUG should only be as large as the maximum number of

- Page 272 -

allocations which is expected to be in use at any given time, because when a buffer is freed, it is removed from
this storage and its cell can be reused for another alocation.) Note that the larger this storage size, the more
dow-down will your program experience when the diagnostic level is set to a non-zero value, since the debugging
code needs to search the list of recorded blocks in use each time you call mal | oc or free.

Return Vaue

mal | oc_debug returns the previous error diagnostic level. The default level is O.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXXKXXEKXXEXKXIXKXXXXXXXXKXXKXXKXXXXXXXXXX NOo No (see note 1)

Notes:

1. This function is available on many Unix systems.
Example
mal | oc_debug(2);

mal | oc_verify();

malloc_verify
Syntax

#i ncl ude <stdlib. h>

int mall oc_verify(void);

Description

This function attempts to determine if the heap has been corrupted. It scans al the blocks allocated by mal | oc and
handed to the application, and also al the free blocks maintained by mal | oc and f r ee in the interna free list.
Each block is checked for consistency of the hidden bookkeeping information recorded in it by mal | oc and fr ee.
The blocks on the free list are additionally validated by chasing all the next pointers in the linked list and
checking them against limits for valid pointers (between 0x1000 and the data segment limit), and the alignment.
(Unaligned pointers are probably corrupted, since mal | oc always returns a properly aligned storage.)

What happens when a bad block is found depends on the current malloc diagnostics level: for example, the block
can be reported, or the program may be aborted. See malloc_debug, for the details.

Return Vaue

If the program isn't aborted during the function’s run (this depends on the current diagnostics level),
mal | oc_verify returns 1 if the heap passes dl tests, or zero of some of the tests failed.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEKXXEXXXEXXXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No (see note 1)
Notes:

1. This function is available on many Unix systems.

Example

if (malloc_verify() ==0)
printf ("Heap corruption detected!\n");

mallocmap
Syntax

#i ncl ude <stdlib. h>

voi d mal | ocnap(voi d);

Description

- Page 273 -

This function prints a map of the heap storage to standard output. For each block, its address and size are printed,
as well as an indication whether it is free or in use. If the dop (a specia free block cached for performance
reasons) and the small blocks are available, they are printed as well (these two are variants of free blocks). Blocks
in use will only be printed if the diagnostic level was set to a non-zero value by a call to mal | oc_debug (See
malloc_debug), since otherwise the allocated blocks are not recorded by nal | oc.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXXXXXIXKKXXEXHXKKIEXXXXXEXXXXXXXXXXXXXXXXXXXXX NO No (see note 1)
Notes:

1. This function is available on many Unix systems.

math_errhandling
Syntax

#i ncl ude <mmat h. h>

Description

mat h_errhandl i ng evauates to an integer expression describing the floating-point error reporting methods used
by the C library.

If mat h_errhandl i ng returns the bit MATH ERRNO set, then errors are reported using er r no (See errno).

If mat h_errhandl i ng returns the bit MATH_ERREXCEPT set, then errors are reported by raising ‘‘exceptions’.

The library may support both methods of error reporting. Currently DJGPP only supports reporting errors using
errno.

Return Value
Which floating-point error reporting methods are available.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

i f (math_errhandl i ng & MATH_ERRNO)
perror ("nyprogrant);

matherr
Syntax

#i ncl ude <l'i bm mat h. h>
enumfdversion _fdlib_version=_SVID ;

i nt matherr(struct exception *exc);

Description

mat her r is a user-definable handler for errors in math library functions. It is only supported in the aternate math
library (link with -1 n), and will only be called if the globa variable fdlib _version is set to either _SVID_ or
XOPEN (See libm). You aso need to mask the Invalid Operation exception in the x87 control word (See
_control87) or install a handler for signal SI GFPE (See signal), or else some exceptions will generate SI G-PE and
your program will be terminated before it gets a chance to call mat herr. DJGPP versions 2.02 and later mask all
FP exceptions at startup, so this consideration applies only to programs that unmask FP exceptions at run time.

If the above conditions are met, every math function will call nat herr when a numerical exception is detected.
The default version of mat herr, supplied with | i bm a, does nothing and returns zero (the _SVI D_ version will

- Page 274 -

then print an error message to the standard error stream and set err no).

This default behavior is inappropriate in some cases. For example, an interactive program which runs in a windowed
environment might want the error message to go to a particular window, or pop up a dialog box; a fault-tolerant
program might want to fall back to backup procedures so that meaningful results are returned to the application code,
etc. In such cases, you should include your own version of mat herr in your program.

mat her r is called with a single argument exc which is a pointer to a structure defined on <l i bm mat h. h> like
this:

struct exception {

int type;

char *nane;

doubl e argl, arg2, retval;

The member t ype is an integer code describing the type of exception that has occured. It can be one of the
following:

DOMAI N
Argument(s) are outside the valid function domain (e.g., |1 og(-1)).

SI NG
Argument(s) would result in a singularity (e.g., | og(0)).

OVERFLOW
The result causes overflow, like in exp(10000).

UNDERFLOW
The result causes underflow, like in exp(-10000).

TLOSS
The result loses al significant digits, like in si n(10e100).

These codes are defined on <l i bnf mat h. h>.

The member nane points to the string that is the name of the function which generated the exception. The
members ar g1 and ar g2 are the values of the arguments with which the function was called (ar g2 is undefined if
the function only accepts a single argument). The member r et val is set to the default value that will be returned
by the math library function; mat herr can change it to return a different value.

Return Vaue

mat her r should return zero if it couldn't handle the exception, or non-zero if the exception was handled.

If mat herr returns zero, under _SVI D_ version an error message is printed which includes the name of the
function and the exception type, and under _SVID and XOPEN_ errno is set to an appropriate value. If
mat her r returns non-zero, no error message is printed and er r no is left unchanged.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
#i ncl ude <li bm mat h. h>

i nt matherr(regi ster struct excepti on *x)

{

switch (x->type) {

case DOVAI N:

/* change sqrt toreturn sqgrt(-argl), not NaN*/
if (!'strcnp(x->nane, "sqrt")) {

x->retval =sqrt(-x->argl);

returnl; /* be silent: no nessage, don't set errno */
} /* FALL THROUGH */

case SI NG

/* all other dommi n or sing exceptions,

* print nmessage and abort */

- Page 275 -

fprintf(stderr, "domai n exceptionin %\n", x->nane);
abort ();
br eak;

returnO; /* all other exceptions, execute default procedure */

mblen
Syntax

#i ncl ude <stdlib. h>
i nt nmbl en(const char *s, size t n);

Description

This function returns the number of characters of string s that make up the next multibyte character. No more than
n characters are checked.

If sis NULL, the internal shift state is reset.

Return Vaue

The number of characters that comprise the next multibyte character.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEXHXIXHKXIXHKIIXKXXEKXXXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

int n=nblen(string, | NT_MAX);
string +=n;

mbstowcs
Syntax

#i ncl ude <stdlib. h>
size_t nmbstowcs(wchar _t *wcs, const char *s, size t n);

Description
Converts a multibyte string to a wide character string. The result will be no more than n wide characters.

Return Vaue

The number of wide characters stored.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int W en=nbtows(wbuf, string, sizeof (wbuf)/sizeof (wchar_t));

mbtowc
Syntax

#i ncl ude <stdlib. h>

i nt mbtowc(wchar _t *pwc, const char *s, size t n);

Description
Convert the first multibyte sequence in s to a wide character. At most n characters are checked. If pwc is not

- Page 276 -

NULL, the result is stored there. If sis null, the interna shift state is reset.

Return Vaue

The number of characters used by the multibyte sequence.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

string += nbtowc(&nc, string, strlen(string));
_media_type
Syntax

#i ncl ude <dos. h>
int nedia type(const int drive);
Description
This function checks if drive number drive (1 == A:, 2 == B;:, etc.,, 0 == default drive) is fixed or removable.

_medi a_t ype should only be called after you are sure the drive isn't a CD-ROM or a RAM disk, since these
might fool you with this call.

Return Vaue

1 if the drive is a fixed disk, O if it is removable. -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIXEKHXXKIEXKXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

i nt mai n(voi d)

if(_media_type('C -"A +1))

{

printf("C is (probably) aharddrive.\n");
}

el se

printf("C is (probably) arenovable drive.\n");

exit(0);
}

memalign
Syntax

#i ncl ude <stdlib. h>

voi d *nenal i gn(size_t size, size_ t alignnent);

Description

- Page 277 -

This function is like mal | oc (See malloc) except the returned pointer is a multiple of alignment. aignment must be
a power of 2.

Return Vaue

A pointer to a newly alocated block of memory.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
char *page = nemal i gn(1024, 1024 * 4);
memccpy

Syntax

#i ncl ude <string. h>

void * nmenccpy(void *to, const void *from int ch, size_t nbytes)

Description

This function copies characters from memory area from into to, stopping after the first occurrence of character ch
has been copied, or after nbytes characters have been copied, whichever comes first. The buffers should not overlap.

Return Vaue

A pointer to the character after the copy of ch in to, or a NULL pointer if ch was not found in the first nbytes
characters of from.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

Example
char i npbuf[256], dest[81];
printf("Enter a path: ");
fflush(stdout);
get s(i npbuf);
nenset (dest, 0, sizeof (dest));
i f (menccpy(dest, inpbuf, "\\', 80))
printf("The first directory inpathis %\n", dest);
el se
printf("No explicit directory inpath\n");

memchr
Syntax

#i ncl ude <string. h>
voi d *menchr (const void *string, int ch, size_t num;

Description
This function searches num bytes starting at string, looking for the first occurence of ch.

Return Value
A pointer to the first match, or NULL if it wasn't found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXIXHXXIXHIIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 278 -

Example

if (menchr(path, '/’, strlen(path))
do_sl ash();

memcmp
Syntax

#i ncl ude <string. h>
i nt mencnp(const void *s1, const void *s2, size t nunj;

Description
This function compares two regions of memory, at sl and s2, for num bytes.

Return Vaue

Zero
sl ==

positive
sl > <2

negative
sl < <2

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

memcpy
Syntax

#i ncl ude <string. h>
voi d *nmencpy(void *dest, const void *src, int num;

Description

This function copies num bytes from source to dest. It assumes that the source and destination regions don't
overlap; if you need to copy overlapping regions, use menmove instead. See memmove.

Return Vaue
dest
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

mencpy(buffer, tenp_buffer, BUF_NMAX);
memicmp
Syntax

#i ncl ude <string. h>

i nt mem cnp(const void *s1, const void *s2, size t num;
Description
This function compares two regions of memory, at sl and s2, for num bytes, disregarding case.

- Page 279 -

Return Vaue

Zero if they're the same, nonzero if different, the sign indicates "order".

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

if (memcnp(arg, "-i", 2) ==0) /* -1’ or '-include’ etc. */
do_i ncl ude();

memmove

Syntax

#i ncl ude <string. h>
voi d *nmemmove(voi d *dest, const void *source, int nunj;

Description

This function copies num bytes from source to dest. The copy is done in such a way that if the two regions
overlap, the source is always read before that byte is changed by writing to the destination.

Return Vaue
dest
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKHXIXHXXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

memove(buf +1, buf, 99);
menmove(buf, buf+1, 99);

memset
Syntax

#i ncl ude <string. h>
voi d *nenset (void *buffer, int ch, size_t nunj;

Description

This function stores num copies of ch, starting at buffer. This is often used to initialize objects to a known value,
like zero.

Note that, although ch is declared i nt in the prototype, menset only uses its least-significant byte to fill buffer.

Return Vaue
buffer
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

struct tmt;
menmset (&, 0, sizeof (t));

mkdir

- Page 280 -

Syntax

#i ncl ude <sys/stat. h>

i nt nkdir(const char *path, node_t node);
Description
This function creates a subdirectory.
All the bits except S_| WUSR in the mode argument are ignored under MS-DOS. If S | WUSR is not set in mode,

the directory is created with read-only attribute bit set. Note that DOS itself ignores the read-only bit of directories,
but some programs do not.

Return Vaue

Zero if the subdirectory was created, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHHXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

nkdir("/usr/tm", S IWSR);
mkfifo
Syntax

#i ncl ude <sys/stat. h>
i nt nkfifo(const char *path, node_t node);

Description
This function is provided only to assist in porting from Unix. It always returns an error condition.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

mknod
Syntax

#i ncl ude <sys/stat. h>
i nt nknod(const char *path, node_t node, dev_t dev);

Description

This function is provided to assist in porting from Unix. If mode specifies a regular file, mknod creates a file using
path as its name. If mode specifies a character device, and if the device whose name is given by path exists and
its device specification as returned by st at or fstat is equa to dev, nknod returns -1 and sets er r no to

EEXI ST. In al other cases, -1 is returned errno is set to EACCES

The argument dev is ignored if mode does not specify a character device.

Return Vaue

Zero on success, -1 on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NOo No

mkstemp
Syntax

- Page 281 -

#i ncl ude <stdi o. h>

i nt nkstenp(char *tenpl ate);

Description

template is a file specification that ends with six trailing X characters. This function replaces the XXXXXX with a set
of characters such that the resulting file name names a nonexisting file. It then creates and opens the file in a way
which guarantees that no other process can access this file.

Note that since MS-DOS is limited to eight characters for the file name, and since none of the X's get replaced by
a dot, you can only have two additional characters before the Xs.

Note also that the path you give will be modified in place.

Return Vaue

The open file descriptor.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

char pat h[100] ;
strcpy(path, "/tnmp/ ccXXXXXX");
int fd=nkstenp(path);

mktemp
Syntax

#i ncl ude <stdi o. h>
char *nktenp(char *tenpl ate);

Description

template is a file specification that ends with six trailing X characters. This function replaces the XXXXXX with a set
of characters such that the resulting file name names a nonexisting file.

Note that since MS-DOS is limited to eight characters for the file name, and since none of the Xs get replaced by
a dot, you can only have two additional characters before the Xs.

Return Vaue

If a unique name cannot be chosen, NULL is returned. Otherwise the resulting filename is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Example

char tenplate[] ="/tnp/ ccXXXXXX";
if (nmktenp(tenplate) !'= NULL)

FILE *q = fopen(tenplate, "W');

mktime
Syntax

#i ncl ude <ti me. h>

time_t nmktime(struct tm*tptr);

- Page 282 -

Description

This function converts a time structure into the number of seconds since 00:00:00 GMT 1/1/1970. It also attempts
to normalize the fields of tptr. The layout of a struct t mis as follows:

struct tm¢{

int tmsec; /* seconds after the nminute [0-60] */
int tmmn; /* mnutes after the hour [0-59] */
int tmhour; /* hours since m dnight [0-23] */
int tmnday; /* day of the nonth [1-31] */

int tmnmon; /* nont hs since January [0-11] */
int tmyear; /* years since 1900 */

int tmwday; /* days since Sunday [0-6] */

i nt tmyday; /* days since January 1 [0-365] */
int tmisdst; /* Daylight Savings Tine flag */
longtmgntoff; /* offset fromGMI i n seconds */
char * tm zone; /* tinmezone abbreviation */

}s

If you don’t know whether daylight saving is in effect at the moment specified by the contents of tptr, set the
tmisdst member to -1, which will cause nkti nme to compute the DST flag using the data base in the

zonei nf o subdirectory of your main DJGPP installation. This requires that you set the environment variable TZ to
a file in that directory which corresponds to your geographical area.

Return Vaue

The resulting time, or -1 if the time in tptr cannot be described in that format.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

modf

Syntax

#i ncl ude <mat h. h>

doubl e nodf (doubl e x, doubl e *pint);

Description

nodf bresks down x into its integer portion (which it stores in *pint) and the remaining fractional portion, which it
returns. Both integer and fractional portions have the same sign as x, except if X is a negative zero, in which case
the integer part is a positive zero.

Return Vaue

The fractiona portion. If x is | nf or NaN the return value is zero, the integer portion stored in *pint is the same
as the value of x, and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

modfl
Syntax

#i ncl ude <mat h. h>
| ong doubl e nodf | (1 ong doubl e x, | ong doubl e *pint);
Description

nodf | breaks down X into its integer portion (which it stores in *pint) and the remaining fractional portion, which
it returns.

- Page 283 -

Return Vaue

The fractional portion.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

moncontrol
Syntax

#i ncl ude <sys/ gnon. h>

i nt moncontrol (int node);

Description

This function allows to control collection of profiling information during the program run. Profiling begins when a
program linked with the - pg option starts, or when nonst art up is caled (See monstartup). To stop the collection
of histogram ticks and function call counts, call moncont r ol with a zero argument mode; this stops the timer used
to sample the program counter (El P) values and disables the code which counts how many times each function
compiled with - pg was called. To resume collection of profile data, call noncont r ol with a non-zero argument.

Note that the profiling output is always written to the file gnmon. out at program exit time, regardiess of whether
profiling is on or off.

Return Vaue

noncont r ol returns the previous state of profiling: zero if it was turned off, non-zero if it was on.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

extern void ny func();

extern void ny _func_end();

/* Profile only one function. */

nonst art up((unsi gned | ong) ny_func, (unsigned | ong)ny_func_end);

);*.Stop profiling. */
noncontrol (0);

/* Resune profiling. */
noncontrol (1);

_mono_clear
Syntax

#i ncl ude <sys/ nono. h>
void nono_cl ear(void);

Description
Clears the monochrome monitor.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

_mono_printf
Syntax

#i ncl ude <sys/ nono. h>

void _nono_printf(const char *fnt, ...);

- Page 284 -

Description
Like See printf, but prints to the monochrome monitor.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

_mono_putc
Syntax

#i ncl ude <sys/ nono. h>

void nono_putc(int c);

Description
Prints a single character to the monochrome monitor.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

monstartup
Syntax

#i ncl ude <sys/ gnon. h>

i nt nonstartup (unsigned | ong | owpc, unsi gned | ong hi ghpc);

Description

This function alows to selectively collect profiling information for a specific range of addresses. The arguments
specify the address range that is to be sampled: the lowest address is given by lowpc and the highest is just below
highpc. nonst art up arranges for the profiling data to be gathered and written at program exit time, and then calls
the moncont rol function (See moncontrol) to start profiling.

The cal graph printed by the gpr of utility will only include functions in this range compiled with the - pg option,
but ElI P sampling triggered by the timer tick will measure execution time of all the functions in the specified range.

This function should be called by a program which was not linked with the - pg linker switch. If - pg was used

during linking, monst art up is caled automatically by the startup code with arguments which span the entire range
of executable addresses in the program, from the program’s entry point to the highest code segment address.

Only the first call to this function has an effect; any further calls will do nothing and return a failure indication.

(In particular, in a program linked with - pg, this function always fails, since the startup code aready caled it.) This
is because nonst art up sets up some interna data structures which cannot be resized if a different address range is
requested.

Profiling begins on return from this function. You can use nmoncont r ol (See moncontrol) to turn profiling off and
on.

Return Vaue

Zero on success, non-zero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

See moncontrol.

movedata
Syntax

- Page 285 -

#i ncl ude <sys/ novedat a. h>

voi d novedat a(unsi gned sour ce_sel ect or, unsi gned source_of fset,
unsi gned dest _sel ect or, unsi gned dest _of f set,
size_ t length);

Description

This function allows the caller to directly transfer information between conventional and linear memory, and among
each as well. The selectors passed are not segment values like in DOS. They are protected mode selectors that can
be obtained by the ny ds and go32_info_bl ock.selector _for |inear_nenory (or just dos_ds,
which is defined in the include file go32. h) functions (See _my_ds See _go032_info_block). The offsets are Tinear
offsets. If the selector is for the program’s data area, this offset corresponds to the address of a buffer (like

(unsi gned) &onet hi ng). If the selector is for the conventional memory area, the offset is the physica address
of the memory, which can be computed from a traditional segment/offset pair as segnent *16+of f set. For
example, the color text screen buffer is at offset 0xb8000.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

short bl ank_row buf[ScreenCol s()];

/* scroll screen */

novedat a(_dos_ds, 0xb8000 + ScreenCol s()*2,

dos_ds, 0xb8000,

ScreenCoIs() * (ScreenRovvs() 1) * 2);

[* fill last row*/

novedat a(_ny_ds(), (unsigned) bl ank_row _buf,

dos_ds, 0xb8000 + ScreenCol s() * (ScreenRows() 1)*2,
ScreenCol s() * 2);

movedatab
Syntax

#i ncl ude <sys/ novedat a. h>
voi d _novedat ab(unsi gned, unsi gned, unsi gned, unsi gned, size_t);

Description
Just like See movedata but all transfers are always 8-bit transfers.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

movedatal
Syntax

#i ncl ude <sys/ novedat a. h>

voi d _novedat al (unsi gned, unsi gned, unsi gned, unsi gned, size t);

Description
Just like See movedata but all transfers are always 32-bit transfers, and the count is a count of transfers, not bytes.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

movedataw

- Page 286 -

Syntax

#i ncl ude <sys/ novedat a. h>

voi d _novedat aw(unsi gned, unsi gned, unsi gned, unsi gned, size t);

Description
Just like See movedata but all transfers are always 16-bit transfers, and the count is a count of transfers, not bytes.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

movetext
Syntax

#i ncl ude <coni 0. h>

int novetext(int left, int top, int right, int bottom
int destleft, int desttop);

Description
Moves a block of text on the screen.

Return Vaue

1 on success, zero on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

mprotect

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

int nprotect(void *addr, size_t len, int prot);

Description

This function modifies the access protection of a memory region. Protection occurs in 4Kbyte regions (pages)
aligned on 4Kbyte boundaries. All pages in the region will be changed, so addr and len should be multiples of
4006.

The protection prot for each page is specified with the values: PROT_NONE Region can not be touched (if or'ed is
ignored). PROT_READ Region can be read (can be or'ed with PROT_WRITE). PROT_WRITE Region can be

written (implies read access). This function is only supported on DPMI hosts which provide some V1.0 extensions
on V0.9 memory blocks.

Return Value
The function returns 0 if successful and the value -1 if all the pages could not be set.

Portability

- Page 287 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example
nprot ect (readonly_buffer, 8192, PROT_READ) ;
npr ot ect (guard_ar ea, 4096, PROT_NONE) ;
npr ot ect (NULL, 4096, PROT_WRI TE); /* Let NULL poi nters not generate
* exceptions */

_my_cCs
Syntax

#i ncl ude <sys/ segnents. h>
unsi gned short _ny_cs();

Description
Returns the current CS. This is useful for setting up interrupt vectors and such.

Return Vaue
CS

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXXIXKIXKXXXKXXKXXXXXXXXXXX NO No
_my _ds

Syntax

#i ncl ude <sys/ segnents. h>

unsi gned short _ny_ds();

Description
Returns the current DS. This is useful for setting up interrupt vectors and such.

Return Vaue
DS

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No
_my_Sss

Syntax

#i ncl ude <sys/ segnents. h>

unsi gned short _ny_ss();

Description
Returns the current SS. This is useful for setting up interrupt vectors and such.

Return Vaue
SS

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

nan

- Page 288 -

Syntax

#i ncl ude <mat h. h>
doubl e nan(const char *tagp);

Description
nan returns a quiet NaN with contents indicated by tagp.

Return Value

The quiet NaN.

If quiet NaNs are not supported, zero is returned. DJGPP supports quiet NaNs.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXKXXKXXKXXXXXKXXXXXKXXXXXXXXXX C99; not C89

Example
doubl e d = nan("0x1234");
nanf

Syntax

#i ncl ude <nat h. h>
fl oat nanf (const char *tagp);

Description
nanf returns a quiet NaN with contents indicated by tagp.

Return Value

The quiet NaN.

If quiet NaNs are not supported, zero is returned. DJGPP supports quiet NaNs.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXKXXXIEXXXKIXEXHXXKIXXHXXXIXXXXXXXXXXXXXXXXX C99; not C89

Example
float f = nanf("0x1234");
nanl

Syntax

#i ncl ude <mmat h. h>

| ong doubl e nanl (const char *tagp);

Description
nanl returns a quiet NaN with contents indicated by tagp.

Return Vaue
The quiet NaN.

If quiet NaNs are not supported, zero is returned. DJGPP supports quiet NaNs.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXEXHXIXHXXIXHXHIXHXXIKXXXEXXXKXXXXXXXXXXXXXX C99; not C89

Example

- Page 289 -

[ong doubl e I d = nanl ("0x1234");
nice
Syntax

#i ncl ude <uni std. h>
int nice(int _increment);

Description
Adjusts the priority of the process. Provided for Unix compatibility only.

Return Vaue

The new nice value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

normvideo
Syntax

#i ncl ude <coni o. h>
voi d nornvi deo(voi d);

Description
Resets the text attribute to what it was before the program started.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

nosound
Syntax

#i ncl ude <pc. h>
voi d nosound(voi d);

Description
Disable the PC speaker.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

ntohl
Syntax

#i ncl ude <netinet/in. h>

unsi gned | ong nt ohl (unsi gned | ong val) ;

- Page 290 -

Description

This function converts from network formatted longs to host formatted longs. For the i386 and higher processors,
this means that the bytes are swapped from 1234 order to 4321 order.

Return Vaue
The host-order value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXKXXKXXXKXXXKXXXXXXXXXXX NO No

Example
i p = ntohl (packet.ipaddr);

ntohs
Syntax

#i ncl ude <netinet/in. h>
unsi gned short ntohs(unsi gned short val);

Description

This function converts from network formatted shorts to host formatted shorts. For the i386 and higher processors,
this means that the bytes are swapped from 12 order to 21 order.

Return Vaue
The host-order value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

port = ntohs(tcp. port);
open
Syntax

#i ncl ude <fcntl . h>
#i ncl ude <sys/stat.h>/* for node definitions */

i nt open(const char *file, int node/*, int pernissions */);
Description
This function opens the named file in the given mode, which is any combination of the following bits:

O _RDONLY
The file is opened for reading.

O VWRONLY
The file is opened for writing.

O _RDWR
The file is opened for both reading and writing.

O _CREAT
If the file does not exist, it is created. See creat.

O _TRUNC
If the file does exist, it is truncated to zero bytes.

- Page 291 -

O _EXCL
"~ If the file exists, and O _CREAT is aso specified, the open call will fal. If the file is a symlink and
O _CREAT is dso specified, then the contents of the symlink are ignored - the open call will fail.

O_APPEND
The file pointer is positioned at the end of the file before each write.

O _TEXT
The file is opened in text mode, meaning that Ctrl-M characters are stripped on reading and added on writing
as needed. The default mode is specified by the _f node variable See _fmode

O_BI NARY
The file is opened in binary mode.

When called to open the console in binary mode, open will disable the generation of SI G NT when you
press Ctrl-C (Ctrl-Breakwill still cause SI G NT), because many programs that use binary reads from the
console will also want to get the ~C characters. You can use the __ dj gpp_set _ctrl _c library function
(See __digpp_set_ctrl_o) if you want Ctrl-C to generate interrupts while console is read in binary mode.

O_NO NHERI T
Child processes will not inherit this file handle. This is also known as close-on-exec--see See fentl. This bit
is DOS- and Windows-specific; portable programs should use f cnt | instead.

O_NOFCOLLOW
open will fail with errno set to ELOOP, if the last path component in file is symlink.

O_NOLI NK
If file is a symlink, open will open symlink file itself instead of referred file.

O_TEMPCRARY
Delete file when al file descriptors that refer to it are closed.

Note that file should not aso be opened with the low-level functions creat, creatnew _dos_creat,
_dos_creatnew and _dos_open. Otherwise file may not be deleted as expected.

If the file is created by this call, it will be given the read/write permissions specified by permissions which may be
any combination of these values:

S | RUSR
The file is readable. This is aways true for MS-DOS.

S | WUSR
The file is writable.

Other S_| * values may be included, but they will be ignored.

You can specify the share flags (a DOS specific feature) in mode. And you can indicate default values for the
share flags in __dj gpp_share_fl ags. See _ djgpp share flags.

You can open directories using open, but there is limited support for POSIX file operations on directories. In
particular, directories cannot be read using r ead (See read) or written using wri t e (See write). The principal
reason for alowing open to open directories is to support changing directories using f chdi r (See fchdir). If you
wish to read the contents of a directory, use the opendi r (See opendir) and r eaddi r (See readdir) functions
instead. File descriptors for directories are not inherited by child programs.

Return Vaue

If successful, the file descriptor is returned. On error, a negative number is returned and err no is set to indicate
the error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
int g=open("/tnp/foo.dat”, O RDONLY| O Bl NARY);

- Page 292 -

_open
Syntax

#i ncl ude <i 0. h>

i nt _open(const char *path, int attrib);

Description

This is a direct connection to the MS-DOS open function call, int 0x21, %ah = 0x3d, on versions of DOS earlier
than 7.0. On DOS version 7.0 or later _open calls function int 0x21, %ax = 0x6c00. When long file names are
supported, _open calls function 0x716¢ of Int 0x21.

On FAT32 file systems file sizes up to 2*32-2 are supported. Note that WINDOWS 98 has a bug which only lets
you create these big files if LFN is enabled. In plain DOS mode it plainly works.

The file is set to binary mode.
The attrib parameter is a combination of one or more bits from the following:

O _RDONLY
open for read only

O VWRONLY
open for write only

O _RDWR
open for read and write

O NO NHERI T
file handle is not inherited by child processes

SH_COWVPAT
open in compatibility mode

SH_DENYRW
deny requests by other processes to open the file for eaither reading or writing

SH_DENYWR
deny requests to open the file for writing

SH_DENYRD
deny requests to open the file for reading

SH_DENYNO
deny-none mode: allow other processes to open the file if their open mode doesn’'t conflict with the open
mode of this process

This function can be hooked by File System Extensions (See File System Extensions). If you don't want this, you
should use _dos_open (See _dos open) (but note that the latter doesn't support long file names).

Return Value
The new file descriptor, else -1 on error.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

opendir
Syntax

#i ncl ude <di rent. h>
externint __ opendir_flags;
DI R *opendi r (char *nane);

- Page 293 -

Description

This function "opens' a directory so that you can read the list of file names in it. The pointer returned must be
passed to cl osedi r when you are done with it. See readdir.

The global variable __opendi r _fl ags can be set to include the following values to control the operation of
opendi r:

__OPENDI R_PRESERVE_CASE
Do not change the case of files to lower case. Just in case Micros*ft decides to support case-sensitive file
systems some day.

You can aso use this flag if you want the names of files like READVE and FAQ from Unix distributions to
be returned in upper-case on Windows 9X filesystems. See _preserve fncase, for other ways of achieving this
and for more detailed description of the automatic letter-case conversion by DJGPP library functions.

___OPENDI R_NO_HI DDEN
Do not include hidden files and directories in the search. By default, al files and directories are included.

__OPENDI R_FI ND_HI DDEN
Provided for back-compatibility with previous DJGPP versions, where hidden files and directories were by
default skipped. In versions 2.02 and later, this flag has no effect.

__OPENDI R_FI ND_LABEL
Include volume labels in the search. By default, these are skipped.

__OPENDI R_NO_D TYPE
Do not compute the d_t ype member of struct dirent. If this flag is set, al files will get
DT_UNKNOWN in the d_t ype member. By default, this flag is reset. See readdir.

You can smply put i nt __opendir_flags =...; inyour code. The default is to let it get set to zero as an
uninitialized variable.

Return Value

The open directory structure, or NULL on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXXKXXEXXXEKXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. The __opendir_fl ags variable is DIGPP-specific.

Example
DIR*d = opendir(".");
cl osedir (d);

outb

Syntax

#i ncl ude <pc. h>

voi d out b(unsi gned short _port, unsigned char _data);

Description
Calls See outportb. Provided only for compatibility.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

outp

- Page 294 -

Syntax

#i ncl ude <pc. h>
voi d out p(unsi gned short _port, unsigned char _data);

Description
Calls See outportb. Provided only for compatibility.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

outportb
Syntax

#i ncl ude <pc. h>

voi d out portb(unsi gned short _port, unsigned char _data);
Description
Write a single byte to an 8-bit port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

outportl
Syntax

#i ncl ude <pc. h>

voi d out portl (unsi gned short _port, unsigned | ong _data);
Description
Write a single long to an 32-bit port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXKXXKXXXXXXX NO No

outportsb
Syntax

#i ncl ude <pc. h>

voi d out portsb(unsi gned short _port,
const unsi gned char *_buf, unsigned _I| en);

Description
Writes the _len bytes in _buf to the 8-bit _port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No

outportsl

- Page 295 -

Syntax

#i ncl ude <pc. h>

voi d out portsl (unsi gned short _port,
const unsigned | ong *_buf, unsigned _I| en);

Description
Writes the _len longs in _buf to the 32-bit _port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

outportsw
Syntax

#i ncl ude <pc. h>

voi d out port swunsi gned short _port,
const unsi gned short *_buf, unsigned _len);

Description
Writes the _len shorts in _buf to the 16-bit _port.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

outportw
Syntax

#i ncl ude <pc. h>

voi d out portwunsi gned short _port, unsigned short _data);
Description
Write a single short to an 16-hit port.

This function is provided as an inline assembler macro, and will be optimized down to a single opcode when you
optimize your program.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

outpw
Syntax

#i ncl ude <pc. h>

voi d out pw unsi gned short _port, unsigned short _data);

Description
Calls See outportw. Provided only for compatibility.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

pathconf
Syntax

- Page 296 -

#i ncl ude <uni std. h>

| ong pat hconf (const char *fil enane, int nane);

Description
This function returns various system-dependent configuration values. The name is one of the following:

_PC_LI NK_MAX
The maximum number of directory entries that can refer to a single real file. Always 1 in DJGPP.

_PC_MAX_CANON
The maximum number of bytes in an editable input line. In DJGPP, this is 126 (DOS restriction).

_PC_MAX_| NPUT
The maximum number of bytes in a non-editable input line. Also 126 in DJGPP.

_PC_NAME_MAX
The maximum length of an individual file name. If the filesystem where filename resides supports long file
names, the result is whatever _get vol une_i nf o returns (usualy 255); otherwise 12 will be returned. See
_use Ifn.

