

Overview
INTRODUCTION
The C68 Compilation System provides a Public Domain C compiler for use
under the QDOS operating system. It is a full C implementation that
includes all items mentioned in the "Kernighan and Richie" C definition.
There is full support for all common data types such as int, char, short,
long, float and double as well as more esoteric types such as "typedef" and
"enum". Structures and unions are supported for those who want more complex
data types.
The C68 Compilation System includes everything that is needed to produce a
running C program, including a simple source code editor for those who do
not already have one. However editors is an area where every user seems to
have their own personal preference, so you are at perfect liberty to use an
alternative. Many C programmers are likely to already have a suitable
editor that they like and love!
THE COMPILATION PROCESS
The C68 Compilation System is implemented in the style that is common on
Unix systems where the compilation process is broken into a number of
discrete phases. These are:
 CPP Pre-processor
 C68 Compiler
 AS68 Assembler
 LD Linker
The user does not normally run these programs directly. Instead they are
front-ended by the CC command. This will examine the parameters it is
provided with, and will run the appropriate underlying programs.
The job of the CPP pre-processor is to take the C source provided and scan
it executing all the C directives (the ones that start with the # symbol)
such as #include and #define statements. This produces C code with all
these directives removed that is suitable for input to the main compilation
phase.
The output from the CPP pre-processor is then input into the C68 compiler.
At this stage all the syntax analysis of the user's program is done, and
code generated. The C68 compiler outputs assembler source code.
The assembler source code is then converted to SROFF (Sinclair Relocatable
Object File Format) by the AS68 assembler.
Finally the LD linker is used to combine the user's program module(s) with
standard library modules that are supplied as part of a C implementation.
It is tedious to have to keep typing in all the parameters required to
compile a particular program (particularly if it consists of multiple
modules). The C68 Compilation System provides the MAKE command to allow
this process to be automated.
THE LIBRARIES
A key part of any C implementation is the libraries that are supplied with
it. The more extensive the libraries, the easier it is for the programmer
to implement any particular facility.
One of the strengths of the C language is the ease with which programs can
be ported betwen different computers and operating systems. This is only
true, however, if both systems have comparable (and preferably compatible)
library routines.
The standard C library supplied as part of the C68 Compilation System
includes all routines defined by Kernighan and Richie; all routines defined
by the ANSI standard; most of the routines commonly implemented by the
LATTICE C family of compilers; and a large number of library routines
commonly encountered in the Unix environment.
For those who want to access QDOS, access is provided to all of the QDOS
operating system calls. There are standard routines to satisfy many tasks
commonly encountered by programmers (e.g. a routine to obtain a sorted
directory listing, or a list of files matching a wildcard pattern).
Additional libraries cover more specialist areas such as MATHS routines and
debugging aids. Libraries are under development to cover areas such as QRAM
support and Semaphore handling.
SOURCE
All elements of the C68 compilation system are in the Public Domain. For

C68 Documentation
Dave Walker

All elements of the C68 compilation system are in the Public Domain. For
those who are interested the full source of all components is available.
Except for some of the library routines, the rest of the C68 Compilation
system is itself written in C. The C68 Compilation system is in fact used
to compile itself!
HARDWARE REQUIREMENTS
The one drawback of the C68 Compilation System is that it will not run on
an unexpanded QL. The minimum requirements are 256Kb of memory and at least
one 720Kb floppy disk drive. Additional memory and/or disk drives are
highly desirable.

Getting Started
INTRODUCTION
This document is intended to help you get started as rapidly as possible in
using C68. Eventually you will need to read the more detailed documentation
and may well want to print much of it. This document should allow you to at
least get the feel for C68 very rapidly without having to do that much.
It is always a good idea to ensure that you have read the README_DOC file
supllied with C68. This contains the issue notes for the current release.
USING THE C68_MENU FRONT-END
The simplest way to use C68 is via the C68_MENU program supplied in the C68
System disk. Using this program is largely intuitive, but full details are
contained in the file C68MENU_DOC on the documentation disk.
A suitable BOOT file is supplied on the "RUNTIME 2" disk. You may if you
wish, simply boot your system with this disk in FLP1_, and this BOOT file
will be used. Alternatively, you may wish to make your own tailored BOOT
file, using this one as a model.
It is only necessary to read the remainder of this document if you intend
to run C68 from the SuperBasic command line. Having said that, even if you
are going to use C68_MENU, it is still a good idea to at least look through
it to get an idea of what is happening behind the scenes.
PREPARING TO USE C68
The C68 will use Toolkit 2 default directories. This is very convenient as
it allows you omit the device and directory part of any filename.
Therefore, the first thing is to set the default directories. The
recommended settings are as follows:
 DATA_USE FLP2_
 PROG_USE FLP1_
You can check the current settings of the DATA_USE and PROG_USE directories
at any time by typing in the command:
 DLIST
You can now run with the C68 System Disk (RUNTIME 1) in FLP1_, and your
work disk in FLP2_. The defaults built into C68 will now be looking for
files in the correct place.
HARD DISK USERS
The instructions outlined in this document assume that you have a twin
floppy disk system. Hard disk users follow the same principles, but set the
DATA_USE and PROG_USE directories to point to the appropriate hard disk
directories.
COMPILING PROGRAMS
You can now compile any program by simply typing in the command of the
form:
 EX CC;"-v -oPROGRAM PROGRAM_C -lm"
All parameters except the source file name can actually often be omitted.
The -o option is used to name the file to contain the final program where
"PROGRAM" is the name of the program. If you omit the -o option then your
final program will be called A_OUT. Do not let your program name finish
with _I, _S or _O as these have special meaning within C68. The -v
parameter makes CC display the command line that it is using to run the
various compiler phases that it is running for you. Finally, the -lm
parameter is used to cause the linker to search the LIBM_A library in
addition to the standard C library. This is needed if you want to print
floating point numbers as the versions of the print routines that support
this are held in the maths library. If you have omitted the -lm option and
DO try to print floating point, you will get a message saying "no floating
point" displayed instead of the number you expected.
RUNNING THE COMPILED PROGRAMS
You can run now run the generated program. You start the generated program
by a command of the form:

by a command of the form:
 EXEC_W flp2_PROGRAM
If you omitted the -oPROGRAM parameter to CC this would be:
 EXEC_W flp2_A_OUT
Note that the final program will have been put into the DATA_USE directory,
so it is not possible to default the directory part of the filename.
WHAT NEXT
By this time you are should be able to compile and run simple programs. The
next stage is to examine the C68 documentation in more detail. The
README_DOC file will give you a good idea of the contents of each file, so
you can decide which ones you want to read first. Some of the most
important files to read early will be the OVERVIEW_DOC and the INTRO_DOC
files.
Eventually you are likely to want to print out most of the documentation
for reference purposes. There are, however, several hundred pages so this
is a non-trivial task, although I think that you will find it to be well
worth the effort.
Many of the documents now include a change history of when the last
significant change was made. This can help uses who are upgrading releass
to decide if a document has changed significantly. The footer also includes
the date of the last change even if it was only a trivial one.
It is intended that starting with the 4.20 release, the CHANGES_DOC file
will contain a list of what documents have had significant changes since
the previous release.

CC Front-End
NAME
 CC - C compiler front-end.
SYNOPSIS
 CC [options] filelist
DESCRIPTION
The CC command is the users' command-line front-end to the compilation
system. It provides a convenient method of controlling and running all the
underlying components. The CC command can support either the "C68 system
for QDOS" or the "CPOC system for the Psion 3a".
In the description of the options, the program names in square brackets
show which of the underlying compilation phases use any particular option.
For more detailed descriptions of the options that are not specific to CC
only, refer to the documentation specific to the underlying programs
mentioned in the square brackets.
The CC front end uses the extension part of the filename to decide which
phases are appropriate to any particular filename. It is important
therefore that you stick to the filename conventions laid out later in this
document.
The compile options are preceeded with a '-' to differentiate them from any
source file name. Note that case is significant when specifying options
unless indicated otherwise. Options can alternatively be taken from
Environment Variables (as detailed later).

-A [AS68]
See AS68 documentation
-bufl [LD]
Change the buffer length for reading libraries. See the LD
documentation for more details.
-bufp [LD]
Change the buffer size for holding the final binary program. See the LD
documentation for more details.
-c [CC]
Stop after the assembler phase. This will produce an object file
suitable for input into the linker. This is the option used when you
are compiling individual modules that will later be linked together.
-crf [LD]
See LD documentation for details.
-C [CPP]
Do not discard comments, but pass them through to the main compile
phase.
-d [CPP]
See CPP documentation for details
-D [CPP]

-D [CPP]
Pass "defines" to the pre-processor.
-DEBUG [LD]
See LD documentation for details
-error =n [C68/C86]
Set the error level.
-extern [C68/C86]
See compiler documentation for details.
-E [CPP]
See CPP docementation for details
-format [C68]
-noformat
See the C68 documentation for details.
-frame =n [C68]
Set the frame pointer index register.
-g [C68]
Produce debugging information. Currently this has little effect in C68.
It does, however cancel any -O option if that is also specified.
-h
This option is no longer used. It is not passed to any of the
underlying programs but is accepted by CC for backwards compatiblity
reasons although otherwise ignored.
-icode [C68]
Output details of the internal code tables.
N.B. This option is only available if C68 was generated with the ICODE
option set in its configuration file. The standard version of C68 does
NOT support this option.
-I [CPP]
Specifies search sequence for header files.
This means that it is not necessary to include the pathnames of include
files in your source programs. Standard header files on the
distribution disk are normally included by the line:

#include <stdio.h>

if they are kept in the include_ sub-directory in the default program
directory.
-l libid [LD]
Specify library(s) to be searched when linking the program before the
standard default LIBC_A library. The libid field will have the text
"lib" appended to the front, and "_a" at the end to derive the library
name. Thus using -lm would result in the library libm_a being searched.
-lattice [C68]
Allow LATTICE style prototypes to be used.
-list [C68]
Output a listing file.
-L [LD]
Specify the directory search sequence for standard libraries to be used
in the link.
-m [LD]
Produce a map file.
-maxerr =n [C68]
Set the maximum number of errors that should be reported by C68 before
abandoning the compilation.
-ms [LD]
Produce a map file plus symbol information.
-M [CPP]
Passed to CPP. Produce output suitable for MAKE describingdependencies.
-MM [CPP]
Like -M , but system header files not included in list of dependencies.
Passed to CPP
-nostdinc [CPP]
See CPP documentation for details.
-N [AS68]
Do not attempt to optimise code. By default AS68 will attempt to use
short addressing modes where it can to reduce the size of the code.
-o file [LD]
Specify name out output program file. If not specified, then a_out will
be used.
-opt [C68]
-noopt

-noopt
See C68 documentation for details.
-O [C68]
Invoke the maximum level of optimisation. This can produce quite a
significant reduction in program size as well as normally giving more
efficient code, so it is normally well worth doing. A much more
detailed discussion of the optimisation process is given in the
documentation of the c68 program itself.
-p [CC]
Stop after the CPP pre-processor phase. This will produce a file
(ending in _i) which has the C source after pre-processing that would
normally be input to the C68 phase.
-pedantic [C68]
See C68 documentation for details.
-P [CPP]
Passed to CPP. Inhibits generation of # lines in the output giving line
number information relating to the original source file. Needed if
assembler is being passed through CPP.
-qmac [CC]
-QMAC
This option is no longer used. It is not passed to any of the
underlying programs but is accepted by CC for backwards compatibility
reasons although otherwise ignored.
-Q option [C68]
This option is used to pass options to the C68 phase that are not
catered for by CC. It is followed immediately by the option you are
interested in. For further details see the C68 documentation.
-r libid [LD]
Specify Runtime Link Library (RLL) library(s) to be searched when
linking the program before the standard default LIBC_A library.
-reg [C68]
-noreg
See C68 documentation for details.
-R [LD]
Specify the directory search sequence to be used for locating Runtime
Link Libraries (RLL's).
-s name [LD]
Specify the name of an alternative start-up module from the default
value of crt_o.
-stackcheck [C68]
See C68 documentation for details.
-stackopt [C68]
-nostackopt
See C68 documentation for details.
-sym [LD]
See LD documentation for details.
-S [CC]
Stop after the C68 compilation phase. This will produce a file (ending
in _s) which has the assembler source produced by the compiler.
Normally this is input into the AS68 assembler phase to produce the
object (_o) file.
-tmp [CC]
Specifies the device and/or directory that will be used to hold
intermediate files. These are work files created during the compilation
process that are deleted on completion. Therefore