_PC_PATH_MAX
The maximum length of a complete path name. If the filesystem where filename resides supports long file
names, the result is whatever _get vol une_i nf o returns (usualy 260); otherwise 80 will be returned. See
_use Ifn.

_PC_PI PE_BUF
The size of a pipe's internal buffer. In DJGPP, this returns 512.

_PC_CHOMN_RESTRI CTED
If non-zero, only priviledged user can change the ownership of files by calling chown, otherwise anyone may
give away files. The DJGPP version always returns zero, since MS-DOS files can be freely given away.

_PC_NO _TRUNC
If zero is returned, filenames longer than what pat hconf (fil enane, _PC NAME _NMAX) returns are
truncated, otherwise an error occurs if you use longer names. In DJGPP, this returns 0, since DOS aways
silently truncates long names.

_PC VDI SABLE
A character to use to disable tty specia characters. DJGPP currently doesn’t support special characters, so
this returns -1.

Return Vaue
The selected configuration value is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
char *buf = mal | oc(pat hconf ("c:/", _PC MAX PATH) +1);

pause
Syntax

#i ncl ude <uni std. h>

i nt pause(void);

Description
This function just calls __dpm _yi el d() (See _ dpmi_yield) to give up a dlice of the CPU.

Return Vaue
Zero.
- Page 297 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

pclose
Syntax

#i ncl ude <stdi o. h>

i nt pcl ose(FI LE *pi pe);

Description

This function closes a pipe opened with popen (See popen). Note that since MS-DOS is not multitasking, this
function will actually run the program specified in popen if the pipe was opened for writing.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXEXHXIXHXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

FI LE *f = popen("sort", "w');
wite to_pipe(f);
pcl ose(f);

perror
Syntax

#i ncl ude <stdi o. h>

voi d perror(const char *string);

Description

This function formats an error message and prints it to st derr. The message is the string, a colon and a blank,
and a message suitable for the error condition indicated by errno. If string is a null pointer or points to a null
string, the colon and blank are not printed.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int x =open("foo", O RDO\LY);
if (x<0)
{

perror("foo");
}exit(l);

pipe
Syntax

#i ncl ude <uni std. h>

- Page 298 -

int pipe(int fildes[2]);

Description

This function creates a pipe and places a file descriptor for the read end of the pipe in fi | des[0], and another for
the write end in fil des[1]. Data written to fi |l des[1] will be read from fi | des[O] on a first-in first-out
(FIFO) basis.

Note this pipe implementation won't help port instances of f or klexec or any other methods that require support for
multitasking.

Return Vaue

Zero for success, otherwise -1 is returned and err no is set to indicate the error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXIXEXXXXIXEXKXIEXHXKKIEXHXXKIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
Example

#i ncl ude <uni std. h>
#i ncl ude <process. h>

/* Pi pe the out put of programto the i nput of another. */

i nt main()

i nt pipe_fds[2];

i nt stdin_save, stdout_save;
i f (pipe(pipe_fds) <0)
return -1;

/* Duplicate stdin and stdout so we canrestore themlater. */
stdi n_save = dup(STDI N_FI LENO) ;
st dout _save = dup(STDOUT_FI LENO) ;

/* Make the write end of the pi pe stdout. */
dup2(pi pe_fds[1], STDOUT_FI LENO);

/* Run the program Its output will bewittento the pipe. */
spawnl (P_WAIT, "/dev/env/DIDI R/ bin/ls.exe", "lIs.exe", NULL);

/* Closethe wite end of the pipe. */
cl ose(pi pe_fds[1]);

/* Restore stdout. */
dup2(stdout _save, STDOUT_FI LENO);

/* Make t he read end of the pipe stdin. */
dup2(pi pe_fds[0], STDI N_FI LENO) ;

/* Run anot her program Its input will corme fromthe out put of the
first program */
spawnl (P_WAIT, "/dev/env/DIDI R/ bin/less. exe", "l ess.exe", "-E', NULL);

/* O ose the read end of the pipe. */
cl ose(pi pe_fds[0]);

/* Restore stdin. */
dup2(stdi n_save, STDI N_FI LENO);
return O;

}

popen

- Page 299 -

Syntax

#i ncl ude <stdi o. h>

FI LE *popen(const char *cnd, const char *node);

Description

This function executes the command or program specified by cnd and attaches either its input stream or its output
stream to the returned file. While the file is open, the calling program can write to the program (if the program was
open for writing) or read the program’s output (if the program was opened for reading). When the program is done,
or if you have no more input for it, pass the file pointer to pcl ose (See pclosg), which terminates the program.

Since MS-DOS does not support multitasking, this function actually runs the entire program when the program is
opened for reading, and stores the output in a temporary file. pcl ose then removes that file. Similarly, when you
open a program for writing, a temp file holds the data and pcl ose runs the entire program.

The mode is the same as for f open (See fopen), except that you are not allowed to open a pipe for both reading
and writing. A pipe can be open either for reading or for writing.

Return Value
An open file which can be used to read the program’s output or write to the program’s input.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXIXHXIXXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
FILE *p = popen("dir", "r");
read_programp);
pcl ose(p);

pow
Syntax

#i ncl ude <mat h. h>

doubl e pow(doubl e x, doubl e y);

Description
This function computes x”y, x raised to the power y.

Return Vaue

x raised to the power y. If the result overflows a doubl e or underflows, errno is set to ERANGE If y is NaN
the return value is NaN and errno is set to EDOM If x and y are both O, the return value is 1, but errno is set
to EDOM If y is a positive or a negative Infinity, the following results are returned, depending on the value of x:

X negative
the return value is NaN and errno is set to EDOMV

absolute value of x lessthan 1 and y is +I nf
absolute value of x greater than 1 and y is - | nf
the return value is zero.

absolute value of x lessthan 1 and y is - | nf
absolute value of x greater than 1 and y is +I nf
the return value is +I nf.

absolute value of x is 1
the return value is NaN and err no is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 300 -

pow10
Syntax

#i ncl ude <mat h. h>

doubl e powl0(doubl e x);

Description
This function computes 10 to the power of x, 10"x.

Return Vaue

10 to the x power. If the value of x is finite, but so large in magnitude that 10"x cannot be accurately represented
by a doubl e, the return value is the nearest representable ! doubl e (possibly, an | nf), and errno is set to
ERANGE If x is either a positive or a negative infinity, the result is either +1 nf or zero, respectively, and err no
is not changed. If x is a NaN the return value is NaN and er r no is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

pow?2
Syntax

#i ncl ude <mat h. h>

doubl e pow2(doubl e x);

Description
This function computes 2 to the power of x, 2*x.

Return Vaue

2 to the x power. If the value of X is finite, but so large in magnitude that 2*x cannot be accurately represented by
a doubl e, the return value is the nearest representable doubl e (possibly, an | nf), and errno is set to ERANGE
If x is either a positive or a negative infinity, the result is either +1 nf or zero, respectively, and er r no is not
changed. If x is a NaN the return value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

POWi
Syntax

#i ncl ude <mat h. h>
doubl e powi (doubl e x, int iy);

Description

This function computes x"iy, where iy is an integer nhumber. It does so by an optimized sequence of squarings and
multiplications. For integer values of exponent, it is always faster to cal pow than to call pow with the same
arguments, even if iy has a very large value. For small values of iy, powi is much faster than pow

Return Vaue

x raised to the iy power. If x and iy are both zero, the return value is 1. If X is equa to zero, and iy is negative,
the return value is | nf. This function never sets err no.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXKXKXXXXXKXXKXXKXXKXXXXXXX NO No

_preserve fncase

- Page 301 -

Syntax

#i ncl ude <fcntl . h>

char _preserve fncase (void);

Description

This function returns a non-zero value if letter-case in filenames should be preserved. It is used by library functions
that get filenames from the operating system (like r eaddi r, _fi xpat h and others). The usua behavior of these
functions (when _preserve_f ncase returns zero) is to down-case 8+3 DOS-style filenames, but leave alone the
letter-case in long filenames when these are supported (See _use Ifn). This can be changed by either setting
_CRTO_FLAG PRESERVE FI LENAVE CASE bit inthe crt0_startup_fl ags variable (See
_crt0_startup_flags), or by setting the FNCASE environment variable to Y at run time. You might need such a setup
e.g. on Windows 95 if you want to see files with names like READVE and FAQ listed in upper-case (for this to
work, you will have to manually rename all the other files with 8+3 DOS-style names to lower-case names). When
the case in filenames is preserved, all filenames will be returned in upper case on MSDOS (and other systems that
don’'t support long filenames), or if the environment variable LFN is set to N on systems that support LFN. That is
because this is how filenames are stored in the DOS directory entries.

Return value
Zero when 8+3 filenames should be converted to lower-case, non-zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXXIXKIXKXXXKXXKXXXXXXXXXXX NO No

PRI
Syntax

#i ncl ude <i nttypes. h>

Description
The PRI family of macros allows integers to be displayed in a portable manner using the pri ntf family of

functions (See printf). They include a conversion qualifier, to specify the width of the type (e.g.: | for | ong), and
the conversion type specifier (e.g.: d for decima display of integers).

The PRI family of macros should be used with the types defined in the header <st di nt. h>. For example:
int8 t,uint_fast32_t,uintptr_t,intmax_t.

Below N can be 8, 16, 32 or 64. The PRI macros are:

PRI dN
PRIi N
The d and i type conversion specifiers for a type i ntN t of N bits.

PRI dLEASTN
PRI i LEASTN
The d and i type conversion specifiers for a type i nt _| eastN t of N bits.

PRI dFASTN
PRI i FASTN
The d and i type conversion specifiers for atype int_fastN t of N hits.

PRI dMAX
PRI i MAX
The d and i type conversion specifiers for a type i nt max_t.

PRI dPTR
PRI i PTR
The d and i type conversion specifier for a type i nt ptr _t.

PRI oN
PRI uN
PRI xN
PRI XN

- Page 302 -

The o, u, x and X type conversion specifiers for a type ui ntN t of N bits.

PRI oLEASTN
PRI uLEASTN
PRI xLEASTN
PRI XLEASTN
The o, u, x and X type conversion specifiers for a type ui nt _LEASTN t of N hits.

PRI oFASTN
PRI uFASTN
PRI xFASTN
PRI XFASTN
The o, u, x and X type conversion specifiers for a type ui nt _FASTN t of N bits.

PRI oMAX
PRI uMAX
PRI x MAX
PRI XMAX
The o, u, x and X type conversion specifiers for a type ui nt max_t.

PRI oPTR
PRI uPTR
PRI xPTR
PRI XPTR
The o, u, x and X type conversion specifiers for a type ui ntptr_t.

Return Vaue

Not applicable.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXKXXEXXXKXXEXXXXKXXXXXXXXKXXKXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example

uintmax_t foo = 500;

printf("foois % PRIuUMAX" in decimal and 0x% PRI xMAX " in hex.\n",
foo, foo);

printf
Syntax

#i ncl ude <stdi 0. h>

int printf(const char *format, ...);

Description

Sends formatted output from the arguments (...) to st dout.

The format string contains regular characters to print, as well as conversion specifiers, which begin with a percent
symbol. Each conversion speficier contains the following fields:

. an optional flag, which may alter the conversion:

left-justify the field.

+

Force a + sign on positive numbers.
space . _

To leave a blank space where a plus or minus sign would have been.
#

Alternate conversion - prefix octal numbers with O, hexadecimal numbers with Ox or 0X or force a

- Page 303 -

trailing decimal point if a floating point conversion would have omitted it.

To pad numbers with leading zeros.

A field width specifier, which specifies the minimum width of the field. This may also be an asterisk (*),
which means that the actual width will be obtained from the next argument. If the argument is negative, it
supplies a - flag and a positive width.

An optional decimal point and a precision. This may also be an asterisk, but a negative argument for it
indicates a precision of zero. The precision specifies the minimum number of digits to print for an integer,
the number of fraction digits for a floating point number (max for g or G actua for others), or the
maximum number of characters for a string.

An optional conversion qualifier, which may be:

hh
to specify char;
to specify short integers,
to specify i nt max_t or ui nt max_t integers,

to specify doubles or | ong integers,

(two lower-case €l letters) to specify | ong | ong integers; to specify | ong doubles, athough this is
non-standard;

to specify | ong doubles;
to specify ptrdiff _t;

to specify si ze_t.

The conversion type specifier:

c
A single character.
d
A signed integer.
D
A signed long integer. This is non-standard and obsolete. Please use | d instead.
e
E
A floating point number (float or double). For long double, use "Le" or "LE". The exponent case
matches the specifier case. The representation aways has an exponent.
f
A floating point number (float or double). For long double, use " Lf". The representation never has
an exponent.
9
G

A floating point number (float or double). For long double, use "Lg" or "LG'. The exponent case
matches the specifier case. The representation has an exponent if it needs one.

A signed integer.

- Page 304 -

The next argument is a pointer to an integer, and the number of characters generated so far is stored

in that integer.
0
A unsigned integer, printed in base 8 instead of base 10.
]
A unsigned long integer, printed in base 8 instead of base 10. This is non-standard and obsolete.
Please use | o instead.
p . o . .
A pointer. This is printed with an x specifier.
S
A NULL-terminated string.
u
An unsigned integer.
U
An unsigned long integer. This is non-standard and obsolete. Please use | u instead.
X
X
An unsigned integer, printed in base 16 instead of base 10. The case of the letters used matches the
specifier case.
%
A single percent symbol is printed.
Return Value
The number of characters written.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXIXXXXEXXXEXXXEXXXKXXIXHXIXXXIXHIXHXXXXXXKXXXXXXXXXXX C89; C99 (see note 1) (see
note 2) 1003.2-1992; 1003.1-2001

Notes:
1. Thehh, j, t and z conversion specifiers first appeared in the ANSI C99 standard.
2. The D Oand U conversion types are non-standard. gcc may generate warnings, if you use them.
Example
printf ("% 3d %0. 2f %®6Per cent of ¥%s\n", index, per[index], name[index]);
psignal
Syntax

#i ncl ude <si gnal . h>

extern char *sys_siglist[];
voi d psignal (int sig, const char *msg);

Description

This function produces a message on the standard error stream describing the signal given by its number in sig. It
prints the string pointed to by msg, then the name of the signal, and a newline.

The names of signals can be retrieved using the array sys_si gl i st, with the signal number serving as an index
into this array.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 305 -

Example

#i ncl ude <si gnal . h>
voi d sig_catcher (int sig)

psi gnal (prognane, sig);
return;

}
_put_path
Syntax

#i ncl ude <l i bc/ dosi 0. h>

int _put_path(const char *path);
i nt _put_path2(const char *path, int offset);

Description

These functions are used internally by all low-level library functions that need to pass file names to DOS.

_put _pat h copies its argument path to the transfer buffer (See _go32 info_block) starting at the beginning of the
transfer buffer; _put pat h2 does the same except that it puts the file name starting at offset bytes from the
beginning of the transfer buffer.

These functions are meant to be called by low-level library functions, not by applications. You should only call
them if you know what you are doing. In particular, if you call any library function between a call to _put _pat h
or _put_pat h2 and the call to a DOS function that uses the file name, the file name in the transfer buffer could
be wiped out, corrupted or otherwise changed. You have been warned!

Some constructs in file names are transformed while copying them, to allow transparent support for nifty features.
Here's the list of these transformations:

Multiple forward slashes are collapsed into a single slash. Unix treats multiple slashes as a single slash, so
some ported programs pass names like c: / f oo/ / bar to library functions. DOS functions choke on such
file names, so collapsing the dashes prevents these names from failing.

Trailing dlashes are removed, except for root directories. Various DOS calls cannot cope with file names like
c: / foo/; this feature solves this problem.

Trandation of Unix device names. Unix / dev/ nul | is mapped to DOS-standard NUL, and Unix / dev/tty
to DOS-standard CON This provides for transparent support of these specia devices, e.g. in Unix shell
scripts.

Trandation of DOS device names. Any file name which begins with / dev/ or x:/ dev/ (where x: is any
valid DOS drive letter) has the / dev/ or x:/ dev/ prefix removed (if the / dev/ directory does not exist),
and the rest is passed to DOS. This is because some DOS functions don't recognize device nhames unless
they are devoid of the drive and directory specifications, and programs could add a drive and a directory if
they convert a name like / dev/ con to a fully-qualified path name. Because of the different behavior when
the / dev/ directory exists, you should only add the prefix / dev/ to your DOS device names if necessary
and be sure that the / dev/ does not exist. Due to the additional overhead of checking if / dev/ exists,
functions working with DOS device names with the prefix will be slower.

/ dev/ x/ is trandated into x: /. This alows to use Unix-style absolute path names that begin with a slash,
instead of DOS-style names with a drive letter. Some Unix programs and shell scripts fail for file names that
include colons, which are part of the drive letter specification; this feature allows to work around such
problems by using e.g. /dev/c/ where c:/ would fail.

/ dev/ env/f ool is replaced by the value of the environmentvariable foo.

(In other words, you can think of environment variables as if they were sub-directories of a fictitious
directory / dev/ env.)

This alows to use environment variable names inside path names compiled into programs, and have them
transparently expanded at run time. For example, / dev/ env/ DIDI R/ i ncl ude will expand to the exact
path name of the DJGPP include directory, no matter where DJGPP is installed on the machine where the
program runs. (The value of DJDI R is computed by the DJGPP startup code and pushed into the

- Page 306 -

environment of every DJGPP program before mai n is called.)

Note that environment variables are case-sensitive, so / dev/ env/ f oo and / dev/ env/ FOO are not the
same. DOS shells usually upcase the name of the environment variable if you set it with the built-in
command SET, so if you type eg. SET f oo=bar, the shell defines a variable named FOQ

If the environment variable is undefined, it will expand into an empty string. The expansion is done
recursively, so environment variables may reference other environment variables using the same / dev/ env/
notation. For example, if the variable HOVE is set to / dev/ env/ DIDI R/ horre, and DJGPP is installed in
c:/ sof t war e/ dj gpp, then / dev/ env/ HOVE/ sour ces will expand to

c:/ sof twar e/ dj gpp/ hone/ sour ces.

It is possible to supply a default value, to be used if the variable is not defined, or has an empty value. To
this end, put the default value after the name of the variable and delimit it by ~, like in
/ dev/ env/ DIDI R~c: / dj gpp~/ i ncl ude.

If you need to include a literal character ~ in either the environment variable name or in the default value
that replaces it, use two ~s in a row. For example, / dev/ env/ FOO~~ will expand to the value of the
variable FOO~. Likewise, / dev/ env/ FOO~-~BAR~f oo~~baz~ will expand to the value of the variable
FOO-BAR if it is defined and nonempty, and to f oo~baz otherwise. Leading ~ in the default value isn't
supported (it is interpreted as part of the preceding variable name).

The default value may also reference (other) environment variables, but nested default values can get tricky.
For example, / dev/ env/ f oo~/ dev/ env/ bar ~ will work, but / dev/ env/ f oo~/ dev/ env/ bar ~baz~~
will not. To use nested default values, you need to double the quoting of the ~ characters, like in

/ dev/ env/ f oo~/ dev/ env/ bar ~~baz~~~.

Return Vaue

Both functions return the offset into the transfer buffer of the terminating null character that ends the file name.

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

These functions are meant to be called by low-level library functions, not by applications. You should only call
them if you know what you are doing. In particular, if you call any library function between a call to _put _pat h
or _put_pat h2 and the call to a DOS function that uses the file name, the file name in the transfer buffer could
be wiped out, corrupted and otherwise changed. You have been warned!

__dpm _regsr;
_put_path("/dev/c/djgpp/bin/");

r.x.ax = 0x4300; /* get file attributes */
r.x.ds =__th >> 4;

r.x.dx = __tb & OxOf;

__dpm _int(0x21, &r);

putc
Syntax

#i ncl ude <stdi 0. h>
int putc(int ¢, FILE*file);

Description
This function writes one character to the given file

Return Vaue

The character written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 307 -

Example
while ((c=getc(stdin)) !=EOF)

putc(c, stdout);
putch
Syntax

#i ncl ude <coni o. h>

int putch(int _c);

Description

Put the character ¢ on the screen at the current cursor position. The specia characters return, linefeed, bell, and
backspace are handled properly, as is line wrap and scrolling. The cursor position is updated.

Return Vaue

The character is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXEXKIIXXXXXXXKXXXXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

putchar
Syntax

#i ncl ude <stdi 0. h>
int putchar(int c);

Description
This is the same as f put c(c, stdout). See fputc.

Return Vaue

The character written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

while ((c =getchar()) !=EOF)
put char(c);

putenv
Syntax

#i ncl ude <stdlib. h>

i nt putenv(char *env);

- Page 308 -

Description

This function adds an entry to the program’s environment. The string passed must be of the form NAVE=VALUE
Any existing value for the environment variable is gone.

put env will copy the string passed to it, and will automatically free any existing string already in the environment.
Keep this in mind if you alter the environment yourself. The string you pass is still your responsibility to free.
Note that most implementations will not let you free the string you pass, resulting in memory lesks.

Return Vaue

Zero on success, nonzero on failure; er rno will be set to the relevant error code: currently only ENOVEM
(insufficient memory) is possible.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXKEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:
1. This function is new to the Posix 1003.1-200x draft

Example
put env(" SHELL=ksh. exe");

puts
Syntax

#i ncl ude <stdi o. h>
i nt puts(const char *string);

Description
This function writes string to st dout, and then writes a newline character.

Return Vaue

Nonnegative for success, or EOF on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHKHXEXXXEXXXEXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
puts("Hello, there");

puttext
Syntax

#i ncl ude <coni 0. h>

int puttext(int left, int top, int right, int bottom
voi d *_source);

Description
The opposite of See gettext.

Return Vaue

1 on success, zero on error.
Portability

- Page 309 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

putw

Syntax

#i ncl ude <stdi o. h>

int putw(int x, FILE*file);

Description

Writes a single 32-bit binary word x in native format to file. This function is provided for compatibility with other
32-bit environments, so it writes a 32-bit i nt, not a 16-bit short, like some 16-bit DOS compilers do.

Return Vaue

The value written, or ECF for end-of-file or error. Since EOF is a valid integer, you should use f eof or ferror
to detect this situation.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXKXIXEXHXXKIEXKXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
putw(12, stdout);

pwrite
Syntax

#i ncl ude <uni std. h>

int pwite(int file, const void *buffer, size t count, off t offset);

Description

This function writes count bytes from buffer to file at position offset. It returns the number of bytes actually
written. It will return zero or a number less than count if the disk is full, and may return less than count even
under valid conditions.

Note that if file is a text file, pwri t e may write more bytes than it reports.

If count is zero, the function does nothing and returns zero. Use _write if you want to actually ask DOS to write
zero bytes.

The precise behavior of pwrit e when the target filesystem is full are somewhat troublesome, because DOS doesn't
fail the underlying system call. If your application needs to rely on errno being set to ENOSPC in such cases, you
need to invoke pwrit e as shown in an example for wri t e (See write). In a nutshell, the trick isto call pwrite
one more time after it returns a value smaller than the count parameter; then it will always set er r no if the disk is
full.

Return Vaue

The number of bytes written, zero at EOF, or -1 on error.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXIXHXXIXHHIXHXXIXKXXEXXXKXXXXXXXXXXXXXX NOo 1003.1-2001; not

- Page 310 -

1003.2-1992

Example

const char buf[] ="abc";
const size_t bufsize =strlen(buf);

/* Wite out buf, then overwite b’ with'd . NB: W shoul d check
* for errors. */

| seek(fd, OL, SEEK SET);

wite(fd, buf, bufsize);

pwite(fd, "d", 1, 1);

gsort
Syntax

#i ncl ude <stdlib. h>

voi d gqsort (voi d *base, size_t nunel em size_ t size,
int (*cnp)(const void *el, const void *e2));

Description

This function sorts the given array in place. base is the address of the first of numelem array entries, each of size
size bytes. gsort uses the supplied function cmp to determine the sort order for any two elements by passing the
address of the two elements and using the function’s return address.

The return address of the function indicates the sort order:

Negative
Element el should come before element €2 in the resulting array.

Positive
Element el should come after element €2 in the resulting array.

Zero
It doesn't matter which element comes first in the resulting array.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

t ypedef struct {
int size;

i nt sequence;

} Item

i nt gsort _hel per _by size(const void *el, const void *e2)

return ((const Item*)e2)->size - ((const Item*)el)->si ze;

[temlist[100];
gsort(list, 100, sizeof(ltem, qgsort_hel per by size);

int gsort_stringlist(const void *el, const void *e2)

{

return strcnp(*(char **)el, *(char **)e2);

- Page 311 -

char *slist[10];

/* al phabetical order */
gsort(slist, 10, sizeof(char *), gsort_stringlist);

raise
Syntax

#i ncl ude <si gnal . h>

int raise(int sig);

Description

This function raises the given signal sig. See signal, the list of possible signals
Return Value

0 on success, -1 for illegal value of sig.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEXHXIXHKXIXHKIIXKXXEKXXXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

rand
Syntax

#i ncl ude <stdlib. h>

int rand(void);

Description

Returns a pseudo-random number between zero and RAND_MAX (defined on st dl i b. h).

By default, this function always generates the same sequence of numbers each time you run the program. (This is
usualy desirable when debugging, or when comparing two different runs.) If you need to produce a different
seqguence on every run, you must seed r and by calling srand (See srand) before the first call to r and, and make

sure to use a different argument to srand each time. The usua technique is to get the argument to srand from a
call to the ti me library function (See time), whose return value changes every second.

To get a random number in the range 0..N, use r and() %4 N+1). Note that the low bits of the r and’s return value
are not very random, so r and() %N for small values of N could be not enough random. The alternative, but
non-Ansl, function r andomis better if N is small. See random.

Return Vaue

The number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHIIXHXXIXHKIIXKXXEXXXEXXXKXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
/* randompause */
srand(time(0));
for (i=rand(); i; i--);
rand48
Syntax

- Page 312 -

#i ncl ude <stdlib. h>

doubl e drand48(voi d) ;
doubl e er and48(unsi gned short state[3]);
unsi gned | ong | rand48(voi d);
unsi gned | ong nrand48(unsi gned short state[3]);
| ong nrand48(void);
| ong j rand48(unsi gned short state[3]);
voi d srand48(| ong seed);
unsi gned short *seed48(unsi gned short state_seed[3]);
voi d | cong48(unsi gned short paran{7]);
Description

This is the family of *r and48 functions. The basis for these functions is the linear congruential formula X[n+1] =
(& X[n] + c) mod 248, n >= 0. a = Ox5deece66d and ¢ = Oxb at start and after a call to either srand48 or
seed48. A cdl to | cong48 changes a and c¢ (and the interna state).

drand48 and er and48 return doubl es uniformly distributed in the interval [0.0, 1.0).

| rand48 and nr and48 return unsi gned | ongs uniformly distributed in the interval [0, 2°31).

nr and48 and j r and48 return | ongs uniformly distributed in the interval [-2/31, 2"31).

erand48, j rand48 and nrand48 requires the state of the random generator to be passed.

drand48, | rand48 and nr and48 uses an internal state (common with all three functions) which should be
initialized with a call to one of the functions srand48, seed48 or | cong48.

srand48 sets the high order 32 bits to the argument seed. The low order 16 bits are set to the arbitrary value
0x330e.

seed48 sets the internal state according to the argument state seed (st at e_seed[0] is least significant). The
previous state of the random generator is saved in an internal (static) buffer, to which a pointer is returned.

| cong48 sets the interna state to par anj 0- 2], a to par anj 3-5] (parani 0] and paranj 3] are least
significant) and c to par anj 6].

Return Vaue

A random number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <ti me. h>

i nt mai n(voi d)

srand48(ti me(NULL));
printf("% 12f i s a randomnunber in[0.0, 1.0).\n", drand48());

exit(0);
}

random
Syntax

#i ncl ude <stdlib. h>

- Page 313 -

| ong randon(voi d);

Description
Returns a random number in the range 0.MAXINT.

Return Vaue
0 .. MAXINT

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIXHXXIXHKIXKXXXKXXXXXXXXXXXXXX NO No

Example

/* Produce a randomi nt eger between 0 and 199. */
i nt random nunber =random() %200;

rawclock
Syntax

#i ncl ude <ti nme. h>
unsi gned | ong r awcl ock(voi d);

Description
Returns the number of clock tics (18.2 per second) since midnight.

Return Vaue

The number of tics.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example
/* wait 1/ 4 second */
int i =rawclock()+5;
whil e (rawcl ock()<i);
_rdtsc

Syntax

#i ncl ude <tine. h>
unsi gned |l ong I ong _rdtsc(void);

Description

This function invokes the hardware instruction r dt sc which is only supported on some processors. It is
incremented once per clock cycle on the main processor. It is a high precision timer which is useful for timing
code for optimization. You should not use this function in distributed programs without protecting for processors
which do not support the instruction. For a general purpose high precision timer see ucl ock (See uclock).

Return Vaue

The number of processor cycles.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

#i ncl ude <stdi 0. h>

- Page 314 -

#i ncl ude <ti me. h>

#i ncl ude <si gnal . h>

#i ncl ude <setj nmp. h>

#i ncl ude <sys/ exceptn. h>

/* Catch rdtsc exception and al ways return OLL */
voi d catch_rdtsc(int val)

{

short *eip = (short *)__dj gpp_exception_state->__eip;
i f(*ei p == 0x310f) {

__djgpp_exception_state->__eip += 2;

—_dj gpp_exception_state-> edx = 0;

'ongj np(__dj gpp_exception_state, 0);

}

return;

}
i nt mai n(voi d)

unsi gned long l ong t;

signal (SI A LL, catch_rdtsc);

t = _rdtsc();

printf("Tiner value: %lu\n",t);
return O;

}

read
Syntax

#i ncl ude <uni std. h>

ssize t read(int fd, void *buffer, size t | ength);

Description

This function reads at most length bytes from file fd into buffer. Note that in some cases, such as end-of-file
conditions and text files, it may read less than the requested number of bytes. At end-of-file, r ead will read
exactly zero bytes.

Directories cannot be read using r ead --- use r eaddi r instead.

Return Vaue

The number of bytes read, zero meaning end-of-file, or -1 for an error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXEXHXXHXXIXHXIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

char buf[10];
int r =read(0, buf, 10);

_read
Syntax

#i ncl ude <i 0. h>
ssize t read(int fildes, void *buf, size t nbyte);
Description
This is a direct connection to the MS-DOS read function cal, int 0x21, %ah = 0x3f. No conversion is done on the

- Page 315 -

data; it is read as raw binary data. This function can be hooked by the See File System Extensions If you don't
want this, you should use See _dos read.

Return Vaue
The number of bytes read.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

read child
Syntax

#i ncl ude <debug/ dbgcom h>
void read _child (unsigned child addr, void *buf, unsigned | en);

Description

This function reads the memory of the debugged process starting at address child_addr for len bytes, and copies the
data read to the buffer pointed to by buf. It is used primarily to save the original instruction at the point where a
breakpoint instruction is inserted (to trigger a trap when the debuggee's code gets to that point). See write child.

Return Vaue

The function return zero if it has successfully transferred the data, non-zero otherwise (e.g., if the address in
child_addr is outside the limits of the debuggee's code segment.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

read sel addr
Syntax

#i ncl ude <debug/ dbgcom h>

voi d read_sel _addr (unsigned of fset, voi d *buf, unsigned | en,
unsi gned sel) ;

Description

This function reads the memory starting at offset offset in selector sel for len bytes, and copies the data read to the
buffer pointed to by buf. See write sel_addr.

Return Vaue

The function return zero if it has successfully transferred the data, non-zero otherwise (e.g., if the address in offset
is outside the limits of the segment whose selector is sel).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
readdir

Syntax

#i ncl ude <di rent. h>
struct dirent *readdir(DIR*dir);

Description

This function reads entries from a directory opened by opendi r (See opendir). It returns the information in a
static buffer with this format:

- Page 316 -

struct dirent {

unsi gned short d_nanm en; /* The |l ength of the nane (like strlen) */
char d_name[MAXNAMLEN+1]; /* The name */

node_t d_type; /* Thefile s type */

Note that some directory entries might be skipped by r eaddi r, depending on the bits set in the globa variable
__opendir_flags. See opendir, _opendir_flags, opendir.

The possible values of the d_t ype member are:

DT_REG
This is a regular file.
DT_BLK
The file is a block device.
DT_CHR
The file is a character device.
DT_DIR
The file is a directory.
DT_FI FO
This is a pipe (never happens in DJGPP).
DT_LABEL
The file is a volume label.
DT_LNK
The file is a symlink.
DT_SOCK
The file is a socket.
DT_ UNKNOAN
The file's type is unknown. This value is put into the d_t ype member if the exact file's type is too
expensive to compute. If the _ OPENDI R_NO D TYPE flag is set in the global variable
__opendir_fl ags, all files get marked with DT__UNKNOAN

The macro DTTA F (See DTTOIF) can be used to convert the d_t ype member to the equivalent value of the
st _node member of struct stat, see See stat.

Return Vaue

A pointer to a static buffer that is overwritten with each call.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. The __opendir _fl ags variable is DJGPP-specific. The d_t ype member is an extension available on
some systems such as GNU/Linux.

Example

DIR*d =opendir(".");
struct dirent *de;

whi | e (de =readdir(d))
put s(de->d_nane);

cl osedir(d);

readlink
Syntax

#i ncl ude <uni std. h>

i nt readlink(const char *fil ename, char *buffer, size t size);

Description

MSDOS doesn't support symbolic links but DJGPP emulates them. This function checks if filename is a DJGPP
symlink and the file name that the links points to is copied into buffer, up to maximum size characters. Portable

- Page 317 -

applications should not assume that buffer is terminated with "\ 0" .

Return Vaue

Number of copied characters; value -1 is returned in case of error and errno is set. When value returned is equa
to size, you cannot determine if there was enough room to copy whole name. So increase size and try again.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
char buf [FI LENAVE_MAX + 1] ;
if (readlink("/dev/env/DIDl R bin/sh.exe", buf, FI LENAVE_MAX) == -1)

i f (errno == EI NVAL)

put s("/dev/env/DIDI R bin/sh.exeis not asynboliclink.");
realloc
Syntax

#i ncl ude <stdlib. h>

void *real l oc(void *ptr, size_ t size);

Description

This function changes the size of the region pointed to by ptr. If it can, it will reuse the same memory space, but
it may have to allocate a new memory space to satisfy the request. In either case, it will return the pointer that you
should use to refer to the (possibly new) memory area. The pointer passed may be NULL, in which case this
function acts just like mal | oc (See malloc).

An application that wants to be robust in the face of a possible failure of real | oc to enlarge a buffer should save
a copy of the old pointer in a loca variable, to be able to use the original buffer in case r eal | oc returns NULL.
See the example below for details.

Return Vaue

On success, a pointer is returned to the memory you should now refer to. On failure, NULL is returned and the
memory pointed to by ptr prior to the call is not freed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

i f (now+new > max)

char *ol d = p;

MaX = nOw+new;

p =realloc(p, max);

if (p == NULL)

p=old; /*retainthe old pointer */

real path
Syntax

#i ncl ude <stdlib. h>

voi d real pat h(const char *in_path, char *out _path);

Description

- Page 318 -

This function canonicalizes the input path in_path and stores the result in the buffer pointed to by out_path

The path is canonicialized by removing consecutive and trailing slashes, making the path absolute if it's relative by

prepending the current drive letter and working directory, removing "." components, collapsing ".." components,
adding a drive specifier if needed, and converting all slashes to '/’. DOS-style 8+3 names of directories which are
part of the pathname, as well as its fina filename part, are returned lower-cased in out_path, but long filenames are
left intact. See _preserve fncase, for more details on letter-case conversions in filenames.

Since the returned path name can be longer than the original one, the caller should ensure there is enough space in

the buffer pointed to by out_path Use of ANSI-standard constant FI LENAME_MAX (defined on st di 0. h) or
Posix-standard constant PATH _MAX (defined on |i mi ts. h) is recommended.

Return Vaue

If successful, a pointer to the result buffer is returned. Otherwise, NULL is returned and err no is set to indicate
which error was detected.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHHXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

char ol dpat h[100], newpat h[PATH_MAX] ;
scanf ("%", ol dpath);

real pat h(ol dpat h, newpath) ;
printf("that really is %\n", newpath);

redir_cmdline delete
Syntax
#i ncl ude <debug/redir. h>
voidredir_cndline delete (cndline_t *cnd);
Description
For the rationale and general description of the debugger redirection issue, see See redir_debug_init.
This function serves as a destructor for a cndl i ne_t object. It frees storage used for the command-line arguments
associated with cmd, closes any open handles stored in it, and frees memory used to store the file handles and the

file names of the files where standard handles were redirected.

The function is safe to use even if cmd might be a NULL pointer, or if some of members of the cndl i ne_t
structure are NULL pointers. See redir_debug_init, for detailed description of the cndl i ne_t structure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Example
redir_cndline _delete (&hild cnd);

redir_cmdline parse
Syntax

#i ncl ude <debug/redir. h>

int redir_cndline_parse (const char *args, cndline_t *cnd);

Description
For the rationale and general description of the debugger redirection issue, see See redir_debug_init.

This function parses a command-line tail (i.e., without the program to be invoked) passed as a string in args For

- Page 319 -

every redirection directive in args like >> f 00, it opens the file that is the target of the redirection, and records in
cmd the information about these redirections. (See redir_debug_init, for details of the cndl i ne_t structure that is
used to hold this information.) The command line with redirections removed is placed into cnd- >commrand
(typicaly, it will be used to call v2I oadi nage, See v2loadimage), while the rest of information is used by
redir_to childandredir_to_debugger to redirect standard handles before and after calling run_chi | d.

Return Vaue

The function returns zero in case of success, -1 otherwise. Failure usually means some kind of syntax error, like >
without a file name following it; or a file name that isn't alowed by the underlying OS, like | ost +f ound on
DOS.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example

/* Init command | i ne storage. */

if (redir_debug init (&hild cnd) ==-1)

fatal ("Cannot allocate redirection storage: not enough nenory.\n");

/* Parse the command | i ne and create redirections. */
if (strpbrk (args, "<>"))

if (redir_cndline_parse (args, &hild_cnd) ==0)
args = chil d_cnd. conmand,;

el se

error ("Syntax error in comuand line.");

el se
child_cnd. command = st rdup (args);

cmdline = (char *) alloca (strlen (args) + 4);
cndline[0] =strlen (args);

strcpy (cndline + 1, args);

cmdl ine[strlen (args) + 1] = 13;

i f (v2l oadi mage (exec_file, cndline, start_state))

printf ("Load failed for i mage %\ n", exec _file);
exit (1);
}

redir_debug_init
Syntax

#i ncl ude <debug/redir. h>
int redir_debug init (crmdline_t *cmd);

Description

This function initializes the data structure in the cmd variable required to save and restore debugger’'s standard
handles across invocations of run_chi | d (See run_child). The debugger will then typicaly call
redir_to_child and redir_to_debugger.

These functions are needed when a debugger wants to redirect standard handles of the debuggee, or if the debuggee
redirects some of its standard handles, because the debuggee is not a separate process, we just pretend it is by
jumping between two threads of execution. But, as far as DOS is concerned, the debugger and the debuggee are a
single process, and they share the same Job File Table (JFT). The JFT is a table maintained by DOS in the
program’s PSP where, for each open handle, DOS stores the index into the SFT, the System File Table (The SFT
is an internal data structure where DOS maintains everything it knows about a certain open file/device)) A handle
that is returned by open, _open and other similar functions is smply an index into the JFT where DOS stored the
SFT entry index for the file or device that the program opened.

When a program starts, the first 5 entries in the JFT are preconnected to the standard devices. Any additional

- Page 320 -

handles opened by either the debugger or the debuggee use handles beyond the first 5 (unless one of the
preconnected handles is deliberately closed). Here we mostly deal with handles 0, 1 and 2, the standard input,
standard output, and standard error; they al start connected to the console device (unless somebody redirects the
debugger’s 1/0O from the command line).

Since both the debugger and the debuggee share the same JFT, their handles O, 1 and 2 point to the same JFT
entries and thus are connected to the same files/devices. Therefore, if the debugger redirects its standard output, the
standard output of the debuggee is also automagically redirected to the same file/device! Similarly, if the debuggee
redirects its stdout to a file, you won't be able to see debugger’s output (it will go to the same file where the
debuggee has its output); and if the debuggee closes its standard input, you will lose the ability to talk to debugger!

The debugger redirection support attempts to solve all these problems by creating an illusion of two separate sets of
standard handles. Each time the debuggee is about to be run or resumed, it should call redir_to_child to
redirect debugger’s own standard handles to the file specified in the command-line (as given by e.g. the "run"
command of GDB) before running the debuggee, then call redi r _t o_debugger to redirect them back to the
debugger’s origina input/output when the control is returned from the debuggee (e.g. after a breakpoint is hit).
Although the debugger and the debuggee have two separate copies of the file-associated data structures, the debugger
still can redirect standard handles of the debuggee because they use the same JFT entries as debugger’'s own
standard handles.

The cmdl i ne_t structure is declared in the header debug/ r edi r. h as follows:

struct dbg redirect {

int inf_handle; /* debuggee’ s handl e */

i nt our_handl e; /* debugger’s handl e */

char *file_name; /* fil e name where debuggee’s handle is

* redirected */

i nt node; /* node used to open() the above file */

off t filepos; /* file position of debuggee’s handl e; unused */

b

typedef struct _cndline {

char *command; /* command | ine with redirecti on renoved */

int redirected; /* 1if handles redirected for child */

struct dbg redirect **redirection;/* i nfo about redirected handl es */
} cdline t;

In the cndl i ne_t structure, the r edi recti on member points to an array of 3 dbg_redi rect structures, one
each for each one of the 3 standard handles. The i nf _handl e and our _handl e members of those structures are
used to save the handle used, respectively, by the debuggee (a.k.a. the inferior procesy and by the debugger.

The cmd variable is supposed to be defined by the debugger's application code. redir_debug init iscaled to
initialize that variable. It cals redi r _cndl i ne_del et e to close any open handles held in cmd and to free any
allocated storage; then it fills cmd with the trivial information (i.e., every standard stream is connected to the usual
handles 0, 1, and 2).

Return Value
redi r _debug init returns zero in case of success, or -1 otherwise.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
Example
if (redir_debug init (&hild cnd) ==-1)

fatal (" Cannot all ocate redirection storage: not enough nmenory.\n");

redir_to child
Syntax

#i ncl ude <debug/redir. h>
int redir to child (cndline_t *cnd);

Description
- Page 321 -

For the rationale and general description of the debugger redirection issue, see See redir_debug_init.

This function redirects al 3 standard streams so that they point to the files/devices where the child (ak.a. debuggee)
process connected them. All three standard handles point to the console device by default, but this could be
changed, either because the command line for the child requested redirection, like in prog > f 00, or because the
child program itself redirected one of its standard handles e.g. with a call to dup2.

redir_to_child uses information stored in the cndl i ne_t variable pointed to by the cmd argument to redirect
the standard streams as appropriate for the debuggee, while saving the origina debugger’'s handles to be restored by
redir_to_debugger.

Return Vaue

The function returns zero in case of success, -1 in case of failure. Failure usually means the process has run out of
available file handles.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
errno = 0;
if (redir_to_child (&hild_cnd) ==-1)

{

redir_to_debugger (&child _cnd);

error ("Cannot redirect standard handl es for program 9%.",
strerror (errno));

redir_to_debugger
Syntax

#i ncl ude <debug/redir. h>
int redir_to_debugger (cndline_t *cnd);

Description
For the rationale and general description of the debugger redirection issue, see See redir_debug_init.

This function redirects al 3 standard streams so that they point to the files/devices where the debugger process
connected them. All three standard handles point to the console device by default, but this could be changed, either
because the command line for the child requested redirection, like in prog > f 0o, or because the child program
itself redirected one of its standard handles e.g. with a call to dup2.

redir _to_debugger uses information stored in the cdl i ne_t variable pointed to by the cmd argument to
redirect the standard streams as appropriate for the debugger, while saving the original debuggee’'s handles to be
restored by redir _to_child.

Return Vaue

The function returns zero in case of success, -1 in case of failure. Failure usually means the process has run out of
available file handles.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example
/* Restore debugger’s standard handl es. */
errno = 0;
if (redir_to_debugger (&child _cnd) ==-1)

error ("Cannot redirect standard handl es for debugger: %.",
strerror (errno));

- Page 322 -

regcomp
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <regex. h>

i nt regconp(regex_t *preg, const char *pattern, int cflags);

Description
This function is part of the implementation of PosIX 1003.2 regular expressions (RES).

regconp compiles the regular expression contained in the pattern string, subject to the flags in cflags and places
the results in the r egex_t structure pointed to by preg. (The regular expression syntax, as defined by POSIX 1003.2,
is described below.)

The parameter cflags is the bitwise OR of zero or more of the following flags:

REG_EXTENDED
Compile modern (extended) REs, rather than the obsolete (basic) REs that are the default.

REG_BASI C
This is a synonym for O, provided as a counterpart to REG_EXTENDED to improve readability. This is an
extension, compatible with but not specified by Posix 1003.2, and should be used with caution in software
intended to be portable to other systems.

REG_NOSPEC
Compile with recognition of all special characters turned off. All characters are thus considered ordinary, so
the RE in pattern is a literal string. This is an extension, compatible with but not specified by PosIx 1003.2,
and should be used with caution in software intended to be portable to other systems. REG_EXTENDED and
REG_NOSPEC may not be used in the same call to r egconp.

REG | CASE
"Compile for matching that ignores upper/lower case distinctions. See the description of regular expressions
below for details of case-independent matching.

REG_NCSUB
Compile for matching that need only report success or failure, not what was matched.

REG_NEWLI NE
Compile for newline-sensitive matching. By default, newline is a completely ordinary character with no
special meaning in either RES or strings. With this flag, [A bracket expressions and . never match newline,
a ™ anchor matches the null string after any newline in the string in addition to its normal function, and the
$ anchor matches the null string before any newline in the string in addition to its normal function.

REG_PEND
The regular expression ends, not at the first NUL, but just before the character pointed to by the re_endp
member of the structure pointed to by preg. The r e_endp member is of type const char *. This flag
permits inclusion of NULs in the RE; they are considered ordinary characters. This is an extension,
compatible with but not specified by PosiX 10032, and should be used with caution in software intended to be
portable to other systems.

When successful, r egconp returns 0 and fills in the structure pointed to by preg One member of that structure
(other than r e_endp) is publicized: r e_nsub, of type si ze_t, contains the number of parenthesized
subexpressions within the RE (except that the value of this member is undefined if the REG_NOSUB flag was used).

Note that the length of the RE does matter; in particular, there is a strong speed bonus for keeping RE length under
about 30 characters, with most special characters counting roughly double.

Return Vaue

If regconp succeeds, it returns zero; if it fails, it returns a non-zero error code, which is one of these:

REG_BADPAT
invalid regular expression

REG ECOLLATE
invalid collating element

- Page 323 -

REG ECTYPE
invalid character class

REG_EESCAPE
\ applied to unescapable character

REG_ESUBREG
invalid backreference number (e.g., larger than the number of parenthesized subexpressions in the RE)

REG_EBRACK
brackets [] not balanced

REG_EPAREN
parentheses () not balanced

REG_EBRACE
braces { } not balanced

REG _BADBR
invalid repetition count(s) in { }

REG_ERANGE
invalid character range in []

REG_ESPACE
ran out of memory (an RE like, say, ((((af1, 100}){1, 100}){1, 100}){1, 100}){ 1, 100} will
eventually run almost any existing machine out of swap space)

REG_BADRPT
?,*, or + operand invalid

REG_EMPTY
empty (sub)expression

REG_ASSERT
““can’t happen’’ (you found a bug in r egconp)

REG | NVARG
invalid argument (e.g. a negative-length string)

Regular Expressions’ Syntax

Regular expressions (REs), as defined in posiX 1003.2, come in two forms. modern REs (roughly those of egr ep;
1003.2 calls these extended REs) and obsolete REs (roughly those of ed; 1003.2 basic REs). Obsolete RES mostly
exist for backward compatibility in some old programs; they will be discussed at the end. 1003.2 leaves some
aspects of RE syntax and semantics open; ‘(*)’ marks decisions on these aspects that may not be fully portable to
other 1003.2 implementations.

A (modern) RE is one(*) or more non-empty(*) branches separated by |. It matches anything that matches one of
the branches.

A branch is one(*) or more pieces concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is an atom possibly followed by a single(*) *, +, ?, or bound. An atom followed by * matches a sequence
of 0 or more matches of the atom. An atom followed by + matches a sequence of 1 or more matches of the atom.
An atom followed by ? matches a sequence of 0 or 1 matches of the atom.

A bound is { followed by an unsigned decimal integer, possibly followed by , possibly followed by another
unsigned decimal integer, always followed by }. The integers must lie between 0 and RE_DUP_MAX (255(*))
inclusive, and if there are two of them, the first may not exceed the second. An atom followed by a bound
containing one integer i and no comma matches a sequence of exactly i matches of the atom. An atom followed
by a bound containing one integer i and a comma matches a sequence of i or more matches of the atom. An
atom followed by a bound containing two integers i and j matches a sequence of i through j (inclusive) matches
of the atom.

An atom is a regular expression enclosed in () (matching a match for the regular expression), an empty set of ()
(matching the null string(*)), a bracket expression (see below), . (matching any single character), » (matching the

- Page 324 -

null string at the beginning of a line), $ (matching the null string at the end of a line), a\ followed by one of the
characters . [$() | *+?{\\ (matching that character taken as an ordinary character), a\ followed by any other
character(*) (matching that character taken as an ordinary character, as if the \ had not been present(*)), or a single
character with no other significance (matching that character). A { followed by a character other than a digit is an
ordinary character, not the beginning of a bound(*). It isillegal to end an RE with \.

A bracket expression is a list of characters enclosed in []. It normally matches any single character from the list
(but see below). If the list begins with #, it matches any single character (but see below) not from the rest of the
list. If two characters in the list are separated by -, this is shorthand for the full range of characters between those
two (inclusive) in the collating sequence, e.g. [0-9] in ASCII matches any decima digit. It is illegal(*) for two
ranges to share an endpoint, e.g. a-c-e. Ranges are very collating-sequence-dependent, and portable programs
should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible #). To include a literal -, make it
the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint of a range,
encloseitin[. and .] to make it a collating element (see below). With the exception of these and some
combinations using [(see next paragraphs), al other specia characters, including \, lose their special significance
within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as if it were a
single character, or a collating-sequence name for either) enclosed in [. and .] stands for the sequence of
characters of that collating element. The sequence is a single element of the bracket expression’s list. A bracket
expression containing a multi-character collating element can thus match more than one character, e.g. if the
collating sequence includes a ch collating element, then the RE [[. ch.]] * ¢ matches the first five characters of
“*chchec’’.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing for the
sequences of characters of al collating elements equivalent to that one, including itself. (If there are no other
equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].) For example, if o and
A are the members of an equivalence class, then [[=0=]], [[="=]], and [0*] are &l synonymous. An
equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all
characters belonging to that class. Standard character class names are:

al numdi gi t punct
al pha gr aph space
bl ank | ower upper
cntrl print xdigit

These stand for the character classes defined by i sal num (See isalnum), i sdi gi t (See isdigit), i spunct (See
ispunct), i sal pha (See isadpha), i sgraph (See isgraph), i sspace (See isspace (bl ank is the same as space),
i sl ower (See islower), i supper (See isupper), i scntrl (Seeiscntrl), i sprint (See isprint), and i sxdi gi t
(See isxdigit), respectively. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two specia cases(*) of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] match the
null string a the beginning and end of a word respectively. A word is defined as a sequence of word characters
which is neither preceded nor followed by word characters. A word character is an al num character (as defined by
i sal numlibrary function) or an underscore. This is an extension, compatible with but not specified by Posix 1003.2,
and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one starting
earliest in the string. If the RE could match more than one substring starting at that point, it matches the longest.
Subexpressions also match the longest possible substrings, subject to the constraint that the whole match be as long
as possible, with subexpressions starting earlier in the RE taking priority over ones starting later. Note that
higher-level subexpressions thus take priority over their lower-level component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered longer than no match
at al. For example, bb* matches the three middle characters of ‘‘abbbc’’, (wee| week) (kni ght s| ni ght s)
matches all ten characters of ‘‘weeknights’, when (. *). * is matched against ‘‘abc’’ the parenthesized
subexpression matches al three characters, and when (a*) * is matched against ‘‘bc’’ both the whole RE and the
parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from the
alphabet. When an aphabetic that exists in multiple cases appears as an ordinary character outside a bracket
expression, it is effectively transformed into a bracket expression containing both cases, eg. x becomes [xX].
When it appears inside a bracket expression, all case counterparts of it are added to the bracket expression, so that

- Page 325 -

(eg.) [X] becomes [xX] and [*x] becomes [*xX].

No particular limit is imposed on the length of RES(*). Programs intended to be portable should not employ RES
longer than 256 bytes, as an implementation can refuse to accept such REs and remain posix-compliant.

Obsolete (basic) regular expressions differ in several respects. |, +, and ? are ordinary characters and there is no
equivaent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves ordinary
characters. The parentheses for nested subexpressions are \ (and \), with (and) by themselves ordinary
characters. ™ is an ordinary character except at the beginning of the RE or(*) the beginning of a parenthesized
subexpression, $ is an ordinary character except at the end of the RE or(*) the end of a parenthesized
subexpression, and * is an ordinary character if it appears at the beginning of the RE or the beginning of a
parenthesized subexpression (after a possible leading *). Finally, there is one new type of atom, a back reference \
followed by a non-zero decimal digit d matches the same sequence of characters matched by the dth parenthesized
subexpression (numbering subexpressions by the positions of their opening parentheses, left to right), so that (e.g.)
\' ([bc]\)\1 matches ‘‘bb’" or ‘‘cc’’ but not ‘“‘bc’’.

History

This implementation of the posix regexp functionality was written by henry@zoo.toronto.edu, Henry Spencer.

Bugs
The locale is always assumed to be the default one of 1003.2, and only the collating elements etc. of that locale are
available.

regconp implements bounded repetitions by macro expansion, which is costly in time and space if counts are large
or bounded repetitions are nested.

An RE like, say, ((((&{1, 100}){1, 100}){1, 100}){1, 100}){1, 100}, will (eventualy) run almost any
existing machine out of swap space.

There are suspected problems with response to obscure error conditions. Notably, certain kinds of internal overflow,
produced only by truly enormous REs or by multiply nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like a) b are legal REs because) is a specia character only in the presence of a
previous unmatched (. This can’t be fixed until the spec is fixed.

The standard’s definition of back references is vague. For example, does a\ e(\ e(b\e)*\ e2\ e) *d match
“‘abbbd’’? Until the standard is clarified, behavior in such cases should not be relied on.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXXXXIXHXXXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

regerror
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <regex. h>

size_t regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);

Description

regerror maps a non-zero value of errcode from either r egconp (Return Vaue, See regcomp) or r egexec
(Return Value, See regexec) to a human-readable, printable message.

If preg is non-NULL, the error code should have arisen from use of the variable of the type r egex_t pointed to by
preg, and if the error code came from r egconp, it should have been the result from the most recent r egconp
using that r egex_t variable. (regerror may be able to supply a more detailed message using information from
the regex_t than from errcode alone.) r eger r or places the NUL-terminated message into the buffer pointed to by
errbuf, limiting the length (including the NUL) to at most errbuf_size bytes. If the whole message won't fit, as much
of it as will fit before the terminating NUL is supplied. In any case, the returned value is the size of buffer needed
to hold the whole message (including terminating NUL). If errbuf_size is O, errbuf is ignored but the return value is
still correct.

- Page 326 -

If the errcode given to r egerror is first ORed with REG | TOA the ‘‘message’’ that results is the printable name
of the error code, eg. ““REG_NOMATCH’’, rather than an explanation thereof. If errcode is REG ATO, then preg
shall be non-NULL and the re_endp member of the structure it points to must point to the printable name of an
error code (eg. ‘‘REG_ECOLLATE"); in this case, the result in errbuf is the decimal representation of the numeric
value of the error code (0 if the name is not recognized). REG | TOA and REG ATO are intended primarily as
debugging facilities, they are extensions, compatible with but not specified by Posix 1003.2, and should be used with
caution in software intended to be portable to other systems. Be warned also that they are considered experimental
and changes are possible.

Return Vaue

The size of buffer needed to hold the message (including terminating NUL) is always returned, even if errbuf_size is
zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXXXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

regexec
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <r egex. h>

i nt regexec(const regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[], int efl ags);

Description

r egexec matches the compiled RE pointed to by preg against the string, subject to the flags in eflags and reports

results using nmatch, pmatch, and the returned value. The RE must have been compiled by a previous invocation of
regconp (See regcomp). The compiled form is not altered during execution of r egexec, so a single compiled RE
can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be the text of an entire line, with the
NUL indicating the end of the line. (That is, any other end-of-line marker is considered to have been removed and
replaced by the NUL.)

The eflags argument is the bitwise OR of zero or more of the following flags:

REG_NOTBCL
The first character of the string is not the beginning of a line, so the ~ anchor should not match before it.
This does not affect the behavior of newlines under REG_NEW.I NE (REG_NEWLINE, See regcomp).

REG_NOTEOL
The NUL terminating the string does not end a line, so the $ anchor should not match before it. This does
not affect the behavior of newlines under REG NEWL.I NE (REG_NEWLINE, See regcomp).

REG_STARTEND
The string is considered to start at string + pmat ch[0] . rm so and to have a terminating NUL located at
string + pmat ch[0] . r m_eo (there need not actually be a NUL at that location), regardiess of the value
of nmatch. See below for the definition of pmatch and nmatch. This is an extension, compatible with but not
specified by posix 10032, and should be used with caution in software intended to be portable to other
systems. Note that a non-zero r m so does not imply REG NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

REG_TRACE
trace execution (printed to stdout)

REG _LARCE
force large representation

REG BACKR
force use of backref code

Regular Expressions’ Syntax, See regcomp, for a discussion of what is matched in situations where an RE or a
portion thereof could match any of several substrings of string.

- Page 327 -

If REG_NOSUB was specified in the compilation of the RE (REG_NOSUB, See regcomp), or if nmatch is 0O,
regexec ignores the pmatch argument (but see below for the case where REG_STARTEND is specified). Otherwise,
pmatch should point to an array of nmatch structures of type r egmat ch_t. Such a structure has at least the
members rm so and r m eo, both of type regof f t (a signed arithmefic type at least as large as an of f _t and
a ssi ze_t), containing respectively the offset of the first character of a substring and the offset of the first
character after the end of the substring. Offsets are measured from the beginning of the string argument given to
regexec. An empty substring is denoted by equal offsets, both indicating the character following the empty
substring.

When r egexec returns, the Oth member of the pmatch array is filled in to indicate what substring of string was
matched by the entire RE. Remaining members report what substring was matched by parenthesized subexpressions
within the RE; member i reports subexpression i, with subexpressions counted (starting at 1) by the order of their
opening parentheses in the RE, left to right. Unused entries in the array---corresponding either to subexpressions that
did not participate in the match at al, or to subexpressions that do not exist in the RE (that is, i >

preg- >re_nsub)---have both rm so and rm eo set to - 1. If a subexpression participated in the match severa
times, the reported substring is the last one it matched. (Note, as an example in particular, that when the RE

(b*) + matches ‘‘bbb’’, the parenthesized subexpression matches the three bs and then an infinite number of empty
strings following the last b, so the reported substring is one of the empties.)

If REG_STARTEND is specified in eflags pmatch must point to at least one r egnmat ch_t variable (even if nmatch
is 0 or REG_NOSUB was specified in the compilation of the RE, REG_NOSUB, See regcomp) to hold the input
offsets for REG_STARTEND Use for output is still entirely controlled by nmatch if nmatch is 0 or REG_NOSUB
was specified, the value of prmat ch[0] will not be changed by a successful r egexec.

Return Vaue

Normally, r egexec returns O for success and the non-zero code REG_NOVATCH for failure. Other non-zero error
codes may be returned in exceptional situations. The list of possible error return values is below:

REG_ESPACE
ran out of memory

REG_BADPAT
the passed argument preg doesn't point to an RE compiled by r egconp

REG | NVARG
invalid argument(s) (e.g., string + pmatch[0] . rm eo is lessthan string + pmatch[0] . rm so)

History

This implementation of the PosIX regexp functionality was written by henry@zoo.toronto.edu, Henry Spencer.

Bugs

r egexec performance is poor. nmatch exceeding O is expensive; nmatch exceeding 1 is worse. r egexec is
largely insensitive to RE complexity except that back references are massively expensive. RE length does matter; in
particular, there is a strong speed bonus for keeping RE length under about 30 characters, with most special
characters counting roughly double.

The implementation of word-boundary matching is a bit of a kludge, and bugs may lurk in combinations of
word-boundary matching and anchoring.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

regfree
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <r egex. h>

voi d regfree(regex_t *preg);

Description

- Page 328 -

regf r ee frees any dynamically-alocated storage associated with the compiled RE pointed to by preg. The
remaining r egex_t is no longer a valid compiled RE and the effect of supplying it to r egexec or regerror is
undefined.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXIXXXXKXXEXXXEXXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXX No 1003.2-1992; 1003.1-2001

remove
Syntax

#i ncl ude <stdi o. h>

i nt remove(const char *file);

Description

This function removes the named file from the file system. Unless you have an un-erase program, the file and its
contents are gone for good.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXIXHHXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
renove("/tnp/data.tm");

remgue
Syntax

#i ncl ude <search. h>

voi d renque(struct gel em*el em ;

Description

This function manipulates queues built from doubly linked lists. Each element in the queue must be in the form of
struct gel emwhich is defined thus:

struct gel em{

struct gelem*q_forw,
struct gel em*q_back;
char g_data[0];

}

This function removes the entry elem from a queue.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

_rename
Syntax

#i ncl ude <stdi o. h>

i nt _rename(const char *ol dnane, const char *newnane);

- Page 329 -

Description

This function renames an existing file or directory oldname to newname. It is much smaller that r enane (See
rename), but it can only rename a directory so it stays under the same parent, it cannot move directories between
different branches of the directory tree. This means that in the following example, the first call will succeed, while
the second will fail:

_rename("c:/pathl/nydir", "c:/pathl/yourdir");
_renanme("c:/pathl/nydir", "c:/path2");

On systems that support long filenames (See _use Ifn), _r ename can also move directories (so that both cals in the
above example succeed there), unless the LFN environment variable is set to n, or the _CRTO_FLAG NO LFN is set
inthe crt0_startup_fl ags variable, See crt0_startup flags.

If you don't need the extra functionality offered by r enane (which usualy is only expected by Unix-born
programs), you can use _renane instead and thus make your program a lot smaler.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No

rename
Syntax

#i ncl ude <stdi 0. h>

i nt renane(const char *ol dnane, const char *newnan®);

Description

This function renames an existing file or directory oldname to newname. If newname exists, then it is first
removed. If newname is a directory, it must be empty (or else err no will be set to ENOTEMPTY), and must not
include oldname in its path prefix (otherwise, err no will be set to EI NVAL). If newname exists, both oldname and
newname must be of the same type (both directories or both regular files) (or else errno will be set to ENOTDI R
or El SDI R, and must reside on the same logical device (otherwise, er r no will be set to EXDEV). Wildcards are
not allowed in either oldname or newname. DOS won't alow renaming a current directory even on a non-default
drive (you will get the EBUSY or El NVAL in errno). ENAMETOCLONG will be returned for pathnames which are
longer than the limit imposed by DOS. If oldname doesn't exist, err no will be set to ENOENT. For most of the
other calamities, DOS will usualy set errno to EACCES

If anything goes wrong during the operation of r enane(), the function tries very hard to leave the things as ther
were before it was invoked, but it might not always succeed.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

rename("c:/mydir/some.doc", "c:/yourdir/sone.sav");
rename("c:/pathl/nmydir", "c:/path2");

rewind
Syntax

#i ncl ude <stdi o. h>

voi d rewi nd(FILE *file);

- Page 330 -

Description
This function repositions the file pointer to the beginning of the file and clears the error indicator.

Return Vaue
None.
Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

rewi nd(stdin);
rewinddir
Syntax

#i ncl ude <dirent. h>
voidrew nddir(DIR*dir);
Description

This function resets the position of the dir so that the next cal to readdi r (See readdir) starts at the beginning
again.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXXXXXKXXEXXXEXXXEXXXEXXXXKIXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

DIR*d =opendir(".");
rewi nddir(d);

rindex
Syntax

#i ncl ude <strings. h>
char *rindex(const char *string, int ch);

Description

Returns a pointer to the last occurrence of ch in string. Note that the NULL character counts, so if you pass zero as
ch you'll get a pointer to the end of the string back.

Return Vaue

A pointer to the character, or NULL if it wasn't found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

char *last_slash =rindex(filenane, '/");

rmdir
Syntax

- Page 331 -

#i ncl ude <uni std. h>

int rondir(const char *di rnane);

Description

This function removes directory dirname The directory must be empty.
Return Value

Zero if the directory was removed, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXKXKXIIXHXKKIEXHXKXIXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example
rodir("/tnp/datadir");

run_child
Syntax

#i ncl ude <debug/ dbgcom h>

void run_child (void);

Description

This function starts or resumes the debugged program, via a | ongj np to the debuggee’'s code. When the debuggee
hits a breakpoint, or exits normally, the exception handler that is called to service the breakpoint exception will
| ongj np back to run_chi | d, and it will then return to the caler.

After run_chi | d returns, the debugger usualy examines the a_t ss variable to find out the reason the debuggee
stopped. The a_t ss variable is defined by the header debug/ t ss. h as follows:

typedef struct TSS {
unsi gned short tss_back |ink;
unsi gned short reso;
unsi gned | ong t ss_esp0;
unsi gned short tss_ssO;
unsi gned short resl,;
unsi gned | ong t ss_espl,;
unsi gned short tss_ssl,;
unsi gned short resz;
unsi gned | ong t ss_esp2;
unsi gned short tss_ss2;
unsi gned short res3;
unsi gned l ong tss_cr 3;

unsi gned |l ong tss_ei p;
unsi gned | ong tss_efl ags;
unsi gned | ong t ss_eax;
unsi gned | ong tss_ecx;
unsi gned | ong t ss_edx;
unsi gned | ong tss_ebx;
unsi gned | ong tss_esp;
unsi gned | ong t ss_ebp;
unsi gned |l ong tss_esi ;
unsi gned l ong tss_edi;
unsi gned short tss_es;
unsi gned short res4;
unsi gned short tss_cs;
unsi gned short resb5;
unsi gned short tss_ss;
unsi gned short res6;
unsi gned short tss_ds;

- Page 332 -

unsi gned short res7;
unsi gned short tss_fs;
unsi gned short ress;
unsi gned short tss_gs;
unsi gned short res9;
unsi gned short tss_Idt;
unsi gned short resl0;
unsi gned short tss_trap;
unsi gned char tss_i onmap;
unsi gned char tss_irqgn;
unsi gned l ong tss_error;
} TSS;

extern TSS a_t ss;
See the example below for a typical tests after run_chi | d returns.