-tmp ram1_

would cause all temporary files to be put onto ram1_. The default is to
use the same device as the input file to the relevant phase.
-TMP [CC]
This option is similar to the -tmp option above, but the final output
file (typically the _o file)is also put onto the device specified.
-trace [C68]
See C68 documentation for details.
-trad [C68]
Revert to standard K&R compatibility mode. Disables most ANSI features.
-trigraphs [CPP]
Accept trigraphs in the C source.
-uchar [CPP, C68]
Treat the 'char' data type as unsigned. By default it is treated as
signed.

-undef [CPP]
Suppress definition of standard pre-defined symbols.
-unproto
This options is no longer used. It is not passed to any of the
underlying programs but is accepted by CC for backwards compatiblity
reasons although otherwise ignored.
-U [CPP]
Forbid defines for the specified symbols. Overrides the -D option if
necessary.
-v [CC, CPP, C68, AS68, LD]
Run in verbose flag. This means that CC displays the command line used
to run each phase of the compilation system as it is invoked. This is
particularily useful if you are getting a compilation failure and you
are not sure at what stage of the compilation process.

The -v flag is also passed to each of the phases that CC is running.
This will cause these underlying programs to output a message giving
their version number.
-V [CC]
This is like the -v option in that it causes CC to display the command
line used to invoke each underlying program. The difference is that the
-v flag is not passed to these underlying programs to make them output
their own version number message.

This mode is also invoked automatically if CC is started directly from
the command line (as opposed to via some other program such as MAKE or
C68MENU), and the -v flag is not present.
-warn =n [C68]
Set the maximum level of warning reports.
-x [LD]
Include a external reference symbol table in the final linked program.
-Xa [CC]
-Xc
-Xt
Determines compatibility modes. In particular This option affects the
handling of errors in the maths functions. See the LIBM documenation
for details.
-Y path [CC]
Set program search path for CC. The default location that is used by
the C68 compilation system to look for all system files is the default
program directory as set by the Toolkit 2 PROG_USE command. The -Y
option allows an alternative device and/or directory to be used as the
location for finding all system files used by the various compiler
phases.
As an example:

-Yflp1_

will cause the programs to look for the system files from FLP1_. A
directory can also be given.

-Yflp1_comp_

will cause the programs to look for the system files in the directory
FLP1_COMP_. You can combine these two usages to use sub-directories off
the default program directory. Therefore

Eg. -Ycprogs_

will look in the cprogs_ sub-directory of the default program
directory.

The -Y option effects all file paths that would otherwise be relative
to the default program directory such as the default path for system
include files and libraries.

ENVIRONMENT VARIABLES
It can be more convenient to set certain options for CC via Environment
Variables rather than via the CC command line. The following Environment
Variables are currently supported:

TMP

 Specifies the device and/or directory that will be used to hold
intermediate files. Equivalent to the -tmp parameter line option.

TEMP

 An alternative name to TMP with the same function. If both are
present then the -TMP option takes precedence.

TEMP present then the -TMP option takes precedence.
There are then a number of environment variables that allow you to control
where components of your system are lcoated. The names start with a prefix
dependant on the target system that the front-end has been built to support
as follows:

 CC_xxx option when front-end has been built to support development of
programs for "C68 for QDOS".

CPOC_xxx

 option when front-end has been built to support development of
programs for "CPOC for the psion 3a".

This approach has been taken so that you can have to variants of the front-
end co-existing on the same system -one targetted at QDOS and the other at
CPOC. The options available (where the 'xx' part indicates the prefix as
indicated above are):

 xx_OPTS
 This allows any options that would normally be passed via the
command line to be preset. The environment variable information
is processed before the command line, so in the event of any
conflict the command line information will take precedence.

 xx_PATH The location that is used to hold the programs underlying the
compilation system. Equivalent to the -Y command line option.

 Defaults: CC_PATH=
CPOC_PATH=

 xx_CPP The name of the C preprocessor to be used.

 Defaults: CC_CPP=cpp
CPOC_cpp=cpoc_cpp

 xx_COMP The name of the main C compilation phase that is to be used.

 Defaults: CC_COMP=c68
CPOC_COMP=c86

 xx_ASM The name of the assembler to be used.

 Defaults: CC_ASM=as68
CPOC_ASM=c86

 xx_LD The name of the linker to be used.

 Defaults: CC_LD=ld
CPOC_LD=ld86

 xx_INC
 The location of include files for use by the pre-processor. If
this environment variable is specified, then a -I parameter
specifying this path will be automatically generated and passed
to the pre-processor.

 Defaults: CC_INC=
CPOC_INC=

 xx_LIB
 The location of library files for use by the linker. If this
environemtn variable is specified than a -L parameter
specifying this path will be automatically generated by CC and
passed to the linker.

 Defaults: CC_LIB=
CPOC_LIB=

If an option is also specified via the command line, then this overrides
the setting of the Environment Variable.
EXIT VALUES
The CC program returns the following error codes:

 0 All compilations were successful. That is, at least one source file
was compiled, and there were no fatal errors.

 1 One or more fatal compilation errors were reported.
 2 No source files were found.
 <
0

 QDOS error code. A problem was encountered in running the compiler
driver (eg. No memory).