Note that, generally, you'd need to save the standard handles before calling run_chi | d and restore them after it
returns. Otherwise, if the debuggee redirects one of its standard handles, the corresponding debugger’'s standard
handle is redirected as well. See redir_to_child, and see See redir_to_debugger.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No

Example
save_npx ();
run_child ();
| oad_npx ();

if (a_tss.tss_irgn == 0x21)

{
st at us = DEBUGGEE_EXI TED;
exit _code = a tss.tss_eax & Oxff;

el se

{

st at us = DEBUGGEE_GOT_SI GNAL

if (a_tss.tss_irgn == 0x75)

si gnal _nunber = SI G NT;

elseif (a_tss.tss_irgn==1]| a_tss.tss_irqn == 3)
si gnal _nunber = SI GTRAP; /* a breakpoi nt */

}

save npx
Syntax

#i ncl ude <debug/ dbgcom h>

ext er n NPX npx;
voi d save_npx (void);

Description

This function saves the state of the x87 numeric processor in the external variable npx. This variable is a structure
defined as follows in the header debug/ dbgcom h:

t ypedef struct {

unsi gned short si go;

unsi gned short sigl;

unsi gned short sig2;

unsi gned short sig3;

unsi gned short exponent: 15;
unsi gned short sign:1;

} NPXREG

t ypedef struct {

- Page 333 -

unsi gned | ong control ;
unsi gned | ong st at us;
unsi gned | ong t ag;
unsi gned | ong ei p;

unsi gned | ong cs;

unsi gned | ong dat aptr;
unsi gned | ong dat asel ;
NPXREG r eq[8] ;

| ong doubl e st[8];
char st_valid[8];

| ong doubl e mx| 8] ;
char i n_mmx_node;

char top;

} NPX;

save_npx should be called immediately before run_chi | d (See run_child) is called to begin or resume the
debugged program.

To restore the x87 state when control is returned to the debugger, call | oad_npx, see See load npx.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

save_npx ();
run_child ();
| oad_npx ();

sbrk
Syntax

#i ncl ude <uni std. h>
voi d *shrk(int delta)

Description
This function changes the "break” of the program by adding delta to it. This is the highest address that your

program can access without causing a violation. Since the heap is the region under the break, you can expand the
heap (where mal | oc gets memory from) by increasing the break.

This function is normally accessed only by mal | oc (See malloc).

Return Value

The address of the first byte outside of the previous valid address range, or -1 if no more memory could be
accessed. In other words, a pointer to the chunk of heap you just alocated, if you had passed a positive number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

char *buf;
buf = sbrk(1000); /* all ocate space */

scanf
Syntax

#i ncl ude <stdi 0. h>

i nt scanf(const char *format, ...);
Description

- Page 334 -

This function scans formatted text from st di n and stores it in the variables pointed to by the arguments. See
scanf.

The format string contains regular characters which much match the input exactly as well as a conversion specifiers,
which begin with a percent symbol. Any whitespace in the format string matches zero or more of any whitespace
characters in the input. Thus, a single space may match a newline and two tabs in the input. All conversions
except ¢ and [also skip leading whitespace automatically. Each conversion specifier contains the following fields:

« An asterisk (*) which indicates that the input should beconverted according to the conversion spec, but not
stored anywhere. This alows to describe an input field that is to be skipped.

e A width specifier, which specifies the maximum number of inputcharacters to use in the conversion.
 An optiona conversion qualifier, which may be:
hh

to specify char;

to specify short integers,

to specify i nt max_t or ui nt max_t integers,
to specify doubles or | ong integers,

(two lower-case ell letters) to specify | ong | ong integers; to specify | ong doubles, athough this is
non-standard;

to specify | ong doubles;
to specify ptrdi ff _t;

to specify si ze_t.

If the h qualifier appears before a specifier that implies conversion to a | ong or f1 oat or doubl e, like in
oD or %hf, it is generally ignored.

e The conversion type specifierSome of the combinationdisted below are non-standard. If you use the
non-standard specifiers, a compiler could complain.;

c
Copy the next character (or width characters) to the given buffer. This conversion suppresses skipping
of the leading whitespace; use %ds to read the next non-whitespace character. Unlike with %s, the
copied characters are not terminated with a null character. If the width parameter is not specified, a
width of one is implied.

Convert the input to a signed i nt using 10 as the base of the number representation.

hhd
Convert the input to a signed char using 10 as the base.

hd
Convert the input to a signed short using 10 as the base.

jd
Convert the input to an i nt max_t using 10 as the base.

Id
D
Convert the input to a signed | ong using 10 as the base.

Ld

- Page 335 -

Ua

—
o

N
o

Qo m—™mo

hhi

hi

ti

Zi

Convert the input to a signed | ong | ong using 10 as the base.

Convert the input to a ptrdi ff_t using 10 as the base.

Convert the input to a si ze_t using 10 as the base.

Convert the input to a floating point number (a f | oat).

Convert the input to a doubl e.

Convert the input to a | ong doubl e.

Convert the input, determining base automatically by the presence of Ox or O prefixes, and store in a
signed i nt. See dtrtol.

Like i, but stores the result in a signed char.

Like i, but stores the result in a signed short.

Like i, but stores the result in an i nt max_t.

Like i, but stores the result in a signed | ong.

Like i, but stores the result in a signed | ong | ong.

Like i, but stores the result ina ptrdiff _t.

Like i, but stores the result in a si ze_t.

- Page 336 -

Store the number of characters scanned so far into the i nt pointed to by the argument.

hhn
Like n, but the argument should point to a signed char.

hn
Like n, but the argument should point to a signed short.

Like n, but the argument should point to an i nt max_t.

Like n, but the argument should point to a signed | ong.

Like n, but the argument should point to a signed | ong | ong.

tn
Like n, but the argument should point to a ptrdi ff _t.

zn
Like n, but the argument should point to a si ze_t.
Convert the input to an unsigned i nt, using base 8.

hho
Convert the input to an unsigned char, using base 8.

ho
Convert the input to an unsigned short, using base 8.

jo
Convert the input to an ui nt max_t, using base 8.

lo

Convert the input to an unsigned | ong, using base 8.

Convert the input to an unsigned | ong | ong, using base 8.

Convert the input to a ptrdi ff _t, using base 8.
zo
Convert the input to a si ze_t, using base 8.

Convert the input to a pointer. This is like using the x format.

Copy the input to the given string, skipping leading whitespace and copying non-whitespace characters
up to the next whitespace. The string stored is then terminated with a null character.
Convert the input to an unsigned i nt using 10 as the base.

hhu
Convert the input to an unsigned char using 10 as the base.

hu
Convert the input to an unsigned short using 10 as the base.

- Page 337 -

ju
Convert the input to an ui nt max_t using 10 as the base.
lu

U
Convert the input to an unsigned | ong using 10 as the base.

ITu
Convert the input to an unsigned | ong | ong using 10 as the base.

tu
Convert the input to a ptrdi ff_t using 10 as the base.

zu
Convert the input to a si ze_t using 10 as the base.

X
X
Convert the input to an unsigned i nt, using base 16.

hhx
hhX
Convert the input to an unsigned char, using base 16.

hx
hX
Convert the input to an unsigned short, using base 16.

X X

Convert the input to an ui nt max_t, using base 16.

X x

Convert the input to an unsigned | ong, using base 16.

Lx
LX
I'1x
11X
Convert the input to an unsigned | ong | ong, using base 16.

tx
tX

Convert the input to a ptrdi ff _t, using base 16.
ZX

zX
Convert the input to a si ze_t, using base 16.

Stores the matched characters in a char array, followed by a terminating null character. If you do
not specify the width parameter, scanf behaves as if width had a very large value. Up to width
characters are consumed and assigned, provided that they match the specification inside the brackets.
The characters between the brackets determine which characters are alowed, and thus when the
copying stops. These characters may be regular characters (example: [abcd]) or a range of
characters (example: [a- d]). If the first character is a caret (*), then the set specifies the set of
characters that do not get copied (i.e. the set is negated). To specify that the set contains a
close-bracket (]), put it immediately after [or [*. To specify a literal dash (-), write it either
immediately after [or [, or immediately before the closing].

%
This must match a percent character in the input.

Integer formats make use of strtol or strtoul to perform the actual conversions. Floating-point conversions use
strtod and _strtold.

- Page 338 -

Return Vaue

The number of items successfully matched and assigned. If input ends, or if there is any input failure before the
first item is converted and assigned, EOF is returned. Note that literal characters (including whitespace) in the format
string which matched input characters count as ‘‘converted items’, so input failure after such characters were read
and matched will not cause ECF to be returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXEXXXEXHXIXHXXIXHIXHXXXXXXKXXXXXXXXXXX C89; C99 (see note 1) (see
note 2) 1003.2-1992; 1003.1-2001

Notes:
1. Thehh, j, t and z conversion specifiers first appeared in the ANSI C99 standard.

2. The conversion specifiers F, D, |, Q and U are DJGPP extensions; they are provided for compatibility with
Borland C and other compilers. The conversion specifiers for the | ong | ong data type are GCC extensions.
The meaning of [a-c] as a range of characters is a very popular extension to ANSI (which merely says a
dash ‘“‘may have a special meaning’’ in that context).

Example

int x, vy;
char buf[100];
scanf ("%l % %", &, &y, buf);

/* read to end-of -1ine */
scanf ("% %4\ n]\n", &, buf);
/* read letters only */
scanf ("% a-zA-Z]", buf);

SCN
Syntax

#i ncl ude <i nttypes. h>

Description

The SCN family of macros allows integers to be input in a portable manner using the scanf family of functions
(See scanf). They include a conversion qualifier, to specify the width of the type (e.g.: | for | ong), and the
conversion type specifier (e.g.: d for decima display of integers).

The SCN family of macros should be used with the types defined in the header <st di nt . h>. For example:
int8 t,uint _fast32 t,uintptr_t,intmax_ t.

Below N can be 8, 16, 32 or 64. The SCN macros are:

SCNdN
SCNi N
The d and i type conversion specifiers for a type i ntN t of N hits.

SCNdLEASTN
SCNi LEASTN
The d and i type conversion specifiers for a type i nt _| eastN t of N hits.

SCNdFASTN
SCNi FASTN
The d and i type conversion specifiers for atype i nt_fastN t of N bits.

SCNdMVAX
SCNi MAX
The d and i type conversion specifiers for a type i nt max_t.

SCNdPTR

SCNi PTR
The d and i type conversion specifier for a type i nt ptr _t.

- Page 339 -

SCNoN
SCNuN
SCNxN
The o, u and x type conversion specifiers for a type ui ntN t of N bits.

SCNoLEASTN
SCNuLEASTN
SCNxLEASTN
The o, u and x type conversion specifiers for a type ui nt _LEASTN t of N bits.

SCNoFASTN
SCNUFASTN
SCNx FASTN
The o, u and x type conversion specifiers for a type ui nt _FASTN t of N bits.

SCNo VAX
SCNuMAX
SCNx MAX
The o, u and x type conversion specifiers for a type ui nt max_t.

SCNoPTR
SCNUPTR
SCNxPTR
The o, u and x type conversion specifiers for a type ui nt ptr _t.

Return Value
Not applicable.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXXXIXHXXXXXXXXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example

intmax_t m
int ret;

ret = sscanf ("0x1000", "% SCNxMAX, &M ;

Screen Variables
Syntax

#i ncl ude <go32. h>
#i ncl ude <pc. h>

unsi gned | ong ScreenPri mary;

unsi gned | ong Scr eenSecondary;
ext ern unsi gned char ScreenAttri b;

Description

The first two variables (actually, they are #define'd aliases to fields in the _go32_info_block structure See
~go32_info_hlock) allow access to the video memory of the primary and secondary screens as if they were arrays.
To reference them, you must use dosmemget()/dosmemput() functions (See dosmemget, See dosmemput) or any one
of the far pointer functions (See _far*), as the video memory is not mapped into your default address space.

The variable ScreenAttrib holds the current attribute which is in use by the text screen writes. The attribute is
constructed as follows:

bits 0-3 -- foreground color;
bits 4-6 -- background color;
bit 7 -- blink on (1) or off (0).
Example

- Page 340 -

_farpokew(_dos ds, ScreenPrimary, (((unsigned short) attr) << 8) + char));

ScreenClear
Syntax

#i ncl ude <pc. h>

voi d Screend ear (voi d);

Description

This function clears the text screen. It overwrites it by blanks with the current background and foreground as
specified by ScreenAttrib (See Screen Variables).

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

Screend ear () ;

ScreenCols
Syntax

#i ncl ude <pc. h>

i nt ScreenCol s(void);

Description

This function returns the number of columns of the screen. It does so by looking at the byte at the absolute
address 40:4Ah in the BIOS area. In text modes, the meaning of number of columns is obvious; in graphics modes,
this value is the number of columns of text available when using the video BIOS functions to write text.

Return Vaue

The number of columns.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
Example

i nt avail abl e_col ums = ScreenCol s();

ScreenGetChar
Syntax

#i ncl ude <pc. h>

voi d ScreenCGet Char (int *ch, int *attr, int col, int row;

Description

This function stores the character and attribute of the current primary screen at row given by row and column given
by col (these are zero-based) into the integers whose address is specified by ch and attr. It does so by directly
accessing the video memory, so it will only work when the screen is in text mode. You can pass the value NULL

- Page 341 -

in each of the pointers if you do not want to retrieve the the corresponding information.

Warning: note that both the variables ch and attr are pointers to an i nt, not to a char! You must pass a pointer
to an i nt there, or your program will crash or work erratically.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example
int ch, attr;

ScreenCet Char (&ch, &attr, 0, 0);

ScreenGetCursor
Syntax

#i ncl ude <pc. h>

voi d ScreenGet Cursor (int *row, int *col um);

Description

This function retrieves the current cursor position of the default video page by calling function 3 of the interrupt
10h, and stores it in the variables pointed by row and column

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
Scr eenCet Cur sor (&wher ex, &wherey);

ScreenMode
Syntax

#i ncl ude <pc. h>

i nt ScreenMbde(void);

Description

This function reports the current video mode as known to the system BIOS. It does so by accessing the byte at
absolute address 40:49h.

Return Vaue

The video mode.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXXIXHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

vi deo_node = Screenhbde();

- Page 342 -

ScreenPutChar
Syntax

#i ncl ude <pc. h>

voi d ScreenPut Char (int ch, int attr, int col, int row;

Description

This function writes the character whose value is specified in ch with an attribute attr at row given by row and
column given by col, which are zero-based. It does so by directly accessing the video memory, so it will only work
when the screen is in text mode.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
ScreenPut Char (' R, (BLUE << 4) | LI GHTMAGENTA, 75, 0);

ScreenPutString
Syntax

#i ncl ude <pc. h>

voi d ScreenPut String(const char *str, int attr, int columm, int row);

Description

Beginning at screen position given by column and row, this function displays the string given by str. Each string
character gets the attribute given by attr. If column or row have values outside legal range for current video mode,
nothing happens. The variables row and column are zero-based (e.g., the topmost row is row 0).

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No

Example
ScreenPut String("Hello, world!", (BLUE << 4) | LIGHTBLUE, 20, 10);

ScreenRetrieve
Syntax

#i ncl ude <pc. h>

voi d ScreenRetri eve(void *buf);

Description

This function stores a replica of the current primary screen contents in the buffer pointed to by buf. It assumes
without checking that buf has enough storage to hold the data. The required storage can be computed as
ScreenRows () *ScreenCol s() *2 (See ScreenRows See ScreenCoals).

Return Vaue

- Page 343 -

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example
unsi gned *saved_screen = (unsi gned *) al | oca(Scr eenRows() *Scr eenCol s() *2;

ScreenRetri eve(saved_screen);

ScreenRows
Syntax

#i ncl ude <pc. h>

i nt ScreenRows(void);

Description

This function returns the number of rows of the text screen. It does so by looking at the byte at the absolute
address 40:84h in the BIOS area. This method works only for video adapters with their own BIOS extensions, like
EGA, VGA, SVGA etc.

Return Vaue

The number of rows.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No
Example

int rows = ScreenRows() ;

ScreenSetCursor
Syntax

#i ncl ude <pc. h>

voi d ScreenSet Cursor (int row, int colum);

Description

This function moves the cursor position on the default video page to the point given by (zero-based) row and
column, by calling function 2 of interrupt 10h.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

ScreenSet Cursor (0, 0); /* home the cursor */

ScreenUpdate
Syntax

- Page 344 -

#i ncl ude <pc. h>

voi d ScreenUpdat e(voi d *buf);

Description

This function writes the contents of the buffer buf to the primary screen. The buffer should contain an exact replica
of the video memory, including the characters and their attributes.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NOo No

Example

Scr eenUpdat e(saved_screen);

ScreenUpdateline
Syntax

#i ncl ude <pc. h>

voi d ScreenUpdat eLi ne(void *buf, int row;

Description

This function writes the contents of buf to the screen line number given in row (the topmost line is row 0), on the
primary screen.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

Example
ScreenUpdat eLi ne(li ne_buf, 10);

ScreenVisualBell
Syntax

#i ncl ude <pc. h>

voi d ScreenVi sual Bel | (voi d);

Description

This function flashes the screen colors to produce the effect of ‘‘visual bell’. It does so by momentarily inverting
the colors of every character on the screen.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

- Page 345 -

ScreenVi sual Bel | ();

searchpath
Syntax

#i ncl ude <dir. h>
char * searchpat h(const char *file);

Description

Given a name of a file in file, searches for that file in a list of directories, including the current working directory
and directories listed in the PATH environment variable, and if found, returns the file name with leading directories
prepended, so that the result can be used to access the file (e.g. by caling open or st at).

If file includes a drive letter or leading directories, sear chpat h first tries that name unaltered, in case it is aready
a fully-qualified path, or is relative to the current working directory. If that fails, it tries every directory in PATH in
turn. Note that this will find eg. c:/f oo/ bar/ baz. exe if you pass bar/ baz. exe to sear chpat h and if
c:/foo is mentioned in PATH

Return Vaue

When successfull, the function returns a pointer to a static buffer where the full pathname of the found file is
stored. Otherwise, it returns NULL. (The static buffer is overwritten on each call.)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

This function is provided for compatibility with Borland’s library. However, note that the Borland version disregards
the leading directories atogether and searches for the basename only. Thus, it will happily find e.g.

c:/fool bar/ baz. exe, even if the directory c:/f oo/ bar doesn't exist, provided that baz. exe is somewhere
on your PATH We think this is a bug, so DJGPP's implementation doesn’'t behave like that.

Example

printf("% was found as %\ n", argv[1l], searchpath(argv[1]));

seekdir
Syntax

#i ncl ude <di rent. h>

voi d seekdir (DIR*dir, longloc);

Description

This function sets the location pointer in dir to the specified loc. Note that the value used for loc should be either
zero or a value returned by tel | di r (See teldir). The next call to readdi r (See readdir) will read whatever
entry follows that point in the directory.

Return Value
None.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
Example
int g=telldir(dir);
do_stuff();
seekdir(dir, q);

select
Syntax

#i ncl ude <tine. h>
#i ncl ude <string. h>

i nt

- Page 346 -

sel ect (i nt nfds,

fd _set *readfds,

fd_set *witefds,

fd_set *exceptfds,
struct tineval *tinmeout)

Description
This function waits for files to be ready for input or output, or to have exceptiona condition pending, or for a
timeout.

Each f d_set variable is a bitmap representation of a set of file descriptors, one bit for every descriptor. The
following macros shall be used to deal with these sets (in the table below, p is a pointer to an fd_set object and
n is a file descriptor):

FD_ZERQ(p)
Initialize the set p to al zeros.

FD_SET(n, p)
Set member n in set p.

FD_CLR(n, p)
Clear member n in set p.

FD_I SSET(n, p)
Return the value of member n in set p.

FD_SETSI ZE
The maximum number of descriptors supported by the system.

The nfds parameter is the number of bits to be examined in each of the fd_set sets: the function will only check
file descriptors O through nf ds - 1, even if some bits are set for descriptors beyond that.

On input, some of the bits of each one of the fd_set sets for which the function should wait, should be set using
the FD_SET macro. sel ect examines only those descriptors whose bits are set.

Any of readfds, witefds, and except fds can be a NULL pointer, if the caller is not interested in testing the
corresponding conditions.

On output, if sel ect returns a non-negative value, each non-NULL argument of the three sets will be replaced with
a subset in which a bit is set for every descriptor that was found to be, respectively, ready for input, ready for
output, and pending an exceptional condition. Note that if sel ect returns -1, meaning a failure, the descriptor sets
are unchanged, so you should always test the return value before looking at the bits in the returned sets.

The timeout value may be a NULL pointer (no timeout, i.e., wait forever), a pointer to a zero-value structure (poll
mode, i.e, test once and exit immediately), or a pointer to a struct ti nmeval variable (timeout: sel ect will
repeatedly test al the descriptors until some of them become ready, or the timeout expires).

struct tinmeval is defined as follows:
struct tineval {
time_t tv_sec;
| ong tv_usec;

Return Vaue

On successfull return, sel ect returns the number of files ready, or O, if the timeout expired. The input sets are
replaced with subsets that describe which files are ready for which operations. If sel ect returns O (i.e., the
timeout has expired), al the non-NULL sets have al their bits reset to zero.

On failure, sel ect returns -1, sets er r no to a suitable value, and leaves the descriptor sets unchanged.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No
Example

- Page 347 -

struct tinmeval tineout;
fd set read fds, wite fds;
int i, select _result;

timeout.tv_sec =5; /* 5-second ti neout */
ti meout.tv_usec = 0;

/* Display status of the 5fil es open by default. */
for (i =0; i <5; i++)

{

FD_ZERO (& ead_f ds);
FD _SET (i, & ead_fds);
select _result =select (i +1, &ead fds, 0, 0, &ineout);

if (select _result ==-1)

{

fprintf(stderr, "%l: Failure for input”, i);
perror("");

el se

fprintf(stderr,

"0d: % ready for input\n", i,

select _result ?2"" : "NOT");

FD ZERO (&wite_fds);

FD SET (i, &wite_fds);

select _result =select (i +1, 0, &wite fds, 0, &ineout);

if (select _result ==-1)

{

fprintf(stderr, "%l: Failure for output", i);
perror("");

el se

fprintf(stderr,
"0d: Y% ready for output\n", i,
select _result ?2"" : "NOT");

}

Implementation Notes
The following notes describe some details pertinent to the DJGPP implementation of sel ect:

« While sel ect waits for the timeout to expire, it repeatedly calls the _ dpm _yi el d function (See
__dpmi_yield), so that any other programs that run at the same time (e.g., on Windows) get more CPU time.

A file handle that belongs to a FI LE object created by f open or f dopen (See fopen) for which f eof or
ferror return non-zero, will be reported in the except f ds set; aso, such a handle will be reported not
input-ready if there are no pending buffered characters in the FI LE object. This might be a feature or a bug,
depending on your point of view; in particular, Unix implementations usually don't check buffered input.
Portable programs should refrain from mixing sel ect with buffered 1/0.

« DOS doesn’'t support exceptional conditions, so file handles used for unbuffered 1/O will never be marked in
except f ds.

 DOS aways returns an output-ready indication for a file descriptor connected to a disk file. So use of
writ ef ds is only meaningful for character devices.

e The usua text-mode input from the keyboard and other character devices is line-buffered by DOS. This
means that if you type one character, sel ect will indicate that file handle O is ready for input, but a call to
get ¢ will still block until the Enter key is pressed. If you need to make sure that reading a single character
won't block, you should read either with BIOS functions such as get key (See getkey) or with raw input
DOS functions such as get ch (See getch), or switch the handle to binary mode with a call to set node
(See setmode).

__set fd flags
Syntax
#i ncl ude <li bc/fd_props. h>

void set fd flags(int fd, unsigned |l ong flags);
- Page 348 -

Description

This internal function adds the combination of flags flags to the flags associated with the file descriptor fd. The
flags are some properties that may be associated with a file descriptor (See _ set fd_properties).

The caller should first check that fd has properties associated with it, by calling __has_fd_properties (See
__has fd_properties).

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

__set_fd properties
Syntax

#i ncl ude <li bc/fd_props. h>

int set fd properties(int fd, const char *filenane, int open_flags);

Description
This is an internal function that stores information about the file descriptor fd in a fd_properti es struct. It is
caled by open and its helper functions.

The file name stored in fd_properti es is the result of the _truenane function (See _truename) on filename
The open_flags are scanned and the temporary and append flags are stored in the f | ags field in fd_properti es.

struct fd_properties

{

unsi gned char ref _count;
char *fil enane;

unsi gned | ong fl ags;

fd properties *prev;

fd _properties *next;

fl ags can contain a combination of bits:

FI LE_DESC TEMPORARY
Delete fi | ename when ref _count becomes zero.

FI LE_DESC ZERO FI LL_EOF_GAP
Tell wite and _wite to test for file offset greater than EOF. Set by | seek and | | seek.

FI LE_DESC DONT_FI LL_EOF_GAP
Don't test for the EOF gap. Set automatically for stdin, stdout, and NUL. Can also be set by an FSEXT.

FI LE_DESC _PI PE
The file descriptor is used in emulating a pipe.

FI LE_DESC_APPEND
The file pointer will be set to the end of file before each write.

FI LE_DESC_DI RECTORY
The file descriptor is for a directory.

The f1 ags can be manipulated using __set _fd flags (See set fd flagg, clear fd flags (See
_ clear fd flags) and __get _fd _fl ags (See _ get fd flagy.

The file name can be retrieved using __get _fd_nane (See _ get fd name).

For more information, see __cl ear _fd_properties (See _ clear fd properties and __ dup_fd_properties

- Page 349 -

(See __dup_fd_properties).
Return Value

Returns 0 on success. Returns -1 when unable to store the information.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

_set_screen_lines
Syntax

#i ncl ude <coni o. h>

void set _screen_lines(int nlines);

Description

This function sets the text screen width to 80 and its height to the value given by nlines which can be one of the
following: 25, 28, 35, 40, 43 or 50. On a CGA, only 25-line screen is supported. On an EGA, you can use 25, 35
and 43. VGA, PGA and MCGA support al of the possible dimensions. The number of columns (i.e., screen width)
is 80 for al of the above resolutions, because the standard EGA/VGA has no way of changing it. After this
function returns, calls to gettexti nfo() will return the actual screen dimensions as set by
_set_screen_lines(). That is, you can eg. test whether _set _screen_Ilines() succeeded by checking
the screen height returned by gett exti nfo() against the desired height. This function has a side effect of
erasing the screen contents, so application programs which use it should make their own arrangements to redisplay it.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

setbuf
Syntax

#i ncl ude <stdi 0. h>
voi d setbuf (FILE *fil e, char *buffer);

Description

This function modifies the buffering characteristics of file. First, if the file already has a buffer, it is freed. If there
was any pending data in it, it is lost, so this function should only be used immediately after a call to f open.

If the buffer passed is NULL, the file is set to unbuffered. If a non-NULL buffer is passed, it must be at least
BUFSI Z bytes in size, and the file is set to fully buffered.

See setbuffer. See setlinebuf. See setvbuf.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXKXXEXXXEXKXXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 350 -

Example
set buf (stdout, mal |l oc(BUFSI 2)) ;

setbuffer
Syntax

#i ncl ude <stdi o. h>
voi d setbuffer(FILE*file, char *buffer, int | ength);

Description

This function modifies the buffering characteristics of file. First, if the file aready has a buffer, it is freed. If there
was any pending data in it, it is lost, so this function should only be used immediately after a call to f open.

If the buffer passed is NULL, the file is set to unbuffered. If a non-NULL buffer is passed, it must be at least size
bytes in size, and the file is set to fully buffered.

See setbuf. See setlinebuf. See setvbuf.
Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
set buf f er (stdout, nmal | oc(10000), 10000);

setcbrk
Syntax

#i ncl ude <dos. h>
voi d set cbrk(int check);

Description

Set the setting of the Ctrl-Break checking flag in MS-DOS. If check is zero, checking is not done. If nonzero,
checking is done.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

_Setcursortype
Syntax

#i ncl ude <coni o. h>

void setcursortype(int _type);
Description
Sets the cursor type. _type is one of the following:

_NOCURSCR
No cursor is displayed.

_SOLI DCURSOR
- Page 351 -

A solid block is displayed.

_NORMAL CURSOR
An underline cursor is displayed.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIHXHXIEXHXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

setdate
Syntax

#i ncl ude <dos. h>

voi d setdate(struct date *ptr);

Description
This function sets the current time.

For the description of struct date, see See getdate Also see See settime

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

struct date d;
set dat e(&d) ;

setdisk
Syntax

#i nclude <dir. h>

int setdisk(int drive);
Description
This function sets the current disk (0=A).
See aso See getdisk

Return Vaue
The highest drive actually present that the system can reference.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No

Example
printf("There are % drives\n", setdi sk(getdisk()));

- Page 352 -

setenv
Syntax

#i ncl ude <stdlib. h>

i nt setenv(const char *nanme, const char *value, int rewite);

Description

This function sets the environment variable name to value If rewrite is set, then this function will replace any
existing value. If it is not set, it will only put the variable into the environment if that variable isn't aready
defined.

Return Vaue

Zero on success, -1 on failure; errno is set to the reason for failure: EI NVAL if the name parameter is NULL or
points to an empty string, or ENOVEM if there was insufficient memory to add the variable to the environment.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIIXHXKKIEXHXHXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. This function is new to the Posix 1003.1-200x draft. Our implementation allows name to contain a = while
the Posix spec does not; the portion of name up to but not including the = will be used as the name for the
environment variable.

setftime
Syntax

#i ncl ude <dos. h>
int setftinme(int handle, struct ftinme *ftimep);

Description

This function sets the modification time of a file. Note that since writing to a file and closing a file opened for
writing also sets the modification time, you should only use this function on files opened for reading.

See getftime, for the description of struct ftine.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXKXXXXXXXXXX NO No

Example

int g=open("data.txt", O RDONLY);

struct ftimef;

f.ft tsec=f.ft mn=f.ft_hour =f.ft _day =f.ft _ nonth=f.ft_year = 0;
setftine(q, &);

cl ose(q);

setgid
Syntax

#i ncl ude <uni std. h>

int setgid(gid_t gid);
Description

- Page 353 -

This function is smulated, since MS-DOS does not support group IDs.

Return Value
If gid is equal to that returned by See getgid returns zero. Otherwise, returns -1 and sets er r no to EPERM.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEKXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXX No 1003.2-1992; 1003.1-2001

setgrent
Syntax

#i ncl ude <grp. h>

voi d setgrent (voi d);

Description

This function should be called before any call to get grent, get grgi d, or get gr nam to start searching the
groups’ list from the beginning. See getgrent.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No
setitimer
Syntax

#i ncl ude <sys/tine. h>
externlong djgpp_clock tick interval;

struct tineval {
time_t tv_sec;
| ong tv_usec;

struct itinerval {
struct tinmeval it _interval; /* timer interval */
struct tineval it_value; /* current val ue */

b

int setitinmer(int which, struct itinerval *val ue,
struct itinmerval *oval ue);

Description

Each process has two interval timers, | TI MER_REAL and | TI MER_PROF, which raise the signals SI GALRM and
SI GPROF, respectively. These are typically used to provide al ar mand profiling capabilities.

This function changes the current value of the interval timer specified by which to the values in structure value
The previous value of the timer is returned in ovalue if it is not a NULL pointer. When the timer expires, the
appropriate signal is raised.

Please see the documentation for si gnal (See signal) for restrictions on signal handlers.

If value is a NULL pointer, setiti nmer stores the previous timer value in ovalue (if it is non-NULL), like
getitinmer does, but otherwise does nothing.

A timer is defined by the i ti nmerval structure. If the it _val ue member is non-zero it specifies the time to the
next timer expiration. If it _i nterval is non-zero, it specifies the value with which to reload the timer upon
expiration. Setting i t _val ue to zero disables a timer. Setting i t _i nt erval to zero causes the timer to stop
after the next expiration (assuming that i t _val ue is non-zero).

- Page 354 -

Although times can be given with microsecond resolution, the granularity is determined by the timer interrupt
frequency. Time values smaller than the system clock granularity will be rounded up to that granularity, before they
are used. This means that passing a very small but non-zero value in val ue->it _interval.tv_usec will
cause the system clock granularity to be stored and returned by the next call to getiti ner. See the example
below.

If an application changes the system clock speed by reprogramming the timer chip, it should make the new clock
speed known to seti ti mer, otherwise intervals smaller than the default PC clock speed cannot be set with a call
to setitimer due to rounding up to clock granularity. To this end, an externa variable
__djgpp_clock_tick_interval is provided, which should be set to the number of microseconds between two
timer ticks that trigger Interrupt 8. The default value of this variable is - 1, which causes setiti mer to work with
54926 microsecond granularity that corresponds to the standard 18.2Hz clock frequency. The library never changes
the value of __dj gpp_cl ock_tick_interval.

Return Vaue

Returns 0 on success, -1 on failure (and sets er r no).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Bugs
This version uses ucl ock (See uclock) to determine the time of expiration. Under Windows 3.X, this fails because

the OS reprograms the timer. Under Windows 9X, ucl ock sometimes reports erratic (non-increasing) time values;
in these cases the timer might fire at a wrong time.

A misfeature of Windows 9X prevents the timer tick interrupt from being delivered to programs that are in the
background (i.e. don’t have the focus), even though the program itself might continue to run, if you uncheck the
Background: Always suspend property in the Property Sheets. Therefore, the timers will not work in background
programs on Windows 9X.

Also, debuggers compiled with DJGPP v2.02 and earlier cannot cope with timers and report SI GSEGV or SI GABRT,
since signals were not supported in a debugged program before DJGPP v2.03.

Example

/* Find out what is the systemcl ock granularity. */
struct itimerval tv;

tv.it _interval.tv_sec = 0;

tv.it _interval.tv_usec =1,

tv.it_value.tv_sec =0;

tv.it_value.tv_usec = 0;

setitinmer (I TI MER REAL, &tv, 0);

setitinmer (I TI MER_ REAL, O, &tv);

printf ("Systemclock granularity: % d nicroseconds.\n",
tv.it_interval.tv_usec);

setjmp
Syntax

#i ncl ude <setj np. h>
int setjnp(jnmp_buf j);

Description

This function stores the complete CPU state into j. This information is complete enough that | ongj np (See
longimp) can return the program to that state. It is also complete enough to implement coroutines.

Return Vaue

This function will return zero if it is returning from its own call. If longjmp is used to restore the state, it will
return whatever value was passed to longjmp, except if zero is passed to longjmp it will return one.

Portability

- Page 355 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHXIIXEXXXEXXXXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
jmp_buf j;
if (setjnmp(j))
return;
do_sonet hi ng();
l'ongj mp(j, 1);
setlinebuf

Syntax

#i ncl ude <stdi o. h>
voi d setlinebuf (FILE *file);

Description

This function modifies the buffering characteristics of file. First, if the file already has a buffer, it is freed. If there
was any pending data in it, it is lost, so this function should only be used immediately after a call to f open.

Next, a buffer is alocated and the file is set to line buffering.
See setbuf. See setlinebuf. See setvbuf.
Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

set|inebuf (stderr);
setlocale
Syntax

#i ncl ude <l ocal e. h>
char *setl ocal e(i nt category, const char *l ocal e);

Description
This function sets part or al of the current locale. The category is one of the following:

LC ALL
Set all parts of the locale.

LC _COLLATE
Set the collating information.

LC CTYPE
Set the character type information.

LC_MONETARY
Set the monetary formatting information.

LC _NUMERI C
Set the numeric formatting information.

LC TI ME
Set the time formatting information.

- Page 356 -

The locale should be the name of the current locale. Currently, only the "C" and "POSIX" locales are supported. If
the locale is NULL, no action is performed. If locale is "", the locale is identified by environment variables
(currently not supported).

See localeconv.

Return Vaue
A dtatic string naming the current locale for the given category, or NULL if the requested locale is not supported.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
setl| ocal e(LC ALL, "C");

setmntent
Syntax

#i ncl ude <mtent. h>

FI LE *set rmt ent (char *fil enanme, const char *node);

Description

This function returns an open FI LE* pointer which can be used by get mt ent (See getmntent). The arguments
filename and mode are aways ignored under MS-DOS, but for portability should be set, accordingly, to the name of
the file which describes the mounted filesystems and the open mode of that file (like the mode argument to f open,
See fopen). (There is no single standard for the name of the file that keeps the mounted filesystems, but it is
usualy, although not aways, listed in the header <t ent . h>.)

Return Vaue

The FI LE* pointer is returned. For MS-DOS, this FI LE* is not a real pointer and may only be used by
get mt ent.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

#i ncl ude <Mt ent . h>

#i f defi ned(MNT_MNTTAB)

#defi ne MNTTAB_FI LE MNT_MNTTAB
#el i f defi ned(MNTTABNAME)

#def i ne MNTTAB_FI LE MNTTABNAME
#el se

#defi ne MNTTAB FI LE "/ etc/ mttab"
#endi f

FILE*mmt _fp =setmtent (MNTTAB FILE, "r");

setmode
Syntax

#i ncl ude <i 0. h>
int setnmode(int file, int node);

Description

This function sets the mode of the given file to mode, which is either O TEXT or O Bl NARY. It will also set the
file into either cooked or raw mode accordingly, and set any FI LE* objects that use this file into text or binary
mode.

- Page 357 -

When called to put file that refers to the console into binary mode, set node will disable the generation of the
signals SI G NT and SI GQUI T when you press, respectively, CtrlC and Ctrl\ (CtrIBREAK will still cause

SI A NT), because many programs that use binary reads from the console will also want to get the ~C and "\ keys.
You can use the __dj gpp_set _ctrl _c library function (See __ djgpp_set _ctrl_c) if you want CtrlC and CtrlA to
generate signals while console is read in binary mode.

Note that, for buffered streams (FI LE*), you must cal f fl ush (See fflush) before set node, or cal set node
before writing anything to the file, for proper operation.

Return Vaue

When successful, the function will return the previous mode of the given file. In case of failure, -1 is returned and
errno is set.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

set node(0, O BI NARY);
setpgid
Syntax

#i ncl ude <uni std. h>
int setpgid(pid_t _pid, pid_t pgid);

Return Vaue
-1 (EPERM) if _pgid is not your current pid, else zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXKXXKXXXXXKXXEXXXEXXXEXXXEXXXXKIXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
setpwent

Syntax

#i ncl ude <pwd. h>
voi d set pwent (voi d) ;

Description
This function reinitializes get pwent so that scanning will start from the start of the list. See getpwent.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
setrlimit

Syntax

#i ncl ude <sys/resource. h>
int setrlimt (int rltype, const struct rlimt *rlimtp);
Description

This function sets new limit pointed to by rlimitp on the resource limit specified by ritype. Note that currently it
always fails.

- Page 358 -

Return Vaue

Zero on success, nonzero on failure.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No
Setsid

Syntax

#i ncl ude <uni std. h>
pid t setsid(void);

Description
This function does not do anything. It exists to assist porting from Unix.

Return Vaue
Return value of See getpid

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEKXXEKXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
Setstate

Syntax

#i ncl ude <stdlib. h>
char *setstate(char *arg _state);

Description
Restores the random number generator (See random) state from pointer arg_state to state array.

Return Vaue

Pointer to old state information.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
Settime

Syntax

#i ncl ude <dos. h>

void settime(struct time *ptr);
Description
This function sets the current time.

For the description of struct time, see See gettime Also see See setdate

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIEXHXXKIEKKXXKIXEXXXXIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

- Page 359 -

struct tinet;
settime(&);

settimeofday
Syntax

#i ncl ude <ti nme. h>
int settimeofday(struct tinmeval *tp, ...);

Description

Sets the current GMT time. For compatibility, a second argument is accepted. See gettimeofday, for information on
the structure types.

Return Vaue

Zero if the time was set, nonzero on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No
setuid

Syntax

#i ncl ude <uni std. h>
int setuid(uid_ t uid);

Description
This function is smulated, since MS-DOS does not support user 1Ds.

Return Value
If uid is equal to that returned by See getuid, returns zero. Otherwise, returns -1 and sets er r no to EPERM.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXXXXXXXXX No 1003.2-1992; 1003.1-2001
setvbuf

Syntax

#i ncl ude <stdi o. h>
int setvbuf (FILE*file, char *buffer, int type, int | ength);

Description

This function modifies the buffering characteristics of file. First, if the file already has a buffer, it is freed. If there
was any pending data in it, it is lost, so this function should only be used immediately after a call to f open.

If the type is _| ONBF, the buffer and length are ignored and the file is set to unbuffered mode.

If the type is _| OLBF or _| OFBF, then the file is set to line or fully buffered, respectively. If buffer is NULL, a
buffer of size size is created and used as the buffer. If buffer is non-NULL, it must point to a buffer of at least size
size and will be used as the buffer.

See setbuf. See setbuffer. See setlinebuf.

Return Vaue

Zero on success, nonzero on failure.
Portability

- Page 360 -

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHXIIXEXXXEXXXXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
set vbuf (stderr, NULL, _I OLBF, 1000);

sigaction
Syntax

#i ncl ude <si gnal . h>

i nt sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

Description

This function allows to examine and/or change the action associated with a signal sig. The struct si gaction
structure, defined by the header file si gnal . h, is declared as follows:

struct sigaction {

int sa flags; /* flags for the acti on;

* currently ignored */

void (*sa_handler)(int); /* the handler for the signal */
sigset _t sa_mask; /* additional signals to be bl ocked */

b

The sa_handl er member is a signal handler, see See signal. The sa_nmask member defines the signals, in
addition to sig, which are to be blocked during the execution of sa_handl er.

The si gacti on function sets the structure pointed to by oact to the current action for the signal sig, and then
sets the new action for sig as specified by act. If the act argument is NULL, si gacti on returns the current signal
action in oact, but doesn't change it. If the oact argument is a NULL pointer, it is ignored. Thus, passing NULL
pointers for both act and oact is a way to see if sig is a valid signa number on this system (if not, si gacti on
will return -1 and set err no).

Return Vaue

0 on success, -1 for illega vaue of sig

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKIXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
sigaddset

Syntax

#i ncl ude <si gnal . h>

i nt sigaddset (sigset_t *set, int signo)

Description

This function adds the individual signal specified by signo the set of signals pointed to by set.
Return Value

0 upon success, -1 if set is a NULL pointer, or if signo is specifies an unknown signal.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXIXEXHXXXIXEXXXIXIXHXKKIEXHXIXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

sigdel set
Syntax

#i ncl ude <si gnal . h>

- Page 361 -

i nt sigdel set (sigset_t *set, int signo)

Description

This function removess the individual signal specified by signo from the set of signals pointed to by set.
Return Value

0 upon success, -1 if set is a NULL pointer, or if signo is specifies an unknown signal.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXEXHXIXXXIXHXIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

sigemptyset
Syntax

#i ncl ude <si gnal . h>

i nt sigenptyset (sigset_t *set)

Description

This function initializes the set of signals pointed to by set to exclude all signals known to the DJGPP runtime
system. Such an empty set, if passed to si gpr ocrmask (See sigprocmask), will cause al signals to be passed
immediately to their handlers.

Return Vaue

0 upon success, -1 if set is a NULL pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXKXXXEXXXEXXXKXXIXHXXHXXIXHKXXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001
sigfillset
Syntax

#i ncl ude <si gnal . h>

int sigfillset (sigset_t *set)

Description

This function initializes the set of signals pointed to by set to include al signals known to the DJGPP runtime
system. Such a full set, if set by si gprocnmask (See sigprocmask), will cause al signals to be blocked from
delivery to their handlers. Note that the set returned by this function only includes signals in the range

SI GABRT. . SI GTRAP, software interrupts and/or user-defined signals aren’t included.

Return Value
0 upon success, -1 if set is a NULL pointer.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
Example

sigset t full _set, prev_set;

sigfillset (& ull_set);
si gprocmask (SI G UNBLOCK, & ull set, &prev_set);

sigismember
Syntax

- Page 362 -

#i ncl ude <si gnal . h>

i nt sigisnmenber (sigset_t *set, int signo)

Description
This function checks whether the signal specified by signo is a member of the set of signals pointed to by set.

Return Vaue

1 if the specified signal is a member of the set, O if it isn't, or if signo specifies an unknown signal, -1 if set is a
NULL pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

siglongimp
Syntax

#i ncl ude <setj mp. h>
i nt siglongjnp(sigjnp_buf env, int val);

Description
See longjmp.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIXIXHXKKIEXHXHXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
signal
Syntax

#i ncl ude <si gnal . h>

void (*signal (int sig, void (*func)(int)))(int);

Description

Signals are generated in response to some exceptional behavior of the program, such as division by 0. A signal can
also report some asynchronous event outside the program, such as someone pressing a CtrlIBREAK key combination.

Signals are numbered 0..255 for software interrupts and 256..287 for exceptions (exception number plus 256); other
implementation-specific codes are specified in <si gnal . h> (see below). Every signal is given a mnemonic which
you should use for portable programs.

By default, signal SI GQUI T is discarded. This is so programs ported from other DOS environments, where
SI GQUI T is generally not supported, continue to work as they originally did. If you want SI GQUI T to abort with a
traceback, install __ dj gpp_traceback_exit as its handler (See _ djgpp_traceback exit).

The default handling for the rest of the signals is to print a traceback (a stack dump which describes the sequence
of function calls leading to the generation of the signal) and abort the program by calling _exit (See _exit). As
an exception, the default handler for the signal SI G NT doesn’t print the traceback, and calls exi t instead of
_exit, when the INTR key (Ctrl-C by default) is pressed, so that programs could be shut down safely in this
manner. SI G NT raised by CtrlBREAK does generate the traceback.

The function si gnal alows you to change the default behavior for a specific signal. It registers func as a signal
handler for signal number sig. After you register your function as the handler for a particular signa, it will be
called when that signal occurs. The execution of the program will be suspended until the handler returns or cals

| ongj np (See longjmp).

The state of the floating-point unit (FPU) is not saved, before entering a signal handler. It can be extremely costly
to save the FPU state. Most signal handlers do not use floating-point operations, so the overhead of saving FPU
state is avoided. An example of a signal handler that saves the FPU state is the function dbgsi g in

src/ debug/ common/ dbgcom c in the DJGPP sources.

- Page 363 -

You may pass SI G_DFL as the value of func to reset the signal handling for the signal sig to default (also See
__djgpp_exception_toggle for a quick way to restore all the signals handling to default), SI G_ERR to force an error
when that signal happens, or SI G_| GN to ignore that signal. Signal handlers that you write are regular C functions,
and may call any function that the ANSI/POSIX specs say are valid for signal handlers. For maximum portability, a
handler for hardware interrupts and processor exceptions should only make calls to si gnal , assign values to data
objects of type vol atile sig _atom c_t (defined as i nt on <si gnal . h>) and return. Handlers for hardware
interrupts need also be locked in memory (so that the operation of virtual memory mechanism won't swap them
out), See _ dpmi_lock _linear_region, locking memory regions. Handlers for software interrupts can also terminate by
caling abort, exit or | ongj np.

The following signals are defined on <si gnal . h>:

S| GABRT
The Abort signal. Currently only used by the assert macro to terminate the program when an assertion
fails (See assert), and by the abort function (See abort).

S| GFPE
The Floating Point Error signal. Generated in case of divide by zero exception (Int 00h), overflow exception
(Int 04h), and any x87 co-processor exception, either generated by the CPU (Int 10h), or by the co-processor
itself (Int 75h). The co-processor status word is printed by the default handler for this signal. See _status87,
for the definition of the individual bits of the status word.

The DJGPP startup code masks all numeric exceptions, so this signal is usually only triggered by an integer
divide by zero operation. If you want to unmask some of the numeric exceptions, see See _control87.

SI A LL
The Invalid Execution signal. Currently only generated for unknown/invalid exceptions.

SI G NT
The Interrupt signal. Generated when an INTR key (Ctrl-C by default) or CtrlIBREAK (Int 1Bh) key is hit.
Note that when you open the console in binary mode, or switch it to binary mode by a call to set node
(See setmode), generation of SI A NT as result of Ctrl-C key is disabled. This is so for programs (such as
Emacs) which want to be able to read the *C character as any other character. Use the library function
__djgpp_set_ctrl _c to restore SI A NT generation when Ctrl-C is hit, if you need this. See
__djgpp_set_ctrl_c, for details on how this should be done. CtrlBREAK always generates SI G NT.

DJGPP hooks the keyboard hardware interrupt (Int 09h) to be able to generate SI G NT in response to the
INTR key; you should be aware of this when you install a handler for the keyboard interrupt.

Note that the key which generates SI G NT can be changed with a call to __dj gpp_set _si gi nt _key
function. See _ djgpp_set sigint_key.

S| GSEGV
The invalid storage access (Segmentation Violation) signal. Generated in response to any of the following
exceptions. Bound range exceeded in BOUND instruction (Int 05h), Double Exception or an exception in the
exception handler (Int 08h), Segment Boundary violation by co-processor (Int 09h), Invalid TSS (Int OAh),
Segment Not Present (Int 0Bh), Stack Fault (Int OCh), General Protection Violation (Int ODh), or Page Fault
(Int OEh). Note that Int 09h is only generated on 80386 processor; i486 and later CPUs cause Int ODh when
the co-processor accesses memory out of bounds. The Double Exception, Invalid TSS, Segment Not Present,
Stack Fault, GPF, and Page Fault exceptions will cause an error code to be printed, if it is non-zero.

S| GTERM
The Termination Request signal. Currently unused.

The signals below this are not defined by ANSI C, and cannot be used when compiling under - ansi option
to gcc.

S| GALRM
The Alarm signal. Generated after certain time period has passed after a call to al ar mlibrary function (See
alarm).

S| GHUP
The Hang-up signal. Currently unused.

SI &I LL
The Kill signal. Currently unused.

S| GPI PE

- Page 364 -

The Broken Pipe signal. Currently unused.

SIGQUI T
The Quit signal. Generated when the QUIT key (Ctrl-\ by default) is hit. The key that raises the signal can
be changed with a call to __dj gpp_set _si gquit_key function. See djgpp_set sigquit key. By
default, SI GQUI T is discarded, even if its handler is SI G_DFL, so that DOS programs which don’t expect it
do not break. You can change the effect of SI GQUI T to abort with traceback by installing
__djgpp_traceback _exit asits handler. See djgpp_traceback exit.

DJGPP hooks the keyboard hardware interrupt (Int 09h) to be able to generate SI GQUI T in response to the
QUIT key; you should be aware of this when you install a handler for the keyboard interrupt.

S| GUSR1
User-defined signal no. 1.

S| GUSR2
User-defined signal no. 2.

The signals below are not defined by ANSI C and POSIX, and cannot be used when compiling under either
-ansi or - posi x options to gcc.

S| GTRAP

The Trap Instruction signal. Generated in response to the Debugger Exception (Int 01h) or Breakpoint
Exception (Int 03h).

S| GNOFP
The No Co-processor signal. Generated if a co-processor (floating-point) instruction is encountered when no
co-processor is instaled (Int O7h).

SI GTI MR
The Timer signal. Used by the setitiner and al ar mfunctions (See setitimer, and See aarm).

S| GPROF
The Profiler signal. Used by the execution profile gathering code in a program compiled with - pg option to
gcc.

Return Vaue
The previous handler for signal sig, or SI G_ERR if the value of sig is outside legal limits.

Signal Mechanism Implementation Notes

Due to subtle aspects of protected-mode programs operation under MS-DOS, signal handlers cannot be safely called
from hardware interrupt handlers. Therefore, DJGPP exception-handling mechanism arranges for the signal handler to
be called on the first occasion that the program is in protected mode and touches any of its data. This means that
if the exception occurs while the processor is in rea mode, like when your program calls some DOS service, the
signal handler won't be called until that call returns. For instance, if you call read (or scanf, or get s) to read
text from the console and press Ctrl-C, you will have to press Enter to terminate the r ead call to cause the signal
handler for SI G NT to be called. Another significant implication of this implementation is that when the program
isn't touching any of its data (like in very tight loops which only use values in the registers), it cannot be
interrupted.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

sigpending
Syntax

#i ncl ude <si gnal . h>

i nt sigpending (sigset_t *set)

Description

This function retrieves the signals that have been sent to the program, but are being blocked from delivery by the
program’s signal mask (See sigprocmask). The bit-mapped value which describes the pending signals is stored in the

- Page 365 -

structure pointed to by set. You can use the si gi snenber function (See sigismember) to see what individual
signals are pending.

Return Vaue

0 on success, -1 on failure (and errno set to EFAULT).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXKXIEXHXHKIEXHXHXIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
Example

#i ncl ude <si gnal . h>
si gset _t pendi ng_signal s;

/* 1f SIANTis pending, forceit to beraised. */
i f (sigpending (&pending_signals) ==0
&& si gi smenber (&pendi ng_signals, SIG NT))

sigset _t new set, old set;
si genptyset (&new set);
si gaddset (&new set, SI G NT);

/* This sigprocmask() call will raise SIG NT. */
si gprocmask (SI G UNBLOCK, &new set, &ol d_set);

/* Restore mask */
si gprocmask (SI G_ SETMASK, &ol d_set, &new set);
}

sigprocmask
Syntax

#i ncl ude <si gnal . h>

i nt sigprocmask (i nt how, const sigset t *new set, sigset t *old_set)

Description

This function is used to examine and/or change the program’s current signal mask. The current signal mask
determines which signals are blocked from being delivered to the program. A signa is blocked if its bit in the
mask is set. (See sigismember, See sigaddset, See sigdelset, See sigemptyset, See sidfillset, for information about
functions to manipulate the signa masks.) When a blocked signal happens, it is not delivered to the program until
such time as that signal is unblocked by another call to si gpr ocnmask. Thus blocking a signal is an aternative to
ignoring it (by setting its handler to SI G_| GN See signal), but has an advantage of not missing the signal entirely.

The vaue of the argument how determines the operation: if it is SI G BLOCK, the set pointed to by the argument
new_set is added to the current signal mask. If the value is SI G_UNBLOCK, the set pointed to by new_set is
removed from the current signal mask. If the value is SI G_SETMASK, the current mask is replaced by the set
pointed to by new_set.

If the argument old_set is not NULL, the previous mask is stored in the space pointed to by old set If the value of
the argument new_set is NULL, the value of how is not significant and the process signal mask is unchanged; thus,
the call with a zero new_set can be used to inquire about currently blocked signals, without changing the current
Set.

If the new set defined by the call causes some pending signals to be unblocked, they are all delivered (by calling
r ai se) before the call to si gpr ocmask returns.

The DJGPP implementation only records a single occurrence of any given signal, so when the signal is unblocked,
its handler will be called a most once.

It is not possible to block CPU exceptions such as Page Fault, General Protection Fault etc. (mapped to SI GSEGV
signal); for these, si gpr ocnmask will behave as if the call succeeded, but when an exception happens, the signa
handler will be called anyway (the default handler will abort the program).

- Page 366 -

Also note that there are no provisions to save and restore any additional info about the signal beyond the fact that it
happened. A signa handler might need such info to handle the signal intelligently. For example, a handler for

SI GFPE might need to examine the status word of the FPU to see what exactly went wrong. But if the signal was
blocked and is delivered after a call to si gpr ocrmask has unblocked it, that information is lost. Therefore, if you
need access to such auxiliary information in the signal handler, don't block that signal.

Return Vaue
0 on success, -1 for illegal value of sig or illegal address in new_set or old_set

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXXXIXIXHXKKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
Example

#i ncl ude <coni o. h>
#i ncl ude <si gnal . h>

static void
si g_catcher (int signo)

cprintf ("\r\nGot signal %\r\n", signo);
}

i nt

mai n (voi d)

sigset _t signask, prevnmask;

signal (SIG NT, sig_catcher);

si genptyset (&si gmask);

si gaddset (&sigmask, SI G NT);

i f (sigprocmask (SI G SETMASK, &sigmask, &prevmask) == 0)
cputs ("SI A NT bl ocked. Try tointerrupt me now.\r\n");
while (!'kbhit ())

'cputs ("See? | wasn't interrupted.\r\n");

cputs ("But nowl w |l unblock SIG NT, and then get the signal.\r\n");

si gprocmask (SI G_UNBLOCK, &sigmask, &prevnask);
return O;

sigsetjmp
Syntax
#i ncl ude <setj np. h>
i nt sigsetjnp(sigjnp_buf env, int savemask);

Description
See setjmp.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXIXEXHXXXIXEXXXIXIXHXKKIEXHXIXXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
sin

Syntax

- Page 367 -

#i ncl ude <mat h. h>

doubl e si n(doubl e x);

Description
This function computes the sine of x (which should be given in radians).

Return Vaue

The sine of x. If the absolute value of x is finite but greater than or equal to 263, the value is O (since for
arguments that large each bit of the mantissa is more than Pi). If the value of x is infinite or NaN the return value
is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Accuracy

In general, this function's relative accuracy is about 1.7*107(-16), which is close to the machine precision for a
doubl e. However, for arguments very close to Pi and its odd multiples, the relative accuracy can be many times
worse, due to loss of precision in the internal FPU computations. Since sin(Pi) is zero, the absolute accuracy is till
very good; but if your program needs to preserve high relative accuracy for such arguments, link with -1 mand use
the version of si n from |'i bm a which does elaborate argument reduction, but is about three times slower.

siNcos
Syntax

#i ncl ude <mat h. h>

voi d si ncos(doubl e *cosi ne, doubl e *si ne, doubl e x);

Description

This function computes the cosine and the sine of x in a single call, and stores the results in the addresses pointed
to by cosine and sine, respectively. Since the function exploits a machine instruction that computes both cosine and
sine simultaneoudly, it is faster to call si ncos than to call cos and si n for the same argument.

If the absolute value of x is finite but greater than or equal to 263, the value stored in *cosine is 1 and the value
stored in *sine is 0 (since for arguments that large each bit of the mantissa is more than Pi). If the value of x is
infinite or NaN NaN is stored in both *cosine and *sine, and err no is set to EDOM

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No
sinh
Syntax

#i ncl ude <mat h. h>

doubl e si nh(doubl e x);

Description
This function computes the hyperbolic sine of x.

Return Vaue

The hyperbolic sine of x. If the absolute value of x is finite but so large that the result would overflow a doubl e,
the return value is | nf with the same sign as X, and errno is set to ERANGE If x is either a positive or a
negative infinity, the result is +I nf with the same sign as x, and err no is not changed. If x is NaN the return
value is NaN and errno is set to EDOM

- Page 368 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

seep
Syntax

#i ncl ude <uni std. h>

unsi gned sl eep(unsi gned seconds) ;

Description
This function causes the program to pause for seconds seconds.

Return Value
The number of seconds that haven't passed (i.e. aways zero)

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXEXHXIXHXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
sl eep(5);

snprintf
Syntax

#i ncl ude <stdi o. h>

int snprintf (char *buffer, size_t n, const char *format,

]

Description

This function works similarly to sprintf () (See sprintf), but the size n of the buffer is also taken into account.
This function will write n - 1 characters. The nth character is used for the terminating nul. If n is zero, buffer is
not touched.

Return Vaue

The number of characters that would have been written (excluding the trailing nul) is returned; otherwise -1 is
returned to flag encoding or buffer space errors.

The maximum accepted value of n is | NT_MAX | NT_MAX is defined in <l imts. h> -1 isreturned and errno
is set to EFBI G if n is greater than this limit.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEXXXEXXXEXKXEXKXIXKXXXXXKXXXXXKXXXXXXXXXX C89; C99 (see note 1)
Notes:

1. The buffer size limit is imposed by DJGPP. Other systems may not have this limitation.

__solve dir_symlinks
Syntax

#i ncl ude <li bc/symink. h>
int __solve_dir_syminks(const char *sym i nk_path, char *real _path);
Description

This function resolves given symlink in symlink_path---all path components except the last one and all symlink
- Page 369 -

levels are resolved. If symlink_path does not contain symlinks at all, it is simply copied to rea_path.
real_path should be of size FI LENAME MAX to contain the maximum possible length of path.

Return Vaue

Zero in case of error (and errno set to the appropriate error code), non-zero in case of success.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXKXXXXXXXXXXX NO No
Example

#i ncl ude <li bc/syni i nk. h>
#i ncl ude <stdi 0. h>

char fn[] ="c:/sonelink/someot herlink/sonefile";
char file_nane[FI LENAME _MAX] ;

__solve_dir_syminks(fn, file_name);
printf("Thereal pathto % is %\n", fn, file_nane);

__solve symlinks
Syntax

#i ncl ude <li bc/syni i nk. h>
int __solve_syminks(const char *synlink path, char *real path);

Description

This function fully resolves given symlink in symlink_path---all path components and all symlink levels are resolved.
The returned path in rea path is guaranteed to be symlink-clean and understandable by DOS. If symlink_path does
not contain symlinks at all, it is smply copied to real_path.

real_path should be of size FI LENAME_MAX to contain the maximum possible length of path.

Return Vaue

Zero in case of error (and errno set to the appropriate error code), non-zero in case of success.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No
Example

#i ncl ude <li bc/syni i nk. h>
#i ncl ude <stdi o. h>

const char fn[] ="c:/sonedir/sonelink";
char file_nane[FI LENAME _MAX] ;

__solve_synminks(fn, file_nane);
printf("File% isreally %\n", fn, file_nane);

sound
Syntax

#i ncl ude <pc. h>

voi d sound(int _frequency);

Description

- Page 370 -

Enables the PC speaker at the given frequency. The argument _frequency should be given in Hertz units.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

spawn*
Syntax

#i ncl ude <process. h>

i nt spawnl (i nt node, const char *path, const char *argvO, ..., NULL);
i nt spawnl e(i nt node, const char *path, const char *argvoO, ...,

NULL /*, const char **envp */);

i nt spawnl p(i nt node, const char *path, const char *argv0O, ..., NULL);
i nt spawnl pe(int node, const char *path, const char *argvo, ...,

NULL /*, const char **envp */);

i nt spawnv(int node, const char *path, char *const argv[]);
i nt spawnve(int node, const char *path, char *const argv[],
char *const envp[]);

i nt spawnvp(i nt node, const char *path, char *const argv[]);
i nt spawnvpe(int node, const char *path, char *const argv|],
char *const envp[]);

Description

These functions run other programs. The path points to the program to run, and may optionaly include its
extension. These functions will look for a file path with the extensions . com . exe, . bat, and . bt m if none are
found, neither in the current directory nor along the PATH they will look for path itself.

. comprograms are invoked via the usual DOS calls; DJGPP . exe programs are invoked in a way that allows long
command lines to be passed; other . exe programs are invoked via DOS; . bat and . bt m programs are invoked via
the command processor given by the COMSPEC environment variable; . sh, . ksh programs and programs with any
other extensions that have #! as their first two characters are assumed to be Unix-style scripts and are invoked by
caling a program whose pathname immediately follows the first two characters. (If the name of that program is a
Unix-style pathname, without a drive letter and without an extension, like / bi n/ sh, the spawn functions will
additionally look them up on the PATH this allows to run Unix scripts without editing, if you have a shell installed
somewhere along your PATH) Any non-recognizable files will be also invoked via DOS calls.

WARNING! DOS is rather stupid in invoking programs: if the file doesn’t have the telltale ‘**‘MZ’’ signature of the
. exe style programs, DOS assumes it is a . com style image and tries to execute it directly. If the file is not realy
an executable program, your application will almost certainly crash. Applications that need to be robust in such
situations should test whether the program file is indeed an executable, e.g. with calls to st at (See stat) or
_is_execut abl e (See _is executable) library functions.

Note that built-in commands of the shells can not be invoked via these functions; use syst eminstead, or invoke
the appropriate shell with the built-in command as its argument.

The programs are invoked with the arguments given. The zeroth argument is normally not used, since MS-DOS
cannot pass it separately, but for compatibility it should be the name of the program. There are two ways of
passing arguments. The | functions (like spawnl) take a list of arguments, with a NULL at the end of the list.
This is useful when you know how many argument there will be ahead of time. The v functions (like spawnv)
take a pointer to a list of arguments, which also must be NULL-terminated. This is useful when you need to
compute the number of arguments at runtime.

In either case, you may also specify e to indicate that you will be giving an explicit environment, else the current
environment is used. You may also specify p to indicate that you would like spawn* to search the PATH (in either
the environment you pass or the current environment) for the executable, else it will only check the explicit path
given.

Note that these function understand about other DJGPP programs, and will call them directly, so that you can pass
command lines longer than 126 characters to them without any special code. DJGPP programs called by these
functions will not glob the arguments passed to them; other programs also won't glob the arguments if they suppress
expansion when given quoted filenames.

When the calling program runs on Windows 9X or Windows 2000 and calls the system shell to run the child
program, or if the child program is a native Windows program (in PE- COFF format), or when the system shell is

- Page 371 -

4DCS or NDGCS and the shell is called to run the command, command lines longer than 126 characters are passed
via the environment variable CVDLI NE

See exec*.

Return Vaue

If successful and node is P_WAI T, these functions return the exit code of the child process in the lower 8 bits of
the return value. Note that if the program is run by a command processor (e.g., if it's a batch file), the exit code
of that command processor will be returned. COVIVAND. COM is notorious for returning O even if it couldn’t run the
command.

If successful and mode is P_OVERLAY, these functions will not return.

If there is an error (e.g., the program specified as ar gv[0] cannot be run, or the command line is too long), these
functions return -1 and set err no to indicate the error. If the child program was interrupted by Ctrl-C or a Critical
Device error, errno is set to EI NTR (even if the child's exit code is 0), and bits 8-17 of the return value are set
to SI G NT or Sl GABRT, accordingly. Note that you must set the signal handler for SI G NT to SI G_| GN or
arrange for the handler to return, or else your program will be aborted before it will get chance to set the value of
the return code.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXKXKXXXXXKXXKXXKXXKXXXXXXXX NO No
Example

char *environ[] ={

"PATH=c:\\dos; c:\\djgpp; c:\\usr\\local\\bin",
"DIGPP=c: / dj gpp",

0

b

char *args[] = {

"gcc",

TV

“hello.c",

0

1
spawnvpe(P_WAI T, "gcc", args, environ);

sprintf
Syntax

#i ncl ude <st di 0. h>

int sprintf(char *buffer, const char *format, ...);
Description
Sends formatted output from the arguments (...) to the buffer. See printf.

To avoid buffer overruns, it is safer to use snpri ntf () (See snprintf).

Return Vaue

The number of characters written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

sort
Syntax

- Page 372 -

#i ncl ude <mat h. h>

doubl e sqgrt (doubl e x);

Description

This function computes the square root of x.

Return Vaue

The square root of x. If x is negative or a NaN the return value is NaN and err no is set to EDOM
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXIXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

srand

Syntax

#i ncl ude <stdlib. h>

voi d srand(unsi gned seed);

Description

Initializes the random number generator for r and(). If you pass the same seed, r and() will return the same
sequence of numbers. You can seed from ti me (See time or r awcl ock (See rawclock).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
/* randompause */
srand(time(0));
for (i=rand(); i; i--);
srandom
Syntax

#i ncl ude <stdlib. h>
i nt srandon{int seed);

Description

Initializes the random number generator (See random). Passing the same seed results in r andom returning
predictable sequences of numbers, unless See initstate or See setstate are called.

Return Vaue

Zero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example
srandon{ 45) ;

sscanf
Syntax

#i ncl ude <stdi 0. h>

- Page 373 -

i nt sscanf(const char *string, const char *format, ...);

Description

This function scans formatted text from the string and stores it in the variables pointed to by the arguments. See
scanf.

Return Vaue

The number of items successfully scanned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEKKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Stack overflow handler

Syntax

extern unsigned int _ djgpp_stack overfl ow eip;
void _djgpp_stack overflow exit(void);

Description

This is the stack overflow handler, an internal function intended to be used only by specia code generated by the
compiler. This will exit with a suitable error message.