THE COMPILATION PROCESS
The actual compilation process takes place in several phases. Each phase is
performed by a separate program. All these programs are controlled by CC so
that the user does not have to run them individually. However, awareness of
the process helps understand many of the error conditions that can arise.
In particular the filename extensions are used by CC to decide what actions
are required for a particular file.
C source files are expected to have the extension 'c'. These files are
passed to the pre-processor to produce an 'i' file. The pre-processor phase
actions all keywords in the C source file that begin with # symbol.
The next stage is the main C compilation phase in which the C code is
analysed and validated. The input to the compile phase is an 'i' file (or a
'k' file if the -unproto option is used) from the pre-processor stage. The
compile phase generates assembler output which is put into a file with a
's' (or 'asm' if one the additional optional compilers is used) extension.
You may wish to look at this file to see what code has been generated by

You may wish to look at this file to see what code has been generated by
your C program.
The C68 version of the compiler an generate assembler code file in two
formats. The 's' extension is used if it is in the format used by the AS68
assembler provided with the C68 system. The 'asm' extension is used if it
is in a format suitable for use by the QMAC assembler (an enhanced version
of the GST macro assembler will be obtainable from the QUANTA User Group).
N.B. the version of QMAC currently available is not suitable - an
announcement will be made when the enhanced version becomes available.
The assembler file is now compiled down into an object file and put into a
file with an 'o' extension. The format of this object file will be SROFF
(Sinclair Relocatable Object File Format) for QDOS targets, and the MINIX
object format for CPOC.
Finally the users object file(s) are input into the linker that converts
them into machine code, and adds support routines from the libraries
supplied with C68. The output from the linker is a program that can be run
with the EXEC command (or an equivalent) from SuperBasic.
If this process seems complicated do not worry. The CC front-end program
takes control of this process so that it is easy to use.
It is also possible to get the CC command to run assembler files through
the C pre-processor, and then pass them to the Assembler phase without
attempting to run the compilation phase in the middle. If the filename
extension is 'x', then this is done automatically. If the filename
extension is 's' then the source file is examined, and if the first
character is a # symbol, then the pre-processor is run before the assembler
(This last action is for comaptibility with tradional Unix treatment of
assembler files).
COMPILING A C PROGRAM ON QDOS
We now look at some practical of CC to compile C programs. Note that the
C68 compilation system will expects to be able to use use Toolkit 2
directories. This means that TOOLKIT 2 is highly recommended for running
the C68 system. Programs generated by the C68 system will use Toolkit 2
directories if present, but will also work satisfactorily without it.
However, certain library calls require TOOLKIT 2t, so for programs to work
on all QL's these should be avoided. The library documentation will state
when routines use TOOLKIT 2.
To compile your program (for example test_c) simply type (from SuperBasic
):-
 EX cc;'test_c'
The above command loads the compiler phases from the default program
device, and compiles the source file test_c found on the default data
device, writing out a file test_p from CPP, replacing it with a file test_s
after running C68, and test_o file after running AS68. Finally the linker
will produce an output file called a_out.
Any errors or warnings are reported in an on-screen window. You can also
get CC to display the command lines for each phase as it is run by
including the -v option, and put the final program into a specified file by
using the -o option. To do this the above command line becomes:
 EX cc;'-v -otest test_c'
The output from the compiler passes may be redirected into a file by use of
the UNIX style >, and &> commands. For example, to redirect standard out
(the compiler sign on messages) to a file ram1_wombat, you would type:
 >ram1_wombat
anywhere in the command line. To redirect stderr as well (the channel used
for any fatal QDOS error messages from CC) you would use:
 >&ram1_wombat
Finally to append either of the above commands to an existing file without
destroying it's contents you would use:
 >>ram1_wombat in the first instance, and
 >>&ram1_wombat in the second.
Redirection is covered more fully in the QDOSC68_DOC document.
Wildcards may be used to select the files to be compiled. These follow the
Unix rules for wild-cards - see the INTRO_DOC document for more details.
For example, to compile all files in the current data directory ending in
_c you would use:
 EX CC;'<compiler options> *_c'
The asterisk tells the CC program that the given name is a wildcard. It
will then match any filename element that is before _c. To compile files
starting in arc and ending in _c you would use:
 EX CC;'<compiler options> ARC*_C'

Wherever an asterisk appears CC will try and match a filename element to
the name. However, if a name begins or ends with any characters other than
an asterisk, then these characters must be matched exactly. Asterisks can
also be used within filenames,
 eg. tes*_wom*_c
matches test_wombat_c, tester_woman_user_c, but would NOT match the
filename test_wom_c_hello. This wildcard matching is the same as that used
in the directory access functions described in the library, and so is also
available to your own programs. The CC program has a 4K buffer for
filenames, so that is the limit on the total length of the names of all the
files to be compiled.
KNOWN PROBLEMS
1) If an option name is mispelt, then it may be treated as a different
option which has less text and thus not have the expected effect. This
could mean that CC does not act as expected or that the option is passed to
the wrong program.
As an example, if you typed -cr instead of -crf it would be treated as -c
by CC, which would thus stop after creating any _o files without proceeding
to the link stage.
Another example might be if you specified -maxerrors instead of -maxerrors
would result in the parameter being passed to LD (as though it were -m)
instead of to C68 as you probably intended.
CHANGE HISTORY
This section documents major changes that have been made to this document.
It's prime purpose is to help those who are upgrading their version of the
C68 system to identify what has changed.
31 Dec 93 v4.12 DJW

Documented fact that CC_OPTS Environment variable is now supported.
Documented the -V option, and updated the -v description accordingly.
Updated descriptions of some of the other supported options.

03 Jun 95 v4.25 DJW
Updated documentation to list all options that are currently supported. Re-
arranged the list to be in alphabetical order rather than that of the
program that uses the parameter option.