Return Vaue

This function does not return.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXHXIXEXXXKXXXXXXXXXXXXXX NO No

stackavail
Syntax

#i ncl ude <stdlib. h>

i nt stackavail (void);

Description
This function returns the number of bytes that are available on the stack.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No
Example
printf("Avail able stack sizeis % bytes\n", stackavail ());
Stat

Syntax

#i ncl ude <sys/stat. h>

int stat(const char *file, struct stat *sbuf);

Description

This function obtains the status of the file file and stores it in sbuf. st at follows symbolic links. To get
information about a symbalic link, use | st at (See Istat) instead.

sbuf has this structure:
struct stat {

- Page 374 -

time_t st _atinme; /* tinme of | ast access */

time_t st _ctine; /*time of file s creation?*/

dev_t st_dev; /* The drive nunber (0 =a:) */

gid t st_gid; /* what getgid() returns */

ino_t st _ino; /* starting cluster or unique identifier */
node t st _node; /* filenmbde - S IF* and S | RUSR/' S_| WUSR */
time_ t st minme; /*timethat thefilewas last witten */
nlink t st _nlink; /* 2 + nunber of subdirs, or 1 for files */
off _t st_size; /* sizeof fileinbytes */

bl ksi ze_t st_bl ksize; /* bl ock size in bytes*/

uid t st _uid; /* what getuid() returns */

dev_t st _rdev; /* The drive nunber (0 =a:) */

1

The st _atine, st_ctinme and st_nti ne have different values only when long file names are supported (e.g. on
Windows 9X); otherwise, they all have the same value: the time that the file was last written Even when long file
names are supported, the three time values returned by st at might be identical if the file was last written by a
program which used legacy DOS functions that don't know about long file names.. Most Windows 9X VFAT
filesystems only support the date of the file's last access (the time is set to zero); therefore, the DIGPP
implementation of st at sets the st _ati me member to the same value as st _nti ne if the time part of

st _atine returned by the filesystem is zero (to prevent the situation where the file appears to have been created
after it was last accessed, which doesn’'t look good).

The st _si ze member is an signed 32-bit integer type, so it will overflow on FAT32 volumes for files that are
larger than 2GB. Therefore, if your program needs to support large files, you should treat the value of st _si ze as
an unsigned value.

For some drives st _bl ksi ze has a default value, to improve performance. The floppy drives A: and B: default to
a block size of 512 bytes. Network drives default to a block size of 4096 bytes.

Some members of struct stat are very expensive to compute. If your application is a heavy user of stat and
is too slow, you can disable computation of the members your application doesn't need, as described in See
_djstat_flags.

Return Vaue

Zero on success, nonzero on failure (and errno set).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXKXXXEXXXEXXXKXXIXHXXXXIXHXIXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

struct stat s;
stat("data.txt", &s);

if (S_ISDR(s.st_node))
printf("is directory\n");

Implementation Notes

Supplying a 100% Unix-compatible st at function under DOS is an implementation nightmare. The following notes
describe some of the obscure points specific to st ats behavior in DJGPP.

1. The dri ve for character devices (like con, / dev/ nul | and others is returned as -1. For drives networked by
Novell Netware, it is returned as -2.

2. The starting cluster number of a file serves as its inode number. For files whose starting cluster number is
inaccessible (empty files, files on Windows 9X, on networked drives, etc.) the st _i node field will be invented in
a way which guarantees that no two different files will get the same inode number (thus it is unique). This invented
inode will also be different from any real cluster number of any loca file. However, only on plain DOS, and only
for local, non-empty files/directories the inode is guaranteed to be consistent between st at, fstat and | st at
function calls. (Note that two files whose names are identical but for the drive letter, will get the same invented
inode, since each filesystem has its own independent inode numbering, and comparing files for identity should
include the value of st _dev.)

3. The WRITE access mode hit is set only for the user (unless the file is read-only, hidden or system). EXECUTE
bit is set for directories, files which can be executed from the DOS prompt (batch files, .com, .dIl and .exe
executables) or run by go32-v2.

- Page 375 -

4. Size of directories is reported as the number of its files (sans *." and ‘..’ entries) multiplied by 32 bytes (the
size of directory entry). On FAT filesystems that support the LFN APl (such as Windows 9X), the reported size of
the directory accounts for additional space used to store the long file names.

5. Time stamp for root directories is taken from the volume label entry, if that's available; otherwise, it is reported
as 1-Jan-1980.

6. The variable _dj stat_fl ags (See _djstat_flags) controls what hard-to-get fields of struct stat are needed
by the application.

7. stat should not be used to get an up-to-date info about a file which is open and has been written to, because
stat will only return correct data after the file is closed. Use f st at (See fstat) while the file is open.
Alternatively, you can call ffl ush and f sync to make the OS flush all the file's data to the disk, before calling
stat.

8. The number of links st _nl i nk is always 1 for files other than directories. For directories, it is the number of
subdirectories plus 2. This is so that programs written for Unix that depend on this to optimize recursive traversal of
the directory tree, will still work.

stetfs
Syntax

#i ncl ude <sys/vfs. h>

int statfs(const char *filenane, struct statfs *buf);

Description

This function returns information about the given "filesystem". The drive letter of the given filename or the default
drive if none is given, is used to retrieve the following structure:

struct statfs

{

_type; /* 0*/

_bsi ze; /* bytes per cluster */

_blocks; /* clusters on drive */

_bfree; /* avail abl e clusters */

_bavail; /* avail able clusters */

_files; I* clusters ondrive */

_ffree; /* avail able clusters */

_t f_fsid; /* array: [0] =drive_nunber, [1]=MOUNT_UFS */
f _magic; /* FS_MAG C*/

N eN”NeNeNeNoNoNoNo]
50T D333 333
Qo

—h —h —h —h —h —h —h

—— — e ———— ———

Note that if INT 21h is hooked by a TSR, the total size is limited to approximately 2GB (See statvfs).

Note that there is a POSIX-compliant function st at vf s (See statvfs), which returns similar information.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

Example
struct statfs fs;
unsi gned | ong | ong bfree, bsi ze;

statfs("anything", &fs);
bfree = fs.f_bfree;

bsize = fs.f_bsize;
printf("%Ilubytesleft\n", bfree* bsize);

_Status87

- Page 376 -

Syntax

#i ncl ude <fl oat. h>

unsi gned i nt _status87(void);

Description
Returns the status word of the FPU, which indicate the results of the most recently completed FPU operation:

--------------- X =SWINVALID - invalid operation

SW DENORVAL - denor nal i zed oper and
SW ZERODI VI DE - di vi si on by zero

SW OVERFLOW- over fl ow

SW UNDERFLOW- under f | ow

---------- X- ---- = SWINEXACT - | oss of precision
-------- -X-- ---- = SWSTACKFAULT - stack over/under flow
———————— X--- ---- —SVV_ERRCRSUMVARY— set if any errors
ED.CEEED ¢ G = SW COND - condition code

------- X---- ---- =SWCQCO0

SWCl

Sw 2

SW C3

D O G = SWTOP - top of stack (use SWTOP_SHI FT
toshift it)

Xe== =--- ===~ ---- = SWBUSY - fpuis busy

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

statvfs
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/statvfs. h>

x
I

i nt statvfs (const char *path, struct statvfs *shuf);

Description

This function returns information about the *‘filesystem’” (FS) containing path and stores it in sbuf, which has the
structure below:

struct statvfs {

unsi gned long f_bsi ze; /* FS bl ock si ze */

unsi gned | ong f_frsize; /* fundamental bl ock size */

fsbl kent _t f_bl ocks; /* # of bl ocks on FS of size f_frsize */
fsbl kent _t f_bfree; /* # of free bl ocks on FS of size f_frsize */
fsbl kent _t f bavall /* # of free bl ocks on FSof sizef frsize
* for unprivil eged users */

fsfilent_t f_files; /* # of file serial nunmbers */

fsfilcnt _t f ffree; /* # of freefile serial nunbers */
fsfilcnt _t f favall /* # of freefile serial nunbers

* for unprivil eged users */

unsigned long f_fsid; /* FSidentifier */

unsigned long f _flag; /* FSflags: bitw se ORof ST_NOSUI D,

* ST_RDONLY */

unsi gned | ong f _namenax; /* Maxi mumfil e name | ength on FS */

b

Note that if INT 21h is hooked by a TSR, the total size is limited to approximately 2GB. TSRs that hook INT 21h
include:

¢ CD-ROM drivers;
. command-line enhancers such as CMDEDIT and Microsoft’'s DOSEdit.

These may be loaded by aut oexec. bat or confi g. sys.

- Page 377 -

The fundamental block size is considered to be a cluster. Really the fundamental block is the sector of the physical
media rather than the logical block of the filesystem, but the sector size cannot be determined in all cases. So for
consistency we return the cluster size.

Return Vaue

Zero on success, nonzero on failure (and errno set).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHXXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. See the comments on the fundamental block size above.

_stklen
Syntax

externint _stklen;

Description

This variable sets the minimum stack length that the program requires. Note that the stack may be much larger than
this. This value should be set statically, as it is only used at startup.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

Example
int _stklen = 256000;

Stpcpy
Syntax

#i ncl ude <string. h>

char *stpcpy(char *_dest, const char *_src);

Description

Like st rcpy (See strcpy), but return value different.
Return Value

Returns a pointer to the trailing NUL in dest.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

stpncpy
Syntax

#i ncl ude <string. h>

char *stpncpy(char *_dest, const char *_src, size_t n);
Description
Copies exactly _n characters from _src to _dest. If need be, _dest is padded with zeros to make _n characters. Like
st rncpy (See strncpy), but return value different.

Return Vaue

- Page 378 -

Returns a pointer to the character following the last nonzero written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

strcasecmp
Syntax

#i ncl ude <string. h>

i nt strcasecnp(const char *s1, const char *s2);

Description
This function compares the two strings, disregarding case.
Return Value
Zero if they're the same, nonzero if different, the sign indicates "order".
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No
Example
if (strcasecnp(arg, "-i") ==0)
do_i ncl ude();
Strcat

Syntax

#i ncl ude <string. h>
char *strcat(char *sl, const char *s2);

Description
This function concatenates s2 to the end of sL

Return Vaue
sl

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKKXEXKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char buf[100] ="hell0";
strcat (buf, " there");

strchr
Syntax

#i ncl ude <string. h>

char *strchr(const char *s, int c);

Description

This function returns a pointer to the first occurrence of ¢ in s Note that if ¢ is NULL, this will return a pointer to
the end of the string.

Return Vaue

- Page 379 -

A pointer to the character, or NULL if it wasn't found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char *slash =strchr(filenane, '/');

strcmp
Syntax

#i ncl ude <string. h>

i nt strcnp(const char *s1, const char *s2);

Description
This function compares sl and s2

Return Vaue

Zero if the strings are equal, a positive number if sl comes after s2 in the ASCII collating sequense, else a negative
number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXIEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
if (strcnp(arg, "-i") ==0)
do_incl ude();

strcoll

Syntax

#i ncl ude <string. h>

int strcoll (const char *s1, const char *s2);

Description
This function compares sl and s2, using the collating sequences from the current locale.

Return Vaue

Zero if the strings are equal, a positive number if sl comes after s2 in the collating sequense, else a negative
number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

while (strcoll (var, list[i]) <0)
i+

strcpy
Syntax

#i ncl ude <string. h>

- Page 380 -

char *strcpy(char *sl1, const char *s2);

Description
This function copies s2 into sl

Return Vaue
sl

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char buf[100];
strcpy(buf, arg);

strespn
Syntax

#i ncl ude <string. h>

size_t strcspn(const char *sl1, const char *set);

Description

This function finds the first character in sl that matches any character in set. Note that the NULL bytes at the end
of each string counts, so you'll at least get a pointer to the end of the string if nothing else.

Return Vaue

The index of the found character.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

int i =strcspn(command, "<>|");
if (command[i])
do_redirection();

strdup
Syntax

#i ncl ude <string. h>

char * strdup (const char *source);

Description

Returns a newly alocated area of memory that contains a duplicate of the string pointed to by source. The memory
returned by this call must be freed by the caller.

Return Vaue

Returns the newly allocated string, or NULL if there is no more memory.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXX NO No
Example

- Page 381 -

char *foo()

return strdup("hello");

strerror
Syntax

#i ncl ude <string. h>
char *strerror(int error);

Description
This function returns a string that describes the error.

Return Value
A pointer to a static string that should not be modified or free'd.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHKIIHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

if (f=fopen("foo", "r") ==

printf("Error! %: %\n", "foo", strerror(errno));
strftime
Syntax

#i ncl ude <ti me. h>

size t strftinme(char *buf, size_ t n, const char *fornmat,
const struct tm*time_info);

Description

This function formats the time data in time info according to the given format and stores it in buf, not exceeding n
bytes.

The format string is like pri nt f in that any character other than %is added to the output string, and for each
character following a %a pattern is added to the string as follows, with the examples as if the time was Friday,
October 1, 1993, at 03:30:34 PM EDT:

YA
The full weekday name (Fri day)

%a
The abbreviated weekday name (Fri)

"B

The full month name (Cct ober)
%
%

The abbreviated month name (Cct)

%C
Short for Ya % % %4 98Vt %6 %Y (Fri Cct 1 15: 30: 34 1993)

%
Short for % %al/ %y %H. %vt %6 (10/ 01/ 93 15: 30: 34)

- Page 382 -

%e
The day of the month, blank padded to two characters (2)

%W
Short for %n %/ % (10/ 01/ 93)

%
The day of the month, zero padded to two characters (02)

o
The hour (0-24), zero padded to two characters (15)

%
The hour (1-12), zero padded to two characters (03)

%
The Julian day, zero padded to three characters (275)

%K
The hour (0-24), space padded to two characters (15)

%
The hour (1-12), space padded to two characters(3)

9m
The minutes, zero padded to two characters (30)

%m
The month (1-12), zero padded to two characters (10)

%
A newline (\ n)

%
AM or PM (PN

mR
Short for % 98V (15: 30)

]
Short for % : %t %S % (03: 30: 35 PN

s
The seconds, zero padded to two characters (35)

oF
Short for % %M %S (15: 30: 35)

%
A tab (\t)

%W
The week of the year, with the first week defined by the first Sunday of the year, zero padded to two
characters (39)

%
The day of the week (1-7) (6)

o
The week of the year, with the first week defined by the first Monday of the year, zero padded to two
characters (39)

%
The day of the week (0-6) (5)

X
Date represented according to the current locale.

- Page 383 -

"X
Time represented according to the current locale.

0,

The year (00-99) of the century (93)

%Y
The year, zero padded to four digits (1993)

%
The timezone abbreviation (EDT)

W
A percent symbol (%

Return Vaue

The number of characters stored.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
time_t now=tinme (NULL);
struct tm*t =localtime (&ow);

char buf[100];
/* Print today’s date e.g. "January 31, 2001". */
strftine (buf, 100, "8 %, %", t);

stricmp

Syntax

#i ncl ude <string. h>
int stricnp(const char *sl1, const char *s2);

Description
This function compares the two strings, disregarding case.

Return Vaue

Zero if they're the same, nonzero if different, the sign indicates "order".

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXXXXXXXXX NO No

Example

if (stricnp(arg, "-i") ==0)
do_incl ude();

strlcat
Syntax

#i ncl ude <string. h>
size_ t strlcat (char *dest, const char *src, size t size);
Description

Concatenate characters from src to dest and nul-terminate the resulting string. As much of src is copied into dest as
there is space for.

size should be the size of the destination string buffer dest plus the space for the nul-terminator. size may be

- Page 384 -

computed in many cases using the si zeof operator.

strlcat may be used as a less ambiguous aternative to st rncat (See strncat). strl cat returns the length of
the concatenated string whether or not it was possible to copy it all --- this makes it easier to calculate the required
buffer size.

If dest is not nul-terminated, then dest is not modified.
strlcat will not examine more than size characters of dest. This is to avoid overrunning the buffer dest.

If dest and src are overlapping buffers, the behavior is undefined. One possible result is a buffer overrun -
accessing out-of-bounds memory.

The original OpenBSD paper describing strl cat and strl cpy (See strlcpy) is available on the web:
http://www.openbsd.org/papers/strl cpy-paper.ps.

Return Vaue

The length of the string that st rl cat tried to create is returned, whether or not strl cat could store it in dest. If
al of src was concatenated to dst, the return value will be less than size

If dest is not nul-terminated, then strl cat will consider dest to be size in length and return size plus the length of
src.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

The following example shows how you can check that the destination string buffer was large enough to store the
source string concatenated to the destination string. In this case sonmest ri ng is truncated, when it is concatenated
to buf.

const char sonestring[] ="bar";
char buf[5] ="foo";

if (strlcat(buf, sonmestring, sizeof(buf)) >=sizeof (buf))
put s("sonmestring was truncat ed, when concatenatingto buf.");

stricpy
Syntax

#i ncl ude <string. h>
size t strlcpy (char *dest, const char *src, size t size);

Description

Copy characters from src to dest and nul-terminate the resulting string. Up to si ze - 1 characters are copied to
dest.

size should be the size of the destination string buffer dest plus the space for the nul-terminator. size may be
computed in many cases using the si zeof operator.

strl cpy is a less ambiguous version of strncpy (See strncpy). Unlike strncpy, strl cpy always
nul-terminates the destination dest for non-zero sizes size strl cpy returns the length of the string whether or not
it was possible to copy it all --- this makes it easier to calculate the required buffer size.

If dest and src are overlapping buffers, the behavior is undefined. One possible result is a buffer overrun -
accessing out-of-bounds memory.

The original OpenBSD paper describing st rl cpy and strl cat (See stricat) is available on the web:
http://mww.openbsd.org/papers/strl cpy-paper.ps.

Return Vaue

The length of the string that st r| cpy tried to create is returned, whether or not strl cpy could store it in dest. If
al of src was copied, the return value will be less than size

- Page 385 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

The following example shows how you can check that the destination string buffer was large enough to store the
source string. In this case sonest ri ng is truncated to fit into buf.

const char sonestring[] ="foo";
char buf[3];

if (strlcpy(buf, sonmestring, sizeof(buf)) >= sizeof (buf))
put s("sonmestring was truncat ed, when copyi ng to buf.");

strlen
Syntax

#i ncl ude <string. h>
size_t strlen(const char *string);

Description
This function returns the number of characters in string.

Return Value
The length of the string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

if (strlen(fnane) > PATH MAX)
invalid file(fname);

striwr
Syntax

#i ncl ude <string. h>

char *strlw (char *string);

Description
This function replaces al upper case letters in string with lower case |etters.

Return Value
The string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXKXXIXHIIHXXIXKIXKXXXKXXXXXXXXXXXXX NO No

Example

char buf[100] ="Hello";
strlw (buf);

strncasecmp
Syntax

#i ncl ude <string. h>

- Page 386 -

i nt strncasecnp(const char *sl1, const char *s2, size_t nmax);

Description
This function compares sl and s2, ignoring case, up to a maximum of max characters.

Return Vaue

Zero if the strings are equal, a positive number if sl comes after s2 in the ASCII collating sequense, else a negative
number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

if (strncasecnp(foo, "-i", 2) ==0)
do_incl ude();

strncat
Syntax

#i ncl ude <string. h>

char *strncat (char *sl1, const char *s2, size_ t max);

Description
This function concatenates up to max characters of s2 to the end of sl

Return Vaue
sl

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXIXXXXEXXXEXXXEXXXKHXIXHXXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

strncat (f nane, extension, 4);

strncmp
Syntax

#i ncl ude <string. h>
i nt strncnp(const char *s1, const char *s2, size_ t max);

Description
This function compares up to max characters of sl and s2

Return Vaue

Zero if the strings are equal, a positive number if sl comes after s2 in the ASCII collating sequense, else a negative
number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXKXXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

if (strncnp(arg, "-i", 2) ==0)
do_incl ude();

- Page 387 -

strncpy
Syntax

#i ncl ude <string. h>

char *strncpy(char *sl1, const char *s2, size_ t max);

Description
This function copies up to max characters of s2 into sl

Return Vaue
sl

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
char buf[100];

strncpy(buf, arg, 99);
strnicmp
Syntax

#i ncl ude <string. h>

i nt strnicnp(const char *s1, const char *s2, size_ t nax);

Description
This function compares s1 and s2, ignoring case, up to a maximum of max characters.

Return Vaue

Zero if the strings are equal, a positive number if sl comes after s2 in the ASCII collating sequense, else a negative
number.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXXXKIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

if (strnicnp(foo, "-i", 2) ==0)
do_incl ude();

strpbrk
Syntax

#i ncl ude <string. h>
char *strpbrk(const char *sl1, const char *set);

Description
This function finds the first character in sl that matches any character in set.

Return Vaue
A pointer to the first match, or NULL if none are found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 388 -

Example

if (strpbrk(command, "<>|"))
do_redirection();

strrchr
Syntax

#i ncl ude <string. h>

char *strrchr(const char *s1, int c);

Description
This function finds the last occurrence of ¢ in s1.

Return Value
A pointer to the last match, or NULL if the character isn't in the string.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHKIIHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

char *last_slash =strrchr(filenane, '/");

strsep
Syntax

#i ncl ude <string. h>

char *strsep(char **stringp, char *deliny;

Description

This function retrieves the next token from the given string, where stringp points to a variable holding, initialy, the
start of the string. Tokens are delimited by a character from delim. Each time the function is called, it returns a
pointer to the next token, and sets *stringp to the next spot to check, or NULL.

Return Value
The next token, or NULL.
Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No
Example
mai n()
char *buf ="Hell o there, stranger”;
char **bp = &buf;
char *tok;
while (tok =strsep(bp, " ,"))

printf("tok =%’ \n", tok);

tok = Hello
tok ="’
tok = ‘there’
tok = * stranger’

- Page 389 -

strspn
Syntax

#i ncl ude <string. h>

size_t strspn(const char *sl1, const char *set);

Description

This function finds the first character in sl that does not match any character in set. Note that the NULL bytes at
the end of sl counts, so you'll at least get a pointer to the end of the string if nothing else.

Return Vaue

The index of the found character.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int i =strspn(entry, " \t\b");

if (entry[i])
do_sonet hing();

strstr
Syntax

#i ncl ude <string. h>
char *strstr(const char *sl1, const char *s2);

Description
This function finds the first occurrence of s2 in sL

Return Value
A pointer within s1, or NULL if s2 wasn't found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHHXHXXXEXXXKXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

if (strstr(command, ".exe"))
do_exe();

strtod
Syntax

#i ncl ude <stdlib. h>
doubl e strtod(const char *s, char **endp);

Description

This function converts as many characters of s as look like a floating point number into that number. It also
recognises (case-insensitively) “‘Inf’’, “‘Infinity’’, ‘**“NaN’’, ‘*NaN(optional decimal-number)’’, **NaN(optional
octal-number)’’ and ‘‘NaN(optional hex-number)’’. If endp is not a null pointer, a pointer to the first unconverted
character will be stored in the location pointed to by endp.

Return Vaue

- Page 390 -

The value represented by s

If sis“‘Inf’ or ““Infinity’’, with any variations of case and optionally prefixed with ‘*“+'* or ‘*-"’, the return value is
I NFI NI TY (if no prefix or a **+'" prefix) or -1 NFI NI TY (if the prefix is **-'").

If sis““NaN"" or ‘“NaN()’"’, with any variations of case and optionaly prefixed with *‘+* or **-'*, the return value
is (doubl e) NAN If the prefix is ‘*-’’ the sign bit in the NaN will be set to 1.

If sis ‘‘“NaN(decimal-number)’’, ‘‘NaN(octal-number)’’ or ‘‘NaN(hex-number)’’, with any variations of case and
optionally prefixed with “*+"* or **-"’, the return value is a NaN with the mantissa bits set to the lower 52 bits of
decimal-number, octal-number or hex-number (the mantissa for doubles consists of 52 bits). Use at most 16
hexadecimal digits in hex-number or the internal conversion will overflow, which results in a mantissa with all bits
set. If the bit pattern given is O (which won't work as a representation of a NaN) (doubl e) NAN will be returned.
If the prefix is ‘-’ the sign bit in the NaN will be set to 1. Testing shows that SNaNs might be converted into
QNaNs (most significant bit will be set in the mantissa).

If a number represented by s doesn’t fit into the range of values representable by the type doubl e, the function
returns either - HUGE_VAL (if s begins with the character -) or +HUGE_VAL, and sets err no to ERANCGE

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEXXXEXXXEXKXXKXIXKXXKXXKXXXXXKXXXXXXXXXX C89; C99 (see note 1)
1003.2-1992; 1003.1-2001

Notes:

1. Support for “‘Inf"’, ““Infinity’’, **‘NaN"’ and ‘‘NaN(...)"" was standardised in ANSI C99.

Example
char buf[] ="123ret";
char buf2[] ="0x123ret";
char buf3[] ="NAN(123)";
char buf4[] = "NAN(0x123)";
char *bp;

doubl e x: X2, X3, x4;

X = strtod(buf, &bp);
x2 = strtod(buf2, &bp);

x3 = strtod(buf3, &bp);
x4 = strtod(buf4, &bp);
strtof

Syntax

#i ncl ude <stdlib. h>
float strtof (const char *s, char **endp);

Description

This function converts as many characters of s as look like a floating point humber into that number. It also
recognises (case-insensitively) “‘Inf”’, “‘Infinity’”, ‘*“NaN’’, ‘*NaN(optional decimal-number)’’, ‘‘NaN(optional
octal-number)’’ and ‘‘NaN(optional hex-number)’’. If endp is not a null pointer, a pointer to the first unconverted
character will be stored in the location pointed to by endp.

Return Vaue
The value represented by s

If sis“‘Inf’ or “‘Infinity’’, with any variations of case and optionally prefixed with ‘*“+'’ or ‘*-"’, the return value is
I NFI NI TY (if no prefix or a “‘+" prefix) or - I NFI NI TY (if the prefix is **-"").

If sis**NaN" or ‘“NaN()’’, with any variations of case and optionally prefixed with **+ or ‘‘-’’, the return value
is NAN If the prefix is **-"" the sign bit in the NaN will be set to 1.

If sis ‘‘NaN(decimal-number)’’, ‘‘NaN(octal-number)’’ or ‘‘NaN(hex-number)’’, with any variations of case and
optionally prefixed with ““+'* or ‘*-"", the return value is a NaN with the mantissa bits set to the lower 23 bits of

- Page 391 -

decimal-number, octal-number or hex-number (the mantissa for floats consists of 23 bits). Use at most 8
hexadecimal digits in hex-number or the internal conversion will overflow, which results in a mantissa with all bits
set. If the bit pattern given is O (which won't work as a representation of a NaN) NAN will be returned. If the
prefix is ‘-’ the sign bit in the NaN will be set to 1. Testing shows that SNaNs might be converted into QNaNs
(most significant bit will be set in the mantissa).

If a number represented by s doesn’t fit into the range of values representable by the type f | oat, the function
returns either - HUGE_VALF (if s begins with the character -) or +HUGE VALF, and sets er r no to ERANGE

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXEXXXEXHXKHXXIXHXXXXXXXXXXXKXXXXXXX CI9 (see note 1); not C89
1003.1-2001; not 1003.2-1992

Notes:

1. Support for “‘Inf’, ““Infinity’”, ‘‘NaN’’ and ‘‘NaN(...)"" was standardised in ANS| C99.

Example
char buf[] ="123ret";
char buf2[] = "0x123ret";
char buf 3[] = "NAN(123)";
char buf4[] ="NAN(0x123)";
char *bp;

fl oat x,1x2, x3, x4;

x = strtof (buf, &bp);

x2 = strtof (buf2, &bp);

x3 = strtof (buf3, &p);

x4 = strtof (buf4, &bp);
strtolmax

Syntax

#i ncl ude <i nttypes. h>

i ntmax_t strtoi max (const char *s, char **endp, int base)

Description
This function converts as much of s as looks like an appropriate number into the value of that number, and sets
*endp to point to the first unused character.

The base argument indicates what base the digits (or letters) should be treated as. If base is zero, the base is
determined by looking for Ox, 0X or O as the first part of the string, and sets the base used to 16, 16, or 8 if it
finds one. The default base is 10 if none of those prefixes are found.

Return Vaue
The vaue.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example

printf("Enter a nunber: "); fflush(stdout);

get s(buf);

char *bp;

printf("The value is % PRI dMAX "\ n", strtoi max(buf, &bp, 0));

strtok
Syntax

#i ncl ude <string. h>
char *strtok(char *sl1, const char *s2);

- Page 392 -

Description
This function retrieves tokens from sl which are delimited by characters from s2

To initiate the search, pass the string to be searched as sL For the remaining tokens, pass NULL instead.

Return Vaue

A pointer to the token, or NULL if no more are found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEKKXIXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

mai n()

char *buf = "Hell o there, stranger”;

char *tok;

for (tok =strtok(buf, " ,");

t ok;

tok=strtok(0, " ,"))
\n"

printf("tok =%’ , tok);
}

tok = ‘Hell o

tok =‘“there’

tok = *stranger’
strtol

Syntax

#i ncl ude <stdlib. h>

| ong strtol (const char *s, char **endp, i nt base);

Description

This function converts as much of s as looks like an appropriate number into the value of that number. If endp is
not a null pointer, *endp is set to point to the first unused character.

The base argument indicates what base the digits (or letters) should be treated as. If base is zero, the base is
determined by looking for 0x, 0X or O as the first part of the string, and sets the base used to 16, 16, or 8 if it
finds one. The default base is 10 if none of those prefixes are found.

Return Vaue
The value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXIXHXHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

printf("Enter a nunber: "); fflush(stdout);

get s(buf);

char *bp;

printf("The valueis %d\n", strtol (buf, &p, 0));
strtold

Syntax

- Page 393 -

#i ncl ude <stdlib. h>

| ong doubl e strtol d(const char *s, char **endp);

Description

This function converts as many characters of s that look like a floating point number into that number. It aso
recognises (case-insensitively) “‘Inf’’, “‘Infinity’’, “*‘NaN’’, ‘*NaN(optional decimal-number), ‘*NaN(optional
octal-number) and ‘‘NaN(optional hex-number)’’. If endp is not a null pointer, a pointer to the first unconverted
character will be stored in the location pointed to by endp.

Return Vaue
The value represented by s

If sis“‘Inf’ or “Infinity’’, with any variations of case and optionally prefixed with ‘*“+'’ or ‘*-"’, the return value is
I NFI NI TY (if no prefix or a **+'" prefix) or -1 NFI NI TY (if the prefix is **-'").

If sis‘“NaN"" or ‘“NaN()’"’, with any variations of case and optionaly prefixed with *‘+* or **-'*, the return value
is (1 ong doubl e) NAN If the prefix is ‘-’ the sign bit in the NaN will be set to 1.

If sis ‘‘“NaN(decimal-number)’’, ‘‘NaN(octal-number)’’ or ‘‘NaN(hex-number)’’, with any variations of case and
optionally prefixed with “*+"* or ‘*-"’, the return value is a NaN with the mantissa bits set to the lower 63 bits of
decimal-number, octal-number or hex-number and the most significant bit to 1 (the mantissa for long doubles
consists of 64 bhits where the most significant bit is the integer bit which must be set for NaNs). Use at most 16
hexadecimal digits in hex-number or the internal conversion will overflow, which results in a mantissa with all bits
set. If the bit pattern given is O (which won't work as a representation of a NaN) (| ong doubl e) NAN will be
returned. If the prefix is ‘-’ the sign bit in the NaN will be set to 1. Testing shows that SNaNs might be
converted into QNaNs (the second most significant bit will be set in the mantissa).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXHXXXXEXHXKXIEXHXKXIEXXXXIXEXXXXIXXXXXXXXXXXXXXXXXXXXX C99 (see note 1); not C89
1003.1-2001; not 1003.2-1992

Notes:

1. Support for “‘Inf’’, ““Infinity’’, **‘NaN’’ and ‘‘NaN(...)"" was standardised in ANSI C99.

Example
char buf[] ="123ret";
char buf2[] ="0x123ret";
char buf 3[] = "NAN(123)";
char buf 4[] = "NAN(0x123)";
char *bp;

| ong doubl e x, x2, x3, x4;

x = strtol d(buf, &bp);

x2 = strtol d(buf2, &bp);
x3 = strtol d(buf3, &bp);
x4 = strtol d(buf4, &bp);

_strtold
Syntax

#i ncl ude <stdlib. h>

| ong doubl e _strtol d(const char *s, char **endp);

Description

This function converts as many characters of s that look like a floating point humber into that number. It aso
recognises (case-insensitively) “‘Inf”’, “‘Infinity’”, ‘*“NaN’’, ‘*NaN(optional decimal-number)’’, ‘‘NaN(optional
octal-number)’’ and ‘‘NaN(optional hex-number)’’. If endp is not a null pointer, a pointer to the first unconverted
character will be stored in the location pointed to by endp.

There is dso a standardised version of this function: strt ol d (See strtold).

- Page 394 -

Return Value
The value representedby s

If sis“Inf’ or “Infinity’’, with any variations of case and optionally prefixed with ‘*“+"’ or ‘*-"’, the return value is
I NFI NI TY (if no prefix or a ““+'" prefix) or -1 NFI NI TY (if the prefix is **-'").

If sis‘“NaN"" or ‘*‘NaN()’’, with any variations of case and optionaly prefixed with *‘+’ or **-'", the return value
is (1 ong doubl €) NAN If the prefix is **-'" the sign hit in the NaN will be set to 1.

If sis ‘*NaN(decimal-number)’’, ‘*‘NaN(octal-number)’’ or ‘‘NaN(hex-number)”’, with any variations of case and
optionally prefixed with ““+'* or ‘*-"", the return value is a NaN with the mantissa bits set to the lower 63 bits of
decimal-number, octal-number or hex-number and the most significant bit to 1 (the mantissa for long doubles
consists of 64 bits where the most significant bit is the integer bit which must be set for NaNs). Use at most 16
hexadecimal digits in hex-number or the internal conversion will overflow, which results in a mantissa with all bits
set. If the bit pattern given is O (which won't work as a representation of a NaN) (| ong doubl e) NAN will be
returned. If the prefix is ‘-’ the sign bit in the NaN will be set to 1. Testing shows that SNaNs might be
converted into QNaNs (the second most significant bit will be set in the mantissa).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example
char buf[] ="123ret";
char buf2[] ="0x123ret";
char buf3[] ="NAN(123)";
char buf4[] = "NAN(0x123)";
char *bp;

| ong doubl e X, X2, X3, X4;

strtol d(buf, &bp);

_strtol d(buf2, &bp);
_s
_s

trtol d(buf3, &bop);
trtol d(buf4, &bp);

strtoll
Syntax

#i ncl ude <stdlib. h>

long longint strtoll (const char *s, char **endp, int base);

Description

This function converts as much of s as looks like an appropriate number into the value of that number, and sets
*endp to point to the first unused character.

The base argument indicates what base the digits (or letters) should be treated as. If base is zero, the base is
determined by looking for 0x, 0X or O as the first part of the string, and sets the base used to 16, 16, or 8 if it
finds one. The default base is 10 if none of those prefixes are found.

Return Vaue
The value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXKXXXKXXEXXXKXXIXHXXHXXIXHXXHXXXKXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example
printf("Enter a nunber: "); fflush(stdout);
get s(buf);
char *bp;
printf("The valueis %1d\n", strtoll (buf, &p, 0));

- Page 395 -

strtoul
Syntax

#i ncl ude <stdlib. h>

unsi gned | ong strtoul (const char *s, char **endp, int base);

Description
This is just like strt ol (See strtol) except that the result is unsigned.

Return Vaue
The value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

printf("Enter a nunber: "); fflush(stdout);

get s(buf);

char *bp;

printf("The valueis %\ n", strtoul (buf, &p, 0));

strtoul|
Syntax

#i ncl ude <stdlib. h>

unsi gned long l ong i nt strtoul |l (const char *s, char **endp, int base);

Description
This is just like strtol | (See strtoll) except that the result is unsigned.

Return Vaue
The value.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHXXXXXXKXXKXXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example

printf("Enter a nunber: "); fflush(stdout);

get s(buf);

char *bp;

printf("The valueis %1lu\n", strtoull (buf, &p, 0));

strtoumax
Syntax

#i ncl ude <i nttypes. h>

ui nt max_t strtoumax (const char *s, char **endp, int base);

Description
This is just like strt oi max (See strtoimax) except that the result is unsigned.

Return Vaue
The value.

- Page 396 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXXEXXXXKXXXXXXXXKXXXXXXXXXX C99; not C89 1003.1-2001;
not 1003.2-1992

Example

printf("Enter a nunber: "); fflush(stdout);

get s(buf);

char *bp;

printf("The value is % PRIuMAX "\ n", strtoumax(buf, &bp, 0));

Sstrupr
Syntax

#i ncl ude <string. h>

char *strupr(char *string);

Description
This function converts al lower case characters in string to upper case.

Return Vaue
string

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKKKIXKXXXXXKXXKXXKXXXXXXXXXX NO No

Example

char buf[] ="Foo!";
st rupr (buf);
strxfrm
Syntax

#i ncl ude <string. h>

size_ t strxfrm(char *sl1, const char *s2, size t max);

Description

This copies characters from s2 to s1, which must be able to hold max characters. Each character is transformed
according to the locale such that st rcnp(slb, s2b) isjust likestrcoll (sl1, s2) where slb and s2b are the
transforms of s1 and s2.

Return Vaue
The actual number of bytes required to transform s2, including the NULL.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXKXEXKXXKXXKXXKXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

swab
Syntax

#i ncl ude <stdlib. h>
voi d swab(const void *from void *to, int nbytes);

Description

This function copies nbytes bytes from the address pointed to by from to the address pointed by to, exchanging
adjacent even and odd bytes. It is useful for carrying binary data between little-endian and big-endian machines.

- Page 397 -

The argument nbytes should be even, and the buffers from and to should not overlap.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

symlink
Syntax

#i ncl ude <uni std. h>
i nt symink(const char *exi sts, const char *new);

Description

DOS does not support symbolic links. However, DJGPP emulates them---this function creates a file with specia size
and format, so other DJGPP library functions transparently work with file which is pointed to by the symlink. Of
coursg, it does not work outside DJGPP programs. Those library functions which are simple wrappers about DOS
cals do not use symlinks neither.

Return Vaue

Zero in case of success, -1 in case of failure (and er r no set to the appropriate error code).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHXHXIXEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
sym ink ("c:/djgpp/bin/grep", "c:/djgpp/bin/fgrep");

syms init

Syntax
#i ncl ude <debug/ syms. h>
void syns_init (char *file);

Description

This function reads debugging symbols from the named file, which should be an executable program (either a . exe
file or a raw COFF image created by | d. exe, the linker). It then processes the symbols: classifies them by type,
sorts them by name and value, and stores them in internal data structures used by other symbol-related functions,
such as syns_val 2nane, syns_val 2l i ne, etc.

You must call synms_init before calling the other syns_* functions.

Currently, syns_i nit only supports COFF and AOUT debugging format, so programs compiled with - gst abs
cannot be processed by it.

Return Vaue

None.

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

syns_init("c:/fool bar/baz. exe");

syms _line2val

- Page 398 -

Syntax

#i ncl ude <debug/ syms. h>

unsi gned | ong syns_l i ne2val (char *filenane, int | num;

Description
This function returns the address of the first instruction produced from the line Inum of the source file filename that
was linked into a program whose symbols were read by a previous call to syns_init.

COFF debugging format does not support pathnames, so filename should not include leading directories, just the
basename.

You must call syms_init (See syms init) before calling any of the other syns_* functions for the first time.

Return Vaue

The address of the first instruction produced from the line, or zero if filename is not found in the symbol table or
if no executable code was generated for line Inum in filename

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

syns_init ("foo.exe");
printf ("Line 3 of foo.c is at address % x\ n",
syns_line2val ("foo.c", 3));

syms_listwild
Syntax

#i ncl ude <debug/ syms. h>

void synms_listwild (char *pattern,
voi d (*handl er) (unsigned | ong addr, char type_c,
char *nane, char *file, int | num);

Description

This function walks through all the symbols that were read by a previous call to syns_i nit (See syms init). For
each symbol whose name matches pattern, it invokes the user-defined function handler, passing it information about
that symbol:

addr ess
the address of the symbol.

type_c
a letter that specifies the type of the symbol, as follows:
T
t
““text’’, or code: usually a function.
D
d
data: an initialized variable.
B
b
““bss’: an uninitialized variable.
F
f
a function (in a. out file only).
\%

- Page 399 -

a set element or pointer (in a. out file only).

an indirect symbol (in a. out file only).

cC

an undefined (ak.a. unresolved) symbol.

an absolute symbol.

nane
the name of the symboal.

file
the source file name where the symbol is defined.

| num
the line number on which the symbol is defined in the source file.

Since variables and functions defined in C get prepended with an underscore _, begin pattern with _ if you want it
to match C symbols.

You must call synms_init (See syms_ init) before calling any of the other synms_* functions for the first time.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

voi d print_sym(unsi gned | ong addr, char type_c,
char *name, char *file, int | num

{

printf (file?"%: %x % %:%\n" : "%: % x %€\n",
nane, addr, type_c,

file?2file: ™", I num);

}

int main (void)

syns_init ("foo.exe");

/* List all the synbols which beginwith"__ djgpp". */
syms_listwild ("___djgpp*", print_syn;

return O;

}

syms_module
Syntax
#i ncl ude <debug/ syms. h>
char *syns_nodul e (int nfile);
Description
This function returns the name of the source file (ak.a. module) whose ordinal number in the symbol table is nfile
You must call synms_init (See syms init) before calling any of the other syns_* functions for the first time.

- Page 400 -

Return Vaue

The name of the source file, or a NULL pointer if nfile is negative or larger than the total number of modules
linked into the program whose symbols were read by syms_init.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

syms _name2va
Syntax

#i ncl ude <debug/ syms. h>
extern int undefined_synbol ;
extern int syns_printwhy;
unsi gned | ong syns_nane2val (const char *string);
Description
This function returns the address of a symbol specified by string. string may be one of the following:

¢ A number, with or without a sign, in which case the number specifies the address or an offset from an
address.

« A file name and a line number: il e#[| i ne], where file is the name of one of the source files linked into
the program whose symbols were read by syns_i ni t, and line is a line number in that file. If lineis
omitted, it defaults to zero.

Note that the COFF format supported by DJGPP only stores the basename of the source files, so do not
specify file with leading directories.

e A symbol name as a string. The name can be specified either with or without the leading underscore _.

A register name % eg. reg specifies the value of one of the debuggee's registers saved in the external
variable a_t ss (See run_child).

* Any sensible combination of the above elements, see the example below.

syns_namne2val looks up the specified file, line, and symbol in the symbol table prepared by syns_i ni t, finds
their addresses, adds the offset, if any, and returns the result.

If the specified file, line, or symbol cannot be found, syns_nanme2val returns zero and sets the global variable
undef i ned_synbol to a non-zero value. If the global variable synms_pri nt why is non-zero, an error message
is printed telling which part of the argument string was invalid.

You must call synms_init (See syms_ init) before calling any of the other synms_* functions for the first time.

Return Value
The address specified by string, or zero, if none found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXKXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example
unsi gned | ong addr 1, addr2, addr3;

syns_init ("foo.exe");
addr 1 = syns_nane2val ("foo.c#256+12");

addr 2 - syns_nane2val (" _min");
addr 3 = syns_nane2val ("struct _a_ var +%ax+4");
syms vaZ2line

- Page 401 -

Syntax

#i ncl ude <debug/ syms. h>

char *synms_val 2l i ne (unsi gned | ong addr, int *line, int exact);

Description

This function takes an address addr and returns the source file name which correspond to that address. The line
number in that source file is stored in the variable pointed by line If exact is non-zero, the function succeeds only
if addr is the first address which corresponds to some source line.

You must call synms_init (See syms init) before calling any of the other syns_* functions for the first time.

Return Vaue

The name of the source file which corresponds to addr, or NULL if none was found.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

int |ineno;

char *fil e _nane;

syns_init ("foo.exe");

file_name = syns_val 2l i ne (0x1cl1l2, & ineno);
printf ("The address % is on %, |ine %\ n",
Ox1cl12, file_nane, line);

syms val2name
Syntax

#i ncl ude <debug/ syms. h>

char *syms_val 2nane (unsi gned | ong addr, unsigned | ong *of fset);

Description

This function takes an address addr and returns the name of the closest symbol whose address is less that addr. If
offset is not a NULL pointer, the offset of addr from the symbol’s address is stored in the variable pointed to by
offset.

You must call synms_init (See syms_ init) before calling any of the other synms_* functions for the first time.

This function is meant to be used to convert numerical addresses into function names and offsets into their code, like
what symi fy does with the call frame traceback.

The function ignores severa dummy symbols, like _end and _et ext.

Return Vaue

The name of the found symbol, or the printed hexadecimal representation of addr, if no symbol was found near
addr. The return value is a pointer to a static buffer, so don’'t overwrite it and don't pass it to fr ee!

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No

Example

unsi gned | ong of fs;

char *synbol nane;

syns_init ("foo.exe");

synmbol _nane = syns_val 2nane (0x1cl2, &offs);

printf ("The address % i s at %% d\n", Ox1cl12, synbol nanme, offs);

- Page 402 -

sync
Syntax

#i ncl ude <uni std. h>
i nt sync(void);

Description

Intended to assist porting Unix programs. Under Unix, sync flushes al caches of previously written data. In this
implementation, sync calls f sync on every open file. See fsync. It also calls _fl ush_di sk_cache (See
_flush_disk_cache) to try to force cached data to the disk.

Return Value
Always returns 0.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXXKXIXXXXXXXKXXKXXKXXXXXXXXXX NOo No

Example
sync();

sys errlist

Syntax

#i ncl ude <errno. h>
extern char *sys errlist[];

Description
This array contains error messages, indexed by er r no, that describe the errors.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

printf("Error: %\n", sys errlist[errno]);
Sys nerr
Syntax

#i ncl ude <errno. h>

externint sys_nerr;

Description
This variable gives the number of error messages in sys_errli st (See sys erlist).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

if (errno <sys_nerr)
printf("Error: %\ n", sys _errlist[errno]);

sysconf
Syntax

- Page 403 -

#i ncl ude <uni std. h>

I ong sysconf (i nt which);

Description
This function returns various system configuration values, based on which:

case _SC ARG MAX: return _go32_info_bl ock.size_of _transfer_buffer;
case _SC CH LD_MAX: return CH LD_NAX;

case _SC CLK TCK: return CLOCKS PER SEC;

case _SC NGROUPS_MAX: return NGROUPS NMAX;

case _SC OPEN_MAX: return 255;

case _SC JOB _CONTROL: return -1;

case SC SAVED IDS: return -1;

case _SC _STREAM MAX: return _POSI X _STREAM NAX;

case _SC TZNAVE_MAX: return TZNAME MAX;

case _SC VERSI ON: return _POSI X VERSI ON;

Return Vaue
The vaue.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEKXXEKXXEXXKEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

system
Syntax

#i ncl ude <stdlib. h>

i nt systenm(const char *cnd);

Description

This function runs the command or program specified by cmd. If cmd is a null pointer, syst emreturns non-zero
only if a shell is available. If cmd is an empty string, the command processor pointed to by SHELL or COVBPEC
variables in the environment will be invoked interactively; type exit RET to return to the program which called
syst em (Note that some other DOS compilers treat a null pointer like an empty command line, contrary to ANSI
C requirements.)

When calling programs compiled by DJGPP this function will not use COMVAND. COM and so will not be subject to
its 126 character limit on command lines.

When the calling program runs on Windows 9X or Windows 2000 and calls the system shell to run the child
program, or if the child program is a native Windows program (in PE- COFF format), or when the system shell is
4DCS or NDOS, command lines longer than 126 characters are passed via the environment variable CVDLI NE

Command lines and pipes (i.e.,, the use of <, > >>, and |) will be simulated internaly in this function; this means
that you can have both long command lines and redirection/pipes when running DJGPP programs with this function.

By default, COMMAND. COM will only be invoked to run commands internal to it, or to run batch files (but this can
be changed, see below). In these cases, the returned error code will aways be zero, since COMMAND. COM always
exits with code 0.

Certain commands internal to COMVAND. COM that don't make sense or cause no effect in the context of system
are ignored by this function. These are REM EXI T, GOTQ SHI FT; SET, PATH and PROVPT are ignored only if
called with an argument. You can disable this feature if you need, see below.

Some commands are emulated internally by syst em because the emulation is better than the original. Currently,
the only emulated command is CD or CHDI R the emulation knows about forward slashes and also switches the
current drive. This emulation can also be switched off, as explained below.

When syst emis presented with an internal shell command, it checks the environment variables SHELL and
COVSPEC (in that order) and invokes the program that they point to. If the shell thus found is one of the DOS
shells (COMVAND. COM 4D0CS or NDOS), they are called with the / ¢ switch prepended to the command line.
Otherwise, syst em assumes that the shell is a Unix-style shell and passes it the entire command line via a

- Page 404 -

temporary file, invoking the shell with a single argument which is the name of that file.

Shell scripts and batch files are invoked by calling either the program whose name appears on the first line (like in
#! [bi n/ sh), or the default shell if none is specified by the script. If the name of the shell specified by the
script is a Unix-style pathname, without a drive letter and with no extension, syst emwill additionally search for it
on the PATH This alows to invoke Unix shell scripts unmodified, if you have a ported shell installed on your
system.

You can customize the behavior of syst emusing a bit-mapped variable __syst em f | ags, defined on
<stdl i b. h> The following bits are currently defined:

_systemredirect
When set (the default), specifies that syst emcan use its internal redirection and pipe code. If reset, any
command line that includes an unguoted redirection symbol will be passed to the shell.

__systemcal |l _cmdproc
When set, syst emwill always call the shell to execute the command line. If reset (the default), the shell
will only be called when needed, as described above.

You should always set this bit if you use a real, Unix-style shell (also, set __system use_shel |,
described below, and the SHELL environment variable).

__system use_shel |
When set (the default), the SHELL environment variable will take precedence upon COVSPEC this allows you
to specify a specia shell for syst emthat doesn’'t affect the rest of DOS. If reset, only COVBPEC is used to
find the name of the command processor.

__systemal low multiple_cnds
When set, you can put multiple commands together separated by the ; character. If reset (the default), the
command line passed to syst emis executed as a single command and ; has no specia meaning.

__systemal |l ow | ong _cnds
When set (the default), syst emwill handle command lines longer than the DOS 126-character limit; this
might crash your program in some cases, as the low-level functions that invoke the child program will only
pass them the first 126 characters. When reset, syst emwill detect early that the command line is longer
than 126 characters and refuse to run it, but you will not be able to call DIJGPP programs with long
command lines.

system emul at e_conmand
If reset (the default), syst emwill pass the entire command line to the shell if its name is one of the
following: sh. exe, sh16. exe, sh32. exe, bash. exe, t csh. exe. When set, syst emwill attempt to
emulate redirection and pipes internally, even if COMSPEC or SHELL point to a Unix-style shell.

__system handl e_nul | _conmands
When set (the default), commands internal to COMVAND. COM and compatible shells which have no effect in
the context of syst em are ignored (the list of these commands was given above). If reset, these commands
are processed as al others, which means COMVAND. COM will be called to execute them.

Note that this bit shouldn’t be used with a Unix-style shell, because it does the wrong thing then. With
Unix-style shells, you are supposed to set the __system cal | _cndproc bit which will always cal the
shell.

__system.ignore_chdir
If set, the CD and CHDI R commands are ignored. When reset (the default), the processing of these
commands depends on the __system enul at e_chdi r bit, see below.

This bit is for compatibility with Unix, where a single cd di r command has no effect, because the current
working directory there is not a global notion (as on MSDOS). Don't set this bit if you use multiple
commands (see __system al | ow _nul ti pl e_cnds above).

__systemenul ate_chdir
When set, the CD and CHDI R commands are emulated internally: they change the drive when the argument
specifies a drive letter, and they support both forward slashes and backslashes in pathnames. When CD is
called without an argument, it prints the current working directory with forward slashes and down-cases DOS
8+3 names. If this bit is reset (the default), CD and CHDI R are passed to the shell.

The behavior of syst emcan be customized a run time by defining the variable DIJSYSFLAGS in the environment.
The value of that variable should be the numerical value of __syst em fl ags that you'd like to set; it will

- Page 405 -

override the value of __syst em fl ags specified when the program was compiled.

Return Vaue

If emd is a null pointer, syst emreturns non-zero if a shell is available. The actual test for the existence of an
executable file pointed to by SHELL or COVSPEC is only performed if the shell is to be invoked to process the
entire command ling; if most of the work is to be done by syst emitself, passing a null pointer always yields a

non-zero return value, since the internal emulation is aways ‘‘available’’.

Otherwise, the return value is the exit status of the child process in its lower 8 bits; bits 8-17 of the return value
will hold SI G NT or S| GABRT if the child process was aborted by Ctrl-C or Critical Device Error, respectively;
otherwise they will be zero Many DOS programs catch Ctrl-C keystrokes and Critical Errors, and handle them in
customized ways. If this handling prevents DOS from realizing that the program was aborted due to these reasons,
bits 8-17 of the value returned by syst emwill most probably be zero. Don’'t count on these bits to hold the
signal number!. If the child couldn't be run, syst emwill return -1 and set er r no to an appropriate value. Note
that if COMVAND. COM was used to run the child, it will always return a O status, even if the command didn’t run
successfully. However, syst emonly calls COMVAND. COM when it needs to run commands internal to it.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXKXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
system("cclpl us. exe @cl123456. gp");

tan
Syntax

#i ncl ude <mat h. h>

doubl e t an(doubl e x);

Description
This function computes the tangent of x (which should be given in radians).

Return Vaue

The tangent of x. If the absolute value of x is finite but greater than or equal to 263, the return value is O (since
for arguments that large each bit of the mantissa is more than Pi). If the value of x is infinite or NaN the return
value is NaN and errno is set to EDOM

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

tanh

Syntax

#i ncl ude <mat h. h>

doubl e t anh(doubl e x);

Description
This function computes the hyperbolic tangent of x.

Return Vaue

The hyperbolic tangent of x. If x is either a positive or a negative infinity, the result is unity with the same sign as
X, and errno is not changed. If x is NaN the return value is NaN and errno is set to EDOV

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXIXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

- Page 406 -

tcdrain
Syntax

#i ncl ude <term os. h>

int tcdrain (int fd);

Description

This function waits until al the output is written to the file/device referred to by the handle fd. In this
implementation, this function does nothing except checking the validity of its arguments; it is provided for
compatibility only. Note that the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXXXXKXXEXXXEXXXEXXXEXXXXKXXXXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

tcflow
Syntax

#i ncl ude <term os. h>

int tcflow(int fd, int action);

Description

This function suspends transmission of data to, or reception of data from, the device/file open on handle fd. The
action argument can take one of these values:

TCOOFF
the output is suspended
TCOON
the output is resumed
TCl OFF
the STOP character is transmitted
TC ON
the START character is transmitted

The current START and STOP characters are stored in the t er m os structure that is currently in effect. See
Termios functions, for more details about that.

Note that the DJGPP termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXHXXXIXEXXXIEXXHKIEXHXHKIEXHXXXIXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
tcflush

Syntax

#i ncl ude <term os. h>
int tcflush (int fd, int which);
Description

This function clears the input and/or output queues on for the device/file open on handle fd. The which argument
can take these values:

- Page 407 -

TCl FLUSH

the unprocessed characters in the input buffer are discarded
TCOFLUSH

no effect (provided for compatibility)
TCl OFLUSH

has the combined effect of TCl FLUSH and TCOFLUSH

Note that the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXKXKXIIXHXKKIEXHXKXIXEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

tcgetattr
Syntax

#i ncl ude <term os. h>
int tcgetattr (int fd, struct termn os *term osp);

Description

This function gets the parameters associated with the file/device referred to by the handle fd and stores them in the
termios structure termiosp. See Termios functions, for the full description of st ruct term os and its members.

Note that the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXKXXXEXXXEXXXKXXIXHXXXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

struct term os term osbuf;
int rc =tcgetattr (0, & erm osbuf);

tcgetpgrp
Syntax

#i ncl ude <term os. h>
int tcgetpgrp (int fd);

Description

This function returns the value of the process group ID for the foreground process associated with the terminal. The
file descriptor fd must be connected to the terminal, otherwise the function will fail.

Return Vaue

If fd is connected to the terminal, the function returns the process group ID, which is currently identical to the value
returned by get pgrp() (See getpgrp). Otherwise, it returns -1 and sets err no to ENOTTY.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXXXIXHHXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

tcsendbreak
Syntax

- Page 408 -

#i ncl ude <term os. h>

i nt tcsendbreak (int fd, int duration);

Description

This function generates a break condition for dur ati on*0. 25 seconds. In the current implementation this function
does naothing; it is provided for compatibility only. Note that the termios emulation handles console only.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHIIXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

tcsetattr
Syntax

#i ncl ude <term os. h>

int tcsetattr (int fd, int action, const struct term os *term osp);

Description

This function sets termios structure for device open on the handle fd from the structure termiosp. Note that the
termios emulation handles console only.

The action argument can accept the following values:

TCSANOW
TCSADRAI N
TCSAFLUSH

Currently, any of these values causes the values in termiosp to take effect immediately.

See Termios functions, for the description of the struct term os structure.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXIXXXXEXXXEXXXEXXXKXXEXHXXHXXIXHIXHXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example
tcsetattr (0, TCSANOW &t erni osbuf);

tcsetpgrp
Syntax

#i ncl ude <term os. h>

int tcsetpgrp (int fd, pid_t pgroup_id);

Description

This function sets the foreground process group ID for the terminal connected to file descriptor fd. fd must be a
valid handle connected to a terminal device, and pgroup_id must be the process group ID of the calling process, or
the function will fail.

Return Vaue

If fd is a valid handle connected to a terminal and pgroup_id is equal to what get pgr p() returns (See getpgrp),
the function will do nothing and return zero. Otherwise, -1 will be returned and errno will be set to a suitable
value. In particular, if the pgroup_id argument is different from what get pgr p() returns, t cset pgrp setserrno

- Page 409 -

to ENOSYS

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXXEXXXXIXEXKXIIXHXHKIEXHXXXXEXHXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

tell
Syntax

#i ncl ude <i 0. h>

off _t tell(int file);

Description
This function returns the location of the file pointer for file.

Return Vaue

The file pointer, or -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No

Example
off_t q=tell(fd);

telldir
Syntax

#i ncl ude <dirent. h>

long telldir(DIR*dir);

Description

This function returns a value which indicates the position of the pointer in the given directory. This value is only
useful as an argument to seekdi r (See seekdir).

Return Vaue
The directory pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example
DIR*dir;
longg=telldir(dir);
do_sonet hing();
seekdir(dir, q);

tempnam
Syntax

#i ncl ude <stdi 0. h>
char * tenpnan{const char *tnpdir, const char *prefix);
Description

This function generates a file name which can be used for a temporary file, and makes sure that no other file by
that name exists.

- Page 410 -

The caller has control on the choice of the temporary file's directory, and the initial letters of the file's basename.
If the argument tmpdir points to the name of the directory in which the temporary file will be created, t enpnam
will ensure that the generate name is unique in that directory. If the argument prefix points to a string, then that
string will be used as the first few characters of the file's basename. Due to limitations of the DOS 8.3 file
namespace, only up to two first characters in prefix will be used.

If tmpdir is NULL, or empty, or points to a non-existent directory, t enpnamwill use a default directory. The
default directory is determined by testing, in sequence, the directories defined by the values of environment variables
TWPDI R TEMP and TMP. The first variable that is found to point to an existing directory will be used. If none of
these variables specify a valid directory, t empnamwill use the static default path prefix defined by P_t npdi r on
<stdio.h> or "c:/", in tha order.

If prefix is NULL or empty, t empnamwill supply its own default prefix "t ni'.

t empnam puts the generated name into space allocated by mal | oc. It is up to the caller to free that space when it
is no longer needed.

Note that t enpnam does not actually create the file, nor does it ensure in any way that the file will be
automatically deleted when it's no longer used. It is the user’s responsibility to do that.

Return Vaue

On success, t empnamreturns a pointer to space (alocated with a call to mal | oc) where the file name is
constructed. If mal | oc failed to provide sufficient memory buffer, or if no valid directory to hold the file was
found, t enpnamreturns a NULL pointer.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

Example

#i ncl ude <stdi 0. h>

tempnam("c:/tnp/", "foo");
Termios functions

The t er ni os functions alow to control terminals and asynchronous communications ports. The DJGPP
implementation currently supports the t er m os functionality for console devices only. It does that by reading the
keyboard via the BIOS Int 16h and writes to the screen via the direct output interrupt 29h. This 1/O redirection is
performed by the specia hook interna to the library.

Many of the t er mi os functions accept a termiosp argument which is a pointer to a st ruct t er nmi os variable.
Here's the description of this structure:

#defi ne NCCS 12

struct term os {

cc_t c¢c_cc[NCCS]; /* control characters */
tcflag_t c_cflag; /* control nodes */

tcflag_t c_iflag; /* i nput nodes */
tcflag_t c_Iflag; /* | ocal nodes */
tcflag t c¢_oflag; /* output nodes */
speed_t c_ispeed; /* i nput baudrate */
speed_t c_ospeed; /* out put baudrate */
}

The array ¢c_cc[] defines the special control characters. the following table lists the supported control functions
the default characters which invoke those functions, and the default values for MIN and TIME parameters:

{Index {VERASE {Delete previous character { Backspace
The special characters (like VEOL, VKI LL, etc.) produce their effect only under the canonical input processing, that
is, when the | CANON bit in the c_| f1 ag member of struct term os (see below) is set. If | CANON is not set,

all characters are processed as regular characters and returned to the caller; only the VM N and VTI ME parameters
are meaningful in the non-canonical processing mode.

- Page 411 -

The VEQOL character can be used to signal end of line (and thus end of input in the canonical mode) in addition to
the normal RET key. In the non-canonical mode, input ends as soon as at least VM N characters are received.

Note that the values of VM N and VTl ME are currently ignored; t er mi os functions always work as if VM N were
1 and VTI ME were zero. Other parameters are supported (for console devices only), except that VSTOP and
VSTART characters are not inserted to the input, but otherwise produce no effect.

The c¢_cfl ag member of struct term os describes the hardware terminal control, as follows:

{Symbol {If set, send two stop bits

Note that since the DOS terminal doesn't use asynchronous ports, the above parameters are always ignored by the
implementation. The default value of ¢c_cfl ag is (CS8| CREAD| CLOCAL).

The c_| f1 ag member of struct term os defines the local modes that control the terminal functions:
{Symbol {Canonical input (erase and kill processing)

The default value of c_I fl ag is (1 SI G | CANON| ECHQ | EXTEN] ECHOE| ECHOKE| ECHOCTL) .

The c_i fl ag member of struct term os describes the input control:

{Symbol {Map upper-case to lower-case on input

The default value of ¢_i fl ag is (BRKI NT| I CRNL| | MAXBEL).

The c_of | ag member of struct term os specifies the output handling:

{Symbol {Map lower case to upper on output

Note that if the OPOST hit is not set, all the other flags are ignored and the characters are output verbatim. The
default value of c_of | ag is (OPOST| ONLCR| ONCEQT).

The c_i speed and c¢_ospeed members specify, respectively, the input and output baudrate of the terminal. They
are set by default to 9600 baud, but the value is aways ignored by this implementation, since no asynchronous ports
are used.

textattr
Syntax

#i ncl ude <coni o. h>
voidtextattr(int _attr);
Description
Sets the attribute used for future writes to the screen:
---- XXXX = foreground col or
- XXX ---- = background col or
X--- ---- =1=bli nk O=st eady

The include file <conio.h> contains an enum COLORS that define the various values that can be used for these
bitfields; light colors can only be used for the foreground.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example

/* blinking white on bl ue */
textattr(BLINK| (BLUE << 4) | WH TE);

Implementation Note

It's not safe to cal this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are

- Page 412 -

called (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

textbackground
Syntax

#i ncl ude <coni o. h>

voi d t ext background(int _col or);

Description
Sets just the background of the text attribute. See textattr.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

textcolor
Syntax

#i ncl ude <coni o. h>

void textcolor(int _color);

Description
Sets just the foreground of the text attribute. See textattr.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

textmode
Syntax

#i ncl ude <coni o. h>
voi d t ext node(i nt _node);
Description
Sets the text mode of the screen. _mode is one of the following:

LASTMODE
- Page 413 -

The text mode which was in effect before the last call to t ext node().

BWIO
40-column black and white (on a color screen)

40
40-color color.

BWBO
80-column black and white (on a color screen)

C80
80-column color

MONO _
The monochrome monitor

C4350
80-column, 43- (on EGAS) or 50-row (on VGAS) color

See set screen lines for a more versatile method of setting text screen dimensions.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is called for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

time
Syntax

#i ncl ude <ti nme. h>
time_t tinme(tine_t *t);

Description
If tis not NULL, the current time is stored in *t.

Return Vaue

The current time is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHIIXHXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

printf("Tineis %d\n", tinme(0));
times
Syntax

#i ncl ude <sys/tines. h>

clock t tinmes(struct tns *buf);
Description

- Page 414 -

This function returns the number of clock ticks used by the current process and all of its children until the moment
of cal. The number of tics per second is CLOCKS PER_SEC defined on time.h.

This is the structure in which ti nmes returns its info:

struct tms {
clock t tns_cstine;
clock t tms_cutine;
clock t tms_stineg;
clock t tns_utine;

}s

Currently, the elapsed time of the running program is returned in the t ns_ut i me field, and al other fields return
as zero.

Return Vaue
The number of elapsed tics since the program started.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXIXEXXXXIXEXKXIEXHXKKIEXHXXKIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example

printf ("W used % seconds of el apsed ti nme\n",
ti mes(&buf)/ CLOCKS PER SEC);

tmpfile

Syntax

#i ncl ude <stdi o. h>

FI LE *tnpfile(void);

Description

This function opens a temporary file. It will automatically be removed if the file is closed or when the program
exits. The name of the file is generated by the same algorithm as described under tmpnam() (See tmpnam).

Return Value
A newly opened file.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
FILE*tnmp =tnpfile();

tmpnam
Syntax

#i ncl ude <stdi o. h>
char *tnpnanm(char *s);

Description

This function generates a string that is a valid file name and that is not the same as the name of an existing file. A
different string is guaranteed to be produced each time it is called, up to TMP_MAX times (TMP_MAX is defined on
stdio.h). If t mpnamis called more than TMP_MAX times, the behavior is implementation-dependent (ours just
wraps around and tries to reuse the same file names from the beginning).

This function examines the environment to determine the directory in which the temporary file will be opened. It

- Page 415 -

looks for one of the variables " TMPDI R*, " TEMP" and " TMP", in that order. The first one which is found in the
environment will be used on the assumption that it points to a directory. If neither of the above variables is
defined, t npnam defaults to the "c./* directory (which under MS-DOS might mean that it fails to generate
TMP_MAX unique names, because DOS root directories cannot grow beyond certain limits).

Return Vaue

If sisa null pointer, t npnam leaves its result in an interna static buffer and returns a pointer to that buffer. If sis
not a null pointer, it is assumed to point to an array of at least L_t npnam characters, and t mnpnam writes its result
in that array and returns a pointer to it as its value.

Portability

{ANSI/ISO C { XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXHXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
char buf[L_t npnani;

char *s = t npnan{ buf);
toascli
Syntax

#i ncl ude <ct ype. h>
int toascii(int c);

Description
This function strips the high bit of ¢, forcing it to be an ASCII character.