Gnu C Pre-Processor
The C Preprocessor

Last revised July 1990
for GCC version 1.38
Richard M. Stallman

Copyright © 1987, 1989 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

NAME
 cpp - Gnu C pre-processor
SYNOPSIS
 cpp [options] [input_file] [output_file]
DESCRIPTION
Most often when you use the C preprocessor you will not have to invoke it
explicitly: the C compiler will do so automatically. However, the
preprocessor is sometimes useful individually.
The C preprocessor expects two file names as arguments, infile and outfile
. The preprocessor reads infile together with any other files it specifies
with '#include'. All the output generated by the combined input files is
written in outfile .
Either infile or outfile may be '-', which as infile means to read from
standard input and as outfile means to write to standard output. Also, if

standard input and as outfile means to write to standard output. Also, if
outfile or both file names are omitted, the standard output and standard
input are used for the omitted file names.
Here is a table of command options accepted by the C preprocessor. Most of
them can also be given when compiling a C program; they are passed along
automatically to the preprocessor when it is invoked by the compiler.

-P
Inhibit generation of '#'-lines with line-number information in the
output from the preprocessor (see section Output). This might be useful
when running the preprocessor on something that is not C code and will
be sent to a program which might be confused by the '#'-lines
-C
Do not discard comments: pass them through to the output file. Comments
appearing in arguments of a macro call will be copied to the output
before the expansion of the macro call.
-trigraphs
Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with '??', that are defined by ANSI C to stand
for single characters. For example, '??/' stands for '\', so ''??/n''
is a character constant for a newline. Strictly speaking, the GNU C
preprocessor does not support all programs in ANSI Standard C unless '-
trigraphs' is used, but if you ever notice the difference it will be
with relief.
You don't want to know any more about trigraphs.
-pedantic
Issue warnings required by the ANSI C standard in certain cases such as
when text other than a comment follows '#else' or '#endif'.
-I directory
Add the directory directory to the end of the list of directories to be
searched for header files (see section Include Syntax). This can be
used to override a system header file, substituting your own version,
since these directories are searched before the system header file
directories. If you use more than one '-I' option, the directories are
scanned in left-to-right order; the standard system directories come
after.
-I-
Any directories specified with '-I' options before the '-I-' option are
searched only for the case of '#include " file "'; they are not
searched for '#include < file >'.
If additional directories are specified with '-I' options after the '-
I-', these directories are searched for all '#include' directives.
In addition, the '-I-' option inhibits the use of the current directory
as the first search directory for '#include " file "'. Therefore, the
current directory is searched only if it is requested explicitly with
'-I.'. Specifying both '-I-' and '-I.' allows you to control precisely
which directories are searched before the current one and which are
searched after.
-nostdinc
Do not search the standard system directories for header files. Only
the directories you have specified with '-I' options (and the current
directory, if appropriate) are searched.
-D name
Predefine name as a macro, with definition '1'.
-D name=definition
Predefine name as a macro, with definition definition . There are no
restrictions on the contents of definition , but if you are invoking
the preprocessor from a shell or shell-like program you may need to use
the shell's quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.
-U name
Do not predefine name . If both '-U' and '-D' are specified for one
name, the '-U' beats the '-D' and the name is not predefined.
-undef
Do not predefine any nonstandard macros.
-d
Instead of outputting the result of preprocessing, output a list of
'#define' commands for all the macros defined during the execution of
the preprocessor.
-M
Instead of outputting the result of preprocessing, output a rule
suitable for make describing the dependencies of the main source file.
The preprocessor outputs one make rule containing the object file name
for that source file, a colon, and the names of all the included files.
If there are many included files then the rule is split into several

If there are many included files then the rule is split into several
lines using '\'-newline.
This feature is used in automatic updating of makefiles.
-MM
Like '-M' but mention only the files included with '#include " file "'.
System header files included with '#include < file >' are omitted.
-i file
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated from
file is discarded, the only effect of '-i file ' is to make the macros
defined in file available for use in the main input.

2.0 QDOS SPECIFIC INFORMATION
This section contains details relating to the QDOS port of cpp. It contains
information supplementary to the rest of the manual, and is therefore not
exhaustive.
2.1 Predefined Symbols.
The following symbols are predefined under QDOS.
2.1.1 Non-standard Symbols.
 MC68000
 QDOS
 C68
The user should be aware that using the '-ansi' flag will cause these
symbols to be undefined. Further information is given in sections 2.1.2 and
3.4.3.2.
2.1.2 Standard Symbols.
 __MC68000__
 __QDOS__
 __C68__
 __STDC__
The first three of these symbols are derived from the non-standard
predefined symbols above. The last of these indicates whether the compiler
is ANSI compilant or not. Since C68 is ANSI compliant, this has the value
1.
All other standard symbols are listed in the remainder part of this manual.
2.2 Filenames.
Filenames given to the #include directive may contain a '.' as the
extension separator. During processing, any '.' will be translated to an
underscore, and the resultant filename used in subsequent actions.
Similarily, any '/' (UNIX) or '\' (MSDOS) directory separators will be
translated to underscores.
A filename given to the pre-processor via a #line directive, as may be
generated by utilities such as YACC and LEX, will not cause the directory
search order to alter.
2.3 Directory names.
Any directory name used in directives, or on the command line should end
with the trailing '_'.
2.4 Invoking cpp.
Normally cpp will be automatically invoked via the cc command. This may put
limitations on the flags which may be passed to the preprocessor. Fpr
details of which cpp flags are supported by cc, please refer to the
documentation for cc..
2.5 Environment Variables
In view of the restrictions on invocation caused by cc, an alternative
mechanism has been provided via the environment variable CPP_OPTS. The
contents of the CPP_OPTS environment variable will be prepended to the
supplied command line at execution time, and should therefore contain
options in the same form as listed elsewhere in this manual.
3. The C Preprocessor
The C preprocessor is a macro processor that is used automatically by the C
compiler to transform your program before actual compilation. It is called
a macro processor because it allows you to define macros, which are brief
abbreviations for longer constructs.
The C preprocessor provides four separate facilities that you can use as
you see fit:

Inclusion of header files. These are files of declarations that can be
substituted into your program.

substituted into your program.
Macro expansion. You can define macros, which are abbreviations for
arbitrary fragments of C code, and then the C preprocessor will
replace the macros with their definitions throughout the program.
Conditional compilation. Using special preprocessor commands, you can
include or exclude parts of the program according to various
conditions.
Line control. If you use a program to combine or rearrange source
files into an intermediate file which is then compiled, you can use
line control to inform the compiler of where each source line
originally came from.