Return Vaue
The ASCII character.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
for (i=0; buf[i]; i++)
buf[i] =toascii(buf[i]);
tolower
Syntax

#i ncl ude <ctype. h>
int tol ower(int c);

Description
This function returns ¢, converting it to lower case if it is upper case. See toupper.

Return Vaue

The lower case letter.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXKXXIXHXIXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
for (i=0; buf[i]; i++)
buf[i] =tolower(buf[i]);

- Page 416 -

toupper
Syntax

#i ncl ude <ct ype. h>

i nt toupper(int c);

Description
This function returns ¢, converting it to upper case if it is lower case. See tolower.

Return Vaue

The upper case letter.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXXXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

for (i=0; buf[i]; i++)
buf[i] =toupper(buf[i]);

_truename
Syntax

#i ncl ude <sys/stat. h>

char * _truenane(const char *path, char *true_path);

Description

Given a path of a file, returns in true_path its canonicalized pathname, with all letters uppercased, default drive and
directory made explicit, forward slashes converted to backslashes, asterisks converted to appropriate humber of of
guestion marks, file and directory names truncated to 8.3 if necessary, "." and ".." resolved, extra slashes (but the
last, if present) removed, SUBSTed, JOINed and ASSIGNed drives resolved. Character devices return as
"X:IDEVNAME" (note the forward dash!), where X is the CURRENT drive and DEVNAME is the device name
(e.g. CON). This is exactly what DOS TRUENAME command does. See Ralph Brown's Interrupt List for more
details.

The named path doesn’'t have to exist, but the drive, if given as part of it, should be a lega DOS drive, as this
function hits the disk.

The function will fail if given a path which (1) is an empty string; or (2) contains only the drive letter (eg. "c:");
or (3) has leading whitespace. It will aso fail if it couldn’t allocate memory required for its communication with
DOS or for true path (see below).

t ruename may not return what you expect for files that don't exist. For instance, if the current directory was
entered using a short filename (c: \'t hi si s~1 instead of c:\t hi si sal ongnane, say), then the truename of an
existing file will be a long filename, but the truename of an non-existing file will be a short filename. This can
cause problems when comparing filenames. Use _t ruenane_sf n (See _truename sfn) instead in this case.

Upon success, the function will place the result in true path, if that's non-NULL; the buffer should be large enough
to contain the largest possible pathname (PATH_MAX characters). If true path is a NULL pointer, the space to hold

the result will be alocated by caling mal | oc (See malloc); it is up to the caller to release the buffer by calling
free (See freg.

Return Vaue

The function returns the pointer to the result. In case of any failure, a NULL pointer is returned, and errno is set.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXXXXIXHIIXHXXIXKXXKXXXKXXXXXXXXXXXXXX NO No

- Page 417 -

Example

fprintf(stderr,
"True name of % is %\ n", path, _truenane(path, (char *)0));

_truename _sfn
Syntax

#i ncl ude <sys/stat. h>

char * _truenane_sfn(const char *path, char *true_path);

Description

_truenane_sfn islike truenane, except that it aways returns a short filename. See the documentation for
_truenane for more details (See _truename).

Return Vaue

The function returns the pointer to the result. In case of any failure, a NULL pointer is returned, and errno is set.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXKXIXHIIXHXIIXKIXKXXXKXXXKXXXXXXXXXXX NO No

Example

fprintf(stderr,
"True short nanme of % is %\ n", path,
_truenane_sfn(path, (char *)0));

truncate
Syntax

#i ncl ude <uni std. h>
int truncate(const char *file, off_t size);

Description
This function truncates file to size bytes.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXEKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example
truncate("/tnp/data.txt", 400);

ttyname
Syntax

#i ncl ude <uni std. h>

char *ttynane(int file);

Description
Gives the name of the terminal associated with file.

Return Vaue

Returns "con" if file is a device, else NULL.

- Page 418 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

char *tty = ttyname(0);

tzset
Syntax

#i ncl ude <ti ne. h>

extern char *tznane[2] ;
voi d tzset (voi d);

Description

This function initializes the global variable t znane according to environment variable TZ After the call, t znane
holds the specifications for the time zone for the standard and daylight-saving times.

Return Vaue

None.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXKXXXEXXXEXXXKXXIXHXXHXXIXHKXXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

tzsetwall
Syntax

#i ncl ude <ti ne. h>
void tzsetwal | (voi d);

Description

This function sets up the time conversion information used by | ocal ti me (See localtime) so that | ocal ti e
returns the best available approximation of the local wall clock time.

Return Vaue
None.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIXEXXXKIXEXXXXIXXXXXXXXXXXXXXXXXXXXX NO No

uclock
Syntax

#i ncl ude <ti ne. h>

ucl ock_t ucl ock(void);

Description

This function returns the number of uclock ticks since an arbitrary time, actually, since the first call to ucl ock,
which itself returns zero. The number of tics per second is UCLOCKS _PER_SEC (declared in the ti me. h header
file.

ucl ock is provided for very high-resulution timing. It is currently accurate to better than 1 microsecond (actually
about 840 nanoseconds). You cannot time across two midnights with this implementation, giving a maximum useful
period of 48 hours and an effective limit of 24 hours. Casting to a 32-bit integer limits its usefulness to about an

hour before 32 bits will wrap.

Note that pri ntf will only print a value of type ucl ock_t correctly if you use the format specifier for | ong
- Page 419 -

| ong data, % | d, because ucl ock_t is a 64-bit integer. See printf.

Also note that ucl ock reprograms the interva timer in your PC to act as a rate generator rather than a square
wave generator. I've had no problems running in this mode all the time, but if you notice strange things happening
with the clock (losing time) after using ucl ock, check to see if this is the cause of the problem.

Windows 3.X doesn't alow to reprogram the timer, so the values returned by ucl ock there are incorrect. DOS
and Windows 9X don’'t have this problem.

Windows NT, 2000 and XP attempt to use the r dt sc feature of newer CPUs instead of the interval timer, because
the timer tick and interval timer are not coordinated. During calibration the SI G LL signal handler is replaced to
protect against systems which do not support or allow rdt sc. If rdtsc is available, uclock will keep the upper
bits of the returned value consistent with the bios tick counter by re-calibration if needed. If rdt sc is not available,
these systems fall back to interval timer usage, which may show an absolute error of 65536 uclock ticks in the
values and not be monotonically increasing.

Return Vaue

The number of tics.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

Example

printf("9%I1dticks have el apsed\n", (long Iong) (uclock()));
printf("% second have el apsed\ n",
((doubl e) ucl ock()/UCLOCKS_PER _SEC));

umask
Syntax

#i ncl ude <sys/stat. h>

node t umask(node_t cnask);

Description
This function does nothing. It exists to assist porting.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXEXXXEXXXEXXXKXXIXHXXXXIXHXXXXXXXXXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

uname
Syntax

#i ncl ude <sys/ ut snane. h>

i nt unanme(struct utsname *u);

Description
Fills in the structure with information about the system.

struct utsnane {
char machi ne[9] ;
char nodenane[32] ;
char rel ease[9];
char sysnane[9];
char version[9];

b
machi ne

The CPU family type: "i 386", "i 486", "i 586" (Pentium), "i 686" (PentiumPro, Pentium II, Pentium IlI),
or "i 786" (Pentium 4).

- Page 420 -

nodenarne
The name of your PC (if networking is installed), else " pc".

rel ease
The major version number of DOS. For example, DOS 1.23 would return " 1" here.

syshane
The flavor of the OS.

ver si on
The minor version number of DOS. For example, DOS 1.23 would return " 23" here.

Return Vaue

Zero on success, else nonzero.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXHXXXIXEXXXXIXEXKXIEXHXKKIEXHXXKIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
ungetc

Syntax

#i ncl ude <stdi o. h>

i nt ungetc(int c, FILE*file);

Description

This function pushes ¢ back into the file. You can only push back one character at a time.
Return Value

The pushed-back character, or ECF on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXKXXIXHXXHXXIXHHIXEXXXEXXXKXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
int q;
while (g =getc(stdin) '="q");
unget c(q);

ungetch
Syntax

#i ncl ude <coni o. h>
i nt ungetch(int);

Description
Puts a character back, so that get ch (See getch) will return it instead of actually reading the console.

Return Vaue
The charater is returned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are

- Page 421 -

called (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

unlink
Syntax

#i ncl ude <uni std. h>

int unlink(const char *file);

Description
This function removes a file from the file system.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXHXXXIXEXHXKXIEXHXXXIEXHXXIIXEXXXIIXXXXXIXXXXXXXXXXXXXXXX NO 1003.2-1992 (partial);
1003.1-2001 (partial) (see note 1)

Notes:

1. The posix specification requires this removal to be delayed until the file is no longer open. Due to problems
with the underlying operating systems, this implementation of unl i nk does not fully comply with the specs;
if the file you want to unlink is open, you're asking for trouble --- how much trouble depends on the
underlying OS. On Windows NT (and possibly on Windows 2000 as well), you get the behaviour POSIX
expects. On Windows 9x and Windows ME (and possibly Windows XP as well), the removal will smply
faill (errno gets set to EACCES). On DOS, removing an open file could lead to filesystem corruption if the
removed file is written to before it's closed.

Example
unlink("data.txt");
unlock

Syntax

#i ncl ude <i 0. h>

i nt unl ock(int fd, long offset, long |ength);
Description
Unlocks a region previously locked by | ock.
See lock.

Return Vaue

Zero if successful, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

unlock64
Syntax

#i ncl ude <i 0. h>

i nt unl ock64(int fd, longlong offset, I ong long | ength);

- Page 422 -

Description
Unlocks a region previously locked by | ock64.

Arguments offset and length must be of type | ong | ong, thus enabling you to unlock with offsets and lengths as
large as ~2"63 (FAT16 limits this to ~2"31; FAT32 limits this to 2/32-2).

See lock64.

Return Vaue

Zero if successful, nonzero if not.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKIXKXXXKXXXXXXXXXXXXXX NO No

unsetenv
Syntax

#i ncl ude <stdlib. h>

i nt unsetenv(const char *nane);

Description

This function removes the environment variable name from the environment. This will update the list of pointers to
which the environ variable points. If the specified variable does not exist in the environment, the environment is not
modified and this function is considered to have been sucessfully completed.

Return Vaue

If name is NULL, points to an empty string, or points to a string containing a =, this function returns -1 and sets
errno to El NVAL; otherwise it returns O.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXEXXXXKXXEXXXEXXXEXXXEXXXXKXXKXXXXXKXXKXXXXXXXX No 1003.2-1992; 1003.1-2001
(see note 1)

Notes:

1. This function is new to the Posix 1003.1-200x draft
_use Ifn
Syntax

#i ncl ude <fcntl . h>
char _use | fn(const char *path);

Description

The _use_| f n function returns a nonzero vaue if the low level libc routines will use the Long File Name (LFN)
functions provided with Windows 9x (and other advanced filesystems), when accessing files and directories on the
same filesystem as path. path may be any legal pathname; however, the function only needs the name of the root
directory on the particular drive in question. If path is a NULL pointer, the function assumes that all the filesystems
support (or do not support) LFN in the same manner, and returns the info pertinent to the last filesystem that was
queried; this usually makes the call faster. Note that on Windows 95 you don’t need to distinguish between
different drives: they all support LFN API. If path does not specify the drive explicitly, the current drive is used.

The header fcnt | . h defines a macro USE_LFN applications should use this macro instead of calling use | fn
directly. That is so this routine could be replaced with one which always returns O to disable using long file names.
Calling _USE_LFN also makes the code more portable to other operating systems, where the macro can be redefined
to whatever is appropriate for that environment (e.g., it should be a constant 1 on Unix systems and constant O for
environments that don't support LFN API, like some other MSDOS compilers). Currently, USE_LFN assumes that
LFN API does not depend on a drive.

Long file names can aso be disabled by setting the flag _CRTO_FLAG NO LFNin _crtO_startup_fl ags for

an image which should not allow use of long file names. Long names can be suppressed at runtime on a global
basis by setting the environment variable LFNto N i.e. SET LFN=N This might be needed if a distribution

- Page 423 -

expected the truncation of long file names to 8.3 format to work. For example, if a C source routine included the
file exception.h (9 letters) and the file was unzipped as exceptio.h, then GCC would not find the file unless you set
LFN=n. The environment variable can be set in the DIGPP. ENV file to always disable LFN support on any system,
or can be set in the DOS environment for a short term (single project) basis. If you dual boot a system between
Windows 95 and DOS, you probably should set LFN=n in your DJGPP. ENV file, since long file names would not
be visible under DOS, and working with the short names under DOS will damage the long names when returning to
Windows 95.

Return Vaue
If LFN APIs are supported and should be used, it returns 1, else 0.

Note that if the CRTO_FLAG NO LFN hit is set, or LFN is set to N or n in the environment, both _use | fn and

_USE_LFN will aways return 0 without querying the filesystem. You can reset the _CRTO_FLAG _NO_LFN bit at
runtime to force filesystem to be queried.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXKXIEKHXXIIEXXXKIXEXXXIIXEXXXXIXXXXXXXXXXXXXXXX NO No
Example

#i ncl ude <fcntl . h>
#i ncl ude <sys/stat. h>

nt fd=creat (_USE LFN? "MyCurrentJobFile. Text" : "currjob.txt",

i
S IRUSR| S | WSR);

usleep
Syntax

#i ncl ude <uni std. h>
unsi gned usl eep(unsi gned usec);

Description

This function pauses the program for usec microseconds. Note that, since usl eep calls cl ock internaly, and the

latter has a 55-msec granularity, any argument less than 55msec will result in a pause of random length between O

and 55 msec. Any argument less than 11msec (more precisely, less than 11264 microseconds), will always result in
zero-length pause (because cl ock multiplies the timer count by 5). See clock.

Return Vaue

The number of undept microseconds (i.e. zero).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example
usl eep(500000);

utime
Syntax

#i ncl ude <uti me. h>

int utime(const char *file, const struct utinmbuf *tinme);

Description
This function sets the modification timestamp on the file. The new time is stored in this structure:

struct uti nbuf

- Page 424 -

{

nme_t actinme; /* access tinme (unused on FAT fil esystens) */
me_t nmodtinme; /* nodificationtinme */

)+ -+

Note that, as under DOS a file only has a single timestamp, the acti me field of st ruct uti nmbuf isignored by
this function, and only nodt i me field is used. On filesystems which support long filenames, both fields are used
and both access and modification times are set.

If file is a directory, the function always fails, except on Windows 2000 and Windows XP, because other systems
don't allow changing the time stamp of a directory.

Return Vaue

Zero for success, nonzero for failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXXXKXXIXHXXHXXIXHHXHXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

Example

struct utinbuf t;
t.modtime =time(0);
utime("data.txt", &t);

utimes
Syntax

#i ncl ude <sys/tine. h>

int utimes(const char *file, struct timeval tvp[2]);

Description

This function sets the file access time as specified by t vp[0], and its modification time as specified by t vp[1].
struct tineval is defined as follows:

struct tineval {
time_t tv_sec;
| ong tv_usec;

Note that DOS and Windows maintain the file times with 2-second granularity. Therefore, the t v_usec member of
the argument is aways ignored, and the underlying filesystem truncates (or sometimes rounds) the actual file time
stamp to the multiple of 2 seconds.

On plain DOS, only one file time is maintained, which is arbitrarily taken from tvp[1] . tv_sec. On Windows
9X, both times are used, but note that most versions of Windows only use the date part and ignore the time.

Due to limitations of DOS and Windows, you cannot set times of directories.

Return Vaue

Zero on success, nonzero on failure.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXXIXHXHXIXEXHXXKIEXXXXIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

Example
time_t now;
struct timeval tvp[2];
ti me(&ow);
tvp[1l].tv_sec = now + 100;
utinmes("foo.dat", tvp);

- Page 425 -

v2loadimage

Syntax
#i ncl ude <debug/ v2l oad. h>

i nt v2l oadi mage (const char *program const char *cmdl i ne,
j mp_buf | oad_state);

Description

This function loads an executable image of a DJGPP v2.x program and prepares it for debugging. program should
point to the file name of the executable program. v2| oadi mage does not search the PATH and does not try any
executable extensions, so program should point to a fully-qualified path, complete with the drive, directory, and
file-name extension; otherwise the call will fail.

cmdline should point to the command-line arguments to be passed to the program. A command line up to 126
characters long can be formatted exactly like the command tail DOS passes to programs. the first byte gives the
length of the command tail, the tail itself begins with the second byte, and the tail is terminated by a CR character
(decimal code 13); the length byte does not include the CR. Longer command lines require a different format: the
first byte is 255, the command-line starting with the second byte which is terminated by a NUL character (decimal
code 0). Regardiess of the method used, the command-line arguments should look as if they were to be passed to
the library function syst em In particular, all special characters like wildcards and whitespace should be quoted as
if they were typed at the DOS prompt.

After the function loads the image and sets up the necessary memory segments for it to be able to run, it sets
load_state so that it can be used to | ongj np to the debuggee's entry point. This information is typically used by
run_chil d (See run_child).

Return Vaue

Zero in case of success, non-zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIIXHXHXIXEXHXXKIEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Example

cndline = (char *) alloca (strlen (args) + 4);
cndline[0] =strlen (args);

strcpy (cndline + 1, args);

cndline[strlen (args) + 1] = 13;

i f (v2l oadi mage (exec_file, cndline, start_state))
printf
exit (1
}

edi _init (start_state);

("Load failedfor i mage %8\ n", exec file);
)

valloc
Syntax

#i ncl ude <stdlib. h>
voi d *val | oc(si ze_t size);
Description

This function is just like mal | oc (See malloc) except the returned pointer is a multiple of the CPU page size
which is 4096 bytes.

Return Vaue

A pointer to a newly alocated block of memory.

- Page 426 -

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXKXXXXXKXXKXXKXXKXXXXXXXX NO No

Example

char *page = val | oc(get pagesi ze());
varargs
Syntax

#i ncl ude <stdarg. h>

void va_start(va_list ap, LAST_REQU RED ARG ;
TYPE va_arg(va_list ap, TYPE);
voi d va_end(va_list ap);

Description

Used to write functions taking a variable number of arguments. Note that these are actually macros, and not
functions. You must prototype the function with ‘..." in its argument list. Then, you do the following:

. Create a variable of type va_li st.
. Initidlize it by calling va_st art with it and the name of the last required (i.e. non-variable) argument.

. Retrieve the arguments by calling va_ar g with the va_l i st variable and the type of the argument. As
another aternative, you can pass the va_| i st to another function, which may then use va_ar g to get at
the arguments. vprintf is an example of this.

. Cdl va_end to destroy the va_li st.

Be aware that your function must have some way to determine the number and types of the arguments. Usualy this
comes from one of the required arguments. Some popular ways are to pass a count, or to pass some specia value
(like NULL) at the end.

Also, the variable arguments will be promoted according to standard C promotion rules. Arguments of type char
and short will be promoted to i nt, and you should retrieve them as such. Those of type f | oat will be
promoted to doubl e.

Return Vaue

va_ar g returns the argument it fetched, the other macros return nothing.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXEXXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

int find_the_sum(int count, ...)

{

va_list ap;

inti;

int total =0;
va_start(ap, count);

for (i =0; i <count; i++)
total +=va_arg(ap, int);
va_end(ap);

return total;

}

i nt other function(void)

- Page 427 -

{

;eturnfind_t he sum(6, 1, 2, 3, 4, 5, 6);
vfork
Syntax

#i ncl ude <uni std. h>

pid_t vfork(void);

Description

This function always returns -1 and sets ‘errno’ to ENOMEM, as MS-DOS does not support multiple processes. It
exists only to assist in porting Unix programs.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

viprintf
Syntax

#i ncl ude <stdi 0. h>
#i ncl ude <stdarg. h>

int viprintf(FILE*file, const char *format, va_|ist argunents);

Description
Sends formatted output from the arguments to the file. See printf.

Return Vaue

The number of characters written.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXEXXXEXXXEXXXEKHXIXHKXIXHKIIXKXXKXXEXXXKXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

void my_errmsg(char *format, ...)

{

va_list arg;

va_start(arg, format);
fprintf(stderr, "ny_errmsg: ");

viprintf(stderr, format, arg);
va_end(arg);

vfscanf
Syntax

#i ncl ude <stdi o. h>

i nt vfscanf(FILE*file, const char *format, va_list argunents);

Description
This function scans formatted text from file and stores it in the variables pointed to by the arguments See scanf.

Return Vaue

- Page 428 -

The number of items successfully scanned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXXXXIXIXHXHXIEXHXXKIEXXXKIXEXXXXIXEXXXXIXXXXXXXXXXXXXXXX NO No

vprintf
Syntax

#i ncl ude <stdi 0. h>
#i ncl ude <stdarg. h>

int vprintf(const char *fornat, va_|ist argunments);

Description
Sends formatted output from the arguments to st dout. See printf. See vfprintf.

Return Vaue

The number of characters written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEKXXEXXXKXXEXKXIXKXXKXXKXXKXXKXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

vscanf

Syntax

#i ncl ude <stdi o. h>

i nt vscanf (const char *format, va_list argunents);

Description

This function scans formatted text from st di n and stores it in the variables pointed to by the arguments See
scanf. See vfscanf.

Return Vaue

The number of items successfully scanned.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXKXXKXXXXXXX NO No

vsnprintf
Syntax

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

int vsnprintf (char *buffer, size_t n, const char *format,
va_ list ap);

Description

This function works similarly to vspri ntf () (See vsprintf), but the size n of the buffer is also taken into account.
This function will write n - 1 characters. The nth character is used for the terminating nul. If n is zero, buffer is
not touched.

Return Vaue

The number of characters that would have been written (excluding the trailing nul) is returned; otherwise -1 is
returned to flag encoding or buffer space errors.

The maximum accepted value of n is | NT_MAX | NT_MAX is defined in <l imts. h> -1 isreturned and errno

- Page 429 -

is set to EFBI G if n is greater than this limit.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXHXXXXEXHXXXIEXHXXKIEXXXXIXXXXXIXHXXXXXXXXXXXXXXXXXXXX C89; C99 (see note 1)
Notes:

1. The buffer size limit is imposed by DJGPP. Other systems may not have this limitation.

vsprintf
Syntax

#i ncl ude <stdi 0. h>
#i ncl ude <stdarg. h>

int vsprintf(char *buffer, const char *format, va_list argunents);
Description
Sends formatted output from the arguments to the buffer. See printf. See vfprintf.

To avoid buffer overruns, it is safer to use vsnprintf () (See vsnprintf).

Return Vaue

The number of characters written.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXXKXXKXXXXXKXXXXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

vsscanf
Syntax

#i ncl ude <stdi o. h>
i nt vsscanf (const char *string, const char *format, va_list argunments);

Description

This function scans formatted text from the string and stores it in the variables pointed to by the arguments See
scanf. See vfscanf.

Return Vaue

The number of items successfully scanned.

Portability
{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXKXXKXXXXXXXX NO No
wait
Syntax
#i ncl ude <sys/wait. h>
pidt pid=wait(int *status);

Description

This function causes its caller to delay its execution until a signal is received or one of its child processes
terminates. If any child has terminated, return is immediate, returning the process ID and its exit status, if that's
available. If no children processes were called since the last cal, then -1 is returned and errno is set.

Return Vaue

- Page 430 -

If successful, this function returns the exit status of the child. If there is an error, these functions return -1 and set
errno to indicate the error type.

Bugs

Currently, this function always fails.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXKXIEXHXHKIEXHXHXIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001
waitpid
Syntax

#i ncl ude <sys/wait. h>

pidt pid=waitpid((pid_t pid, int *status, int options);

Description
Currently, this function always fails. A -1 is returned and err no is set to indicate there are no children.

Return Vaue

If successful, this function returns the exit status of the child. If there is an error, these functions return -1 and set
errno to indicate the error type.

Bugs
Currently, this function always fails.
Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXHXXXXXXKXXXEXXXEXXXKXXIXHXXHXXIXHKXXXXXXXXKXXXXXXXXXXX No 1003.2-1992; 1003.1-2001

wcstombs
Syntax

#i ncl ude <stdlib. h>

size_t westonbs(char *s, const wchar _t *wcs, size t n);

Description
Converts a wide character string to a multibyte string. At most n characters are stored.

Return Vaue

The number of characters stored.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEXXXEXXXEXKXIXKXXKXXKXXKXXXXXKXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example

int len =westonbs(buf, wstring, sizeof (buf));

wctomb

Syntax
#i ncl ude <stdlib. h>

i nt wetonb(char *s, wchar _t wchar);
Description

- Page 431 -

Convert a wide character to a multibyte character. The string s must be at least MB_LEN MAX bytes long.

Return Vaue

The number of characters stored.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXEXXXEKXXEXXXEXKXXKXXKXXKXXKXXKXXXXXXXXXXXXX C89; C99 1003.2-1992;
1003.1-2001

Example
char s[MB_LEN MAX] ;

int mMen=wtonb(s, we);
wherex
Syntax

#i ncl ude <coni o. h>

i nt wherex(void);

Return Vaue

The column the cursor is on. The leftmost column is 1.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKKIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

wherey
Syntax

#i ncl ude <coni 0. h>
i nt wherey(void);
Return Vaue

The row the cursor is on. The topmost row is 1.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXIXEXXXIXIXHHXIEXHXXKIXEXXXKIXEXXXIIXEXXXXXXXXXXXXXXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,
you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

wild

- Page 432 -

Syntax

#i ncl ude <debug/wi | d. h>

int wild(char *pattern, char *string);

Description

This function matches a string pointed to by string against a pattern pointed to by pattern. pattern may include
wildcard characters ? and *, meaning, respectively, any single character and any string of characters. The function
returns non-zero if the string matches the pattern, zero otherwise.

This function is meant to be used for ssmple matching of patterns, such as if a debugger needs to allow
specification of symbols using wildcards.

Return Vaue

The function returns non-zero if the string matches the pattern, zero otherwise.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXKXXKXXKXXKXXKXXXXXXXX NOo No

window
Syntax

#i ncl ude <coni o. h>

voidwindowmint left, int top, int right, int botton;

Description

Specifies the window on the screen to be used for future output requests. The upper left corner of the physical
screen is (1,1).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKKIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Implementation Note

It's not safe to call this function inside static constructors, because conio needs to be initialized, and its initialization
is done by a static constructor. Since you don’'t have any control on the order in which static constructors are
caled (it's entirely up to the linker), you could have problems.

If you can detect the situation when one of the conio functions is caled for the very first time since program start,

you could work around this problem by calling the gppconi o_i ni t function manualy (this is the function caled
by a static constructor).

write
Syntax

#i ncl ude <uni std. h>
int wite(int file, const void *buffer, size_ t count);

Description

This function writes count bytes from buffer to file. It returns the number of bytes actually written. It will return
zero or a number less than count if the disk is full, and may return less than count even under valid conditions.

Note that if file is a text file, wri t e may write more bytes than it reports.

If count is zero, the function does nothing and returns zero. Use write if you want to actually ask DOS to write
zero bytes.

The precise behavior of wri t e when the target filesystem is full is somewhat troublesome, because DOS doesn't fail
the underlying system call. If your application needs to rely on errno being set to ENOSPC in such cases, you

- Page 433 -

need to invoke wri t e as shown in the example below. In a nutshell, the trick is to call writ e one more time
after it returns a value smaller than the count parameter; then it will always set err no if the disk is full.

Return Vaue

The number of bytes written, zero at EOF, or -1 on error.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXEXXXXXEXXXXIXEXKXIEXHXHKIEXHXHXIEXHXXXXXXXXXXXXXXXXXXXX NO 1003.2-1992; 1003.1-2001

Example
This example shows how to call write in a way which ensures that er r no will be set to ENOSPC if the target
filesystem is or becomes full:

char *buf _ptr; /* the buffer towite */
size_t buf _len; /* the nunber of bytestowite */
int desc; /* the file descriptor towiteto*/

whil e (buf _l en > 0)

int witten=wite (desc, buf_ptr, buf len);
if (witten<=0)
br eak;

buf _ptr +=witten;
buf len-=witten;

}

_write
Syntax

#i ncl ude <i 0. h>

ssize t write(int fildes, const void *buf, size t nbyte);

Description

This is a direct connection to the MS-DOS write function cal, int 0x21, %ah = 0x40. No conversion is done on the
data; it is written as raw binary data. This function can be hooked by the File-system extensions, see See File
System Extensions If you don't want this, you should use _dos_writ e instead, see See _dos write

Return Vaue

The number of bytes written, or -1 (and errno set) in case of failure.

Note that DOS doesn’t return an error indication when the target disk is full; therefore if the disk fills up while the
data is written, _wri t e does not return -1, it returns the number of bytes it succeeded to write. If you need to
detect the disk full condition reliably, call _write again to try to write the rest of the data. This will cause DOS
to return zero as the number of written bytes, and then _wri te will return -1 and set er r no to ENOSPC The
example below shows one way of doing this.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXEXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

This example shows how to call _write in a way which ensures that err no will be set to ENOSPC if the target
filesystem is or becomes full:

char *buf_ptr; /* the buffer towite */

size_t buf len; /* the nunber of bytestowite */
int desc; /* the file descriptor towiteto*/
whil e (buf _l en > 0)

int witten=_wite (desc, buf _ptr, buf_len);

- Page 434 -

if (witten <=0)
br eak;

buf ptr +=witten;
buf len-=witten;

}
write child

Syntax

#i ncl ude <debug/ dbgcom h>

voidwite child (unsigned child addr, void *buf, unsignedlen);

Description

This function transfers len bytes from the buffer pointed to by buf in the debugger’'s data segment to the memory of
the debugged process starting at the address child_addr. It is used primarily to insert a breakpoint instruction into
the debugged process (to trigger a trap when the debuggee’s code gets to that point). The companion function
read_chi |l d (See read_child) is usually called before write_chil d to save the original code overwritten by the
breakpoint instruction.

Return Vaue

The function return zero if it has successfully transferred the data, non-zero otherwise (e.g., if the address in
child_addr is outside the limits of the debuggee's code segment.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKXXKXXXKXXKXXXXXXXXXXX NO No

write sel_addr
Syntax

#i ncl ude <debug/ dbgcom h>

void wite_sel addr (unsigned sel, unsigned of fset,
voi d *buf, unsigned | en);

Description

This function transfers len bytes from the buffer pointed to by buf in the data segment whose selector is sel, at
offset offset. The companion function r ead_sel _addr (See read_sel_addr) is usually called before
wite sel addr to save the origina contents, if needed.

Return Vaue

The function return zero if it has successfully transferred the data, non-zero otherwise (e.g., if the address in offset
is outside the limits of the sels segment).

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXEXHXXXXIXHIIXHXXIXKIXKXXXKXXXXXXXXXXXXXX NO No

xfree
Syntax

#i ncl ude <stdlib. h>
voi d xfree(void *ptr);
Description

Frees memory allocated by xmal | oc (See xmalloc). This function guarantees that a NULL pointer is handled
gracefully.

- Page 435 -

Note that, currently, the header st dl i b. h does not declare a prototype for xf r ee, because many programs declare
its prototype in different and conflicting ways. If you use xfree in your own code, you might need to provide
your own prototype explicitly.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXKXKXIXXXXXXXKXXKXXXKXXKXXXXXXXX NO No

Example

void *f = xmal | oc(100);
xfree(f);

xmalloc
Syntax

#i ncl ude <stdlib. h>

voi d *xmal | oc(si ze_t size);

Description

This function is just like mal | oc (See malloc), except that if there is no more memory, it prints an error message
and exits.

Note that, currently, the header st dl i b. h does not declare a prototype for xmal | oc, because many programs
declare its prototype in different and conflicting ways. If you use xnmal | oc in your own code, you might need to
provide your own prototype explicitly.

Return Vaue

A pointer to the newly allocated memory.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXKXXKXXKXXEXXXEXXXIXKXIXXXXXXXKXXKXXXKXXKXXXXXXX NO No

Example

char *f = xmal | oc(100);

xrealloc
Syntax

#i ncl ude <stdlib. h>

void *xreal l oc(void *ptr, size_ t size);

Description

This function is just like r eal | oc (See realloc), except that if there is no more memory, it prints an error message
and exits. It can also properly handle ptr being NULL.

Note that, currently, the header st dl i b. h does not declare a prototype for xr eal | oc, because many programs
declare its prototype in different and conflicting ways. If you use xreal | oc in your own code, you might need to
provide your own prototype explicitly.

Return Vaue

A pointer to a possibly new block.

Portability

{ANSI/ISO C {XXXXXXXXXXXXXXXXXXXXXEXXXEXXXKHXKXXIXHIXHXXXKXXKXXXKXXXXXXXXXXXXXX NO No

Example

char *buf;
buf = (char *)xreal | oc(buf, new size);

- Page 436 -

Unimplemented Functions

The DJGPP standard C library is ANS- and Posix-compliant, and provides many additional functions for compatibility
with Unix/Linux systems. However, some of the functions needed for this compatibility are very hard or impossible
to implement using DOS facilities.

Therefore, a small number of library functions are redly just stubs: they are provided because POSIX requires them
to be present in a compliant library, or because they are widely available on Unix systems, but they either always
fail, or handle only the trivial cases and fail for all the others. An example of the former behavior is the function

f or k: it always returns a failure indication; an example of the latter behavior is the function mknode: it handles the
cases of regular files and existing character devices, but fails for all other file types.

This chapter lists al such functions. This list is here for the benefit of programmers who write portable programs or
port Unix packages to DJGPP.

Each function below is labeled as either ‘‘always fails’ or ‘‘trivial’’, depending on which of the two classes

described above it belongs to. An additiona class, labeled ‘‘no-op’’, includes functions which pretend to succeed,
but have no rea effect, since the underlying functionality is either always available or aways ignored.

- Page 437 -

Function Index

- Page 438 -

Variable Index

- Page 439 -

Data Type Index

- Page 440 -

Concept Index

- Page 441 -