C preprocessors vary in some details. This manual discusses the GNU C
preprocessor, the C Compatible Compiler Preprocessor. The GNU C
preprocessor provides a superset of the features of ANSI Standard C.
ANSI Standard C requires the rejection of many harmless constructs commonly
used by today's C programs. Such incompatibility would be inconvenient for
users, so the GNU C preprocessor is configured to accept these constructs
by default. Strictly speaking, to get ANSI Standard C, you must use the
options '-trigraphs', '-undef' and '-pedantic', but in practice the
consequences of having strict ANSI Standard C make it undesirable to do
this. See section Invocation.
3.1. Transformations Made Globally
Most C preprocessor features are inactive unless you give specific commands
to request their use. (Preprocessor commands are lines starting with '#';
see section Commands). But there are three transformations that the
preprocessor always makes on all the input it receives, even in the absence
of commands.

All C comments are replaced with single spaces.
Backslash-Newline sequences are deleted, no matter where. This feature
allows you to break long lines for cosmetic purposes without changing
their meaning.
Predefined macro names are replaced with their expansions (see section
Predefined).

The first two transformations are done before nearly all other parsing and
before preprocessor commands are recognized. Thus, for example, you can
split a line cosmetically with Backslash-Newline anywhere (except when
trigraphs are in use; see below).
 /*
 / # /
 */ defi\
 ne FO\
 O 10\
 20
is equivalent into '#define FOO 1020'. You can split even an escape
sequence with Backslash-Newline. For example, you can split "foo\bar"
between the '\' and the 'b' to get
 "foo\\
 bar"
This behavior is unclean: in all other contexts, a Backslash can be
inserted in a string constant as an ordinary character by writing a double
Backslash, and this creates an exception. But the ANSI C standard requires
it. (Strict ANSI C does not allow Newlines in string constants, so they do
not consider this a problem.)
But there are a few exceptions to all three transformations.

C comments and predefined macro names are not recognized inside a
'#include' command in which the file name is delimited with '<' and
'>'.
C comments and predefined macro names are never recognized within a
character or string constant. (Strictly speaking, this is the rule,
not an exception, but it is worth noting here anyway.)
Backslash-Newline may not safely be used within an ANSI ''trigraph''.
Trigraphs are converted before Backslash-Newline is deleted. If you
write what looks like a trigraph with a Backslash-Newline inside, the
Backslash-Newline is deleted as usual, but it is then too late to

Backslash-Newline is deleted as usual, but it is then too late to
recognize the trigraph.
This exception is relevant only if you use the '-trigraphs' option to
enable trigraph processing. See section Invocation.

3.2. Preprocessor Commands
Most preprocessor features are active only if you use preprocessor commands
to request their use.
Preprocessor commands are lines in your program that start with '#'. The
'#' is followed by an identifier that is the command name . For example,
'#define' is the command that defines a macro. Whitespace is also allowed
before and after the '#'.
The set of valid command names is fixed. Programs cannot define new
preprocessor commands.
Some command names require arguments; these make up the rest of the command
line and must be separated from the command name by whitespace. For
example, '#define' must be followed by a macro name and the intended
expansion of the macro.
A preprocessor command cannot be more than one line in normal
circumstances. It may be split cosmetically with Backslash-Newline, but
that has no effect on its meaning. Comments containing Newlines can also
divide the command into multiple lines, but the comments are changed to
Spaces before the command is interpreted. The only way a significant
Newline can occur in a preprocessor command is within a string constant or
character constant. Note that most C compilers that might be applied to the
output from the preprocessor do not accept string or character constants
containing Newlines.
The '#' and the command name cannot come from a macro expansion. For
example, if 'foo' is defined as a macro expanding to 'define', that does
not make '#foo' a valid preprocessor command.
3.3. Header Files
A header file is a file containing C declarations and macro definitions
(see section Macros) to be shared between several source files. You request
the use of a header file in your program with the C preprocessor command
'#include'.
3.3.1. Uses of Header Files
Header files serve two kinds of purposes.

System header files declare the interfaces to parts of the operating
system. You include them in your program to supply the definitions you
need to invoke system calls and libraries.
Your own header files contain declarations for interfaces between the
source files of your program. Each time you have a group of related
declarations and macro definitions all or most of which are needed in
several different source files, it is a good idea to create a header
file for them.

Including a header file produces the same results in C compilation as
copying the header file into each source file that needs it. But such
copying would be time-consuming and error-prone. With a header file, the
related declarations appear in only one place. If they need to be changed,
they can be changed in one place, and programs that include the header file
will automatically use the new version when next recompiled. The header
file eliminates the labour of finding and changing all the copies as well
as the risk that a failure to find one copy will result in inconsistencies
within a program.
The usual convention is to give header files names that end with '.h'.
3.3.2. The '#include' Command
Both user and system header files are included using the preprocessor
command '#include'. It has three variants:
#include <file>
This variant is used for system header files. It searches for a file named
file in a list of directories specified by you, then in a standard list of
system directories. You specify directories to search for header files with
the command option '-I' (see section Invocation). The option '-nostdinc'
inhibits searching the standard system directories; in this case only the
directories you specify are searched.
The parsing of this form of '#include' is slightly special because comments
are not recognized within the '<...>'. Thus, in '#include <x/*y>' the '/*'
does not start a comment and the command specifies inclusion of a system
header file named 'x/*y'. Of course, a header file with such a name is
unlikely to exist on Unix, where shell wildcard features would make it hard

unlikely to exist on Unix, where shell wildcard features would make it hard
to manipulate.
The argument file may not contain a '>' character. It may, however, contain
a '<' character.
#include "file"
This variant is used for header files of your own program. It searches for
a file named file first in the current directory, then in the same
directories used for system header files. The current directory is the
directory of the current input file. It is tried first because it is
presumed to be the location of the files that the current input file refers
to. (If the '-I-' option is used, the special treatment of the current
directory is inhibited.)
The argument file may not contain '"' characters. If backslashes occur
within file , they are considered ordinary text characters, not escape
characters. None of the character escape sequences appropriate to string
constants in C are processed. Thus, '#include "x\n\\y"' specifies a
filename containing three backslashes. It is not clear why this behavior is
ever useful, but the ANSI standard specifies it.
#include anything else
This variant is called a computed #include . Any '#include' command whose
argument does not fit the above two forms is a computed include. The text
anything else is checked for macro calls, which are expanded (see section
Macros). When this is done, the result must fit one of the above two
variants.
This feature allows you to define a macro which controls the file name to
be used at a later point in the program. One application of this is to
allow a site-configuration file for your program to specify the names of
the system include files to be used. This can help in porting the program
to various operating systems in which the necessary system header files are
found in different places.
3.3.3. How '#include' Works
The '#include' command works by directing the C preprocessor to scan the
specified file as input before continuing with the rest of the current
file. The output from the preprocessor contains the output already
generated, followed by the output resulting from the included file,
followed by the output that comes from the text after the '#include'
command. For example, given two files as follows:
 /* File program.c */
 int x;
 #include "header.h"

 main ()
 {
 printf (test ());
 }

 /* File header.h */
 char *test ();
the output generated by the C preprocessor for 'program.c' as input would
be:
 int x;
 char *test ();

 main ()
 {
 printf (test ());
 }
Included files are not limited to declarations and macro definitions; they
are merely the typical use. Any fragment of a C program can be included
from another file. The include file could even contain the beginning of a
statement that is concluded in the containing file, or the end of a
statement that was started in the including file. However, a comment or a
string or character constant may not start in the included file and finish
in the including file. An unterminated comment, string constant or
character constant in an included file is considered to end (with an error
message) at the end of the file.
The line following the '#include' command is always treated as a separate
line by the C preprocessor even if the included file lacks a final newline.
3.3.4. Once-Only Include Files
Very often, one header file includes another. It can easily result that a
certain header file is included more than once. This may lead to errors, if
the header file defines structure types or typedefs, and is certainly
wasteful. Therefore, we often wish to prevent multiple inclusion of a

wasteful. Therefore, we often wish to prevent multiple inclusion of a
header file.
The standard way to do this is to enclose the entire real contents of the
file in a conditional, like this:
 #ifndef __FILE_FOO_SEEN__
 #define __FILE_FOO_SEEN__
 ...
 the entire file
 ...
 #endif /* __FILE_FOO_SEEN__ */
The macro __FILE_FOO_SEEN__ indicates that the file has been included once
already; its name should begin with '__', and should contain the name of
the file to avoid accidental conflicts.
One drawback of this method is that the preprocessor must scan the input
file completely in order to determine that all of it is to be ignored. This
makes compilation slower. You can avoid the delay by inserting the
following command near the beginning of file in addition to the
conditionals described above :
 #pragma once
This command tells the GNU C preprocessor to ignore any future commands to
include the same file (whichever file the '#pragma' appears in).
You should not rely on '#pragma once' to prevent multiple inclusion of the
file. It is just a hint, and a non-standard one at that. Most C compilers
will ignore it entirely. For this reason, you still need the conditionals
if you want to make certain that the file's contents are not included
twice.
Note that '#pragma once' works by file name; if a file has more than one
name, it can be included once under each name, even in GNU CC, despite
'#pragma once'.
3.4. Macros
A macro is a sort of abbreviation which you can define once and then use
later. There are many complicated features associated with macros in the C
preprocessor.
3.4.1. Simple Macros
A simple macro is a kind of abbreviation. It is a name which stands for a
fragment of code.
Before you can use a macro, you must define it explicitly with the
'#define' command. '#define' is followed by the name of the macro and then
the code it should be an abbreviation for. For example,
 #define BUFFER_SIZE 1020
defines a macro named 'BUFFER_SIZE' as an abbreviation for the text '1020'.
Therefore, if somewhere after this '#define' command there comes a C
statement of the form:
 foo = (char *) xmalloc (BUFFER_SIZE);
then the C preprocessor will recognize and expand the macro 'BUFFER_SIZE',
resulting in:
 foo = (char *) xmalloc (1020);
the definition must be a single line; however, it may not end in the middle
of a multi-line string constant or character constant.
The use of all upper case for macro names is a standard convention.
Programs are easier to read when it is possible to tell at a glance which
names are macros.
Normally, a macro definition must be a single line, like all C preprocessor
commands. (You can split a long macro definition cosmetically with
Backslash-Newline.) There is one exception: Newlines can be included in the
macro definition if within a string or character constant. By the same
token, it is not possible for a macro definition to contain an unbalanced
quote character; the definition automatically extends to include the
matching quote character that ends the string or character constant.
Comments within a macro definition may contain Newlines, which make no
difference since the comments are entirely replaced with Spaces regardless
of their contents.
Aside from the above, there is no restriction on what can go in a macro
body. Parentheses need not balance. The body need not resemble valid C
code. (Of course, you might get error messages from the C compiler when you
use the macro.)
The C preprocessor scans your program sequentially, so macro definitions
take effect at the place you write them. Therefore, the following input to
the C preprocessor:

the C preprocessor:
 foo = X;
 #define X 4
 bar = X;
produces as output:
 foo = X;
 bar = 4;
After the preprocessor expands a macro name, the macro's definition body is
prepended to the remaining input, and the check for macro calls continues.
Therefore, the macro body can contain calls to other macros. For example,
after
 #define BUFSIZE 1020
 #define TABLESIZE BUFSIZE
the name 'TABLESIZE' when used in the program would go through two stages
of expansion, resulting ultimately in '1020'.
This is not at all the same as defining 'TABLESIZE' to be '1020'. The
'#define' for 'TABLESIZE' uses exactly the body you specify --- in this
case, 'BUFSIZE' --- and does not check to see whether it too is the name of
a macro. It's only when you use 'TABLESIZE' that the result of its
expansion is checked for more macro names. See section Cascaded Macros.
3.4.2. Macros with Arguments
A simple macro always stands for exactly the same text, each time it is
used. Macros can be more flexible when they accept arguments . Arguments
are fragments of code that you supply each time the macro is used. These
fragments are included in the expansion of the macro according to the
directions in the macro definition.
To define a macro that uses arguments, you write a '#define' command with a
list of argument names in parentheses after the name of the macro. The
argument names may be any valid C identifiers, separated by commas and
optionally whitespace. The open-parenthesis must follow the macro name
immediately, with no space in between.
For example, here is a macro that computes the minimum of two numeric
values, as it is defined in many C programs:
 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
(This is not the best way to define a ''minimum'' macro in GNU C. See
section Side Effects, for more information.)
To use a macro that expects arguments, you write the name of the macro
followed by a list of actual arguments in parentheses. separated by commas.
The number of actual arguments you give must match the number of arguments
the macro expects. Examples of use of the macro 'min' include 'min (1, 2)'
and 'min (x + 28, *p)'.
The expansion text of the macro depends on the arguments you use. Each of
the argument names of the macro is replaced, throughout the macro
definition, with the corresponding actual argument. Using the same macro
'min' defined above, 'min (1, 2)' expands into:
 ((1) < (2) ? (1) : (2))
where '1' has been substituted for 'X' and '2' for 'Y'.
Likewise, 'min (x + 28, *p)' expands into
 ((x + 28) < (*p) ? (x + 28) : (*p))
Parentheses in the actual arguments must balance; a comma within
parentheses does not end an argument. However, there is no requirement for
brackets or braces to balance; thus, if you want to supply 'array[x = y, x
+ 1]' as an argument, you must write it as 'array[(x = y, x + 1)]', which
is equivalent C code.
After the actual arguments are substituted into the macro body, the entire
result is prepended to the remaining input, and the check for macro calls
continues. Therefore, the actual arguments can contain calls to other
macros, either with or without arguments, or even to the same macro. The
macro body can also contain calls to other macros. For example, 'min (min
(a, b), c)' expands into:
 ((((a) < (b) ? (a) : (b))) < (c)
 ? (((a) < (b) ? (a) : (b)))
 : (c))
(Line breaks shown here for clarity would not actually be generated.)
If you use the macro name followed by something other than an open-
parenthesis (after ignoring any spaces, tabs and comments that follow), it
is not a call to the macro, and the preprocessor leaves the name unaltered.
Therefore, it is possible for the same name to be a variable or function in

Therefore, it is possible for the same name to be a variable or function in
your program as well as a macro, and you can choose in each instance
whether to refer to the macro (if an actual argument list follows) or the
variable or function (if an argument list does not follow).
Such dual use of one name could be confusing and should be avoided except
when the two meanings are effectively synonymous: that is, when the name is
both a macro and a function and the two have similar effects. You can think
of the name simply as a function; use of the name for purposes other than
calling it (such as, to take the address) will refer to the function, while
calls will expand the macro and generate better but equivalent code. For
example, you can use a function named 'min' in the same source file that
defines the macro. If you write '&min' with no argument list, you refer to
the function. If you write 'min (x, bb)', with an argument list, the macro
is expanded. If you write '(min) (a, bb)', where the name 'min' is not
followed by an open-parenthesis, the macro is not expanded, so you wind up
with a call to the function 'min'.
It is not allowed to define the same name as both a simple macro and a
macro with arguments.
In the definition of a macro with arguments, the list of argument names
must follow the macro name immediately with no space in between. If there
is a space after the macro name, the macro is defined as taking no
arguments, and all the rest of the name is taken to be the expansion. The
reason for this is that it is often useful to define a macro that takes no
arguments and whose definition begins with an identifier in parentheses.
This rule about spaces makes it possible for you to do either this:
 #define FOO(x) - 1 / (x)
(which defines 'FOO' to take an argument and expand into minus the
reciprocal of that argument) or this:
 #define BAR (x) -1 / (x)
(which defines 'BAR' to take no argument and always expand into '(x) - 1 /
(x)').
Note that the uses of a macro with arguments can have spaces before the
left parenthesis; it's the definition where it matters whether there is a
space.

3.4.3. Predefined Macros
Several simple macros are predefined. You can use them without giving
definitions for them. They fall into two classes: standard macros and
system-specific macros.
3.4.3.1. Standard Predefined Macros
The standard predefined macros are available with the same meanings
regardless of the machine or operating system on which you are using GNU C.
Their names all start and end with double underscores. Those preceding
__GNUC__ in this table are standardized by ANSI C; the rest are GNU C
extensions.

__FILE__
This macro expands to the name of the current input file, in the form
of a C string constant.
__BASE_FILE__
This macro expands to the name of the main input file, in the form of a
C string constant. This is the source file that was specified as an
argument when the C compiler was invoked.
__LINE__
This macro expands to the current input line number, in the form of a
decimal integer constant. While we call it a predefined macro, it's a
pretty strange macro, since its ''definition'' changes with each new
line of source code.
This and '__FILE__' are useful in generating an error message to report
an inconsistency detected by the program; the message can state the
source line at which the inconsistency was detected. For example,

 fprintf(stderr, "Internal error: negative string length"
 "%d at %s, line %d.",
 length, __FILE__, __LINE__);

A '#include' command changes the expansions of '__FILE__' and
'__LINE__' to correspond to the included file. At the end of that file,
when processing resumes on the input file that contained the '#include'
command, the expansions of '__FILE__' and '__LINE__' revert to the
values they had before the '#include' (but '__LINE__' is then
incremented by one as processing moves to the line after the
'#include').

The expansions of both '__FILE__' and '__LINE__' are altered if a
'#line' command is used. See section Combining Sources.
__DATE__
This macro expands to a string constant that describes the date on
which the preprocessor is being run. The string constant contains
eleven characters and looks like '"Jan 29 1987"' or '"Apr 1 1905"'
__TIME__
This macro expands to a string constant that describes the time at
which the preprocessor is being run. The string constant contains eight
characters and looks like '"23:59:01"'.
__STDC__
This macro expands to the constant 1, to signify that this is ANSI
Standard C. (Whether that is actually true depends on what C compiler
will operate on the output from the preprocessor.)
__GNUC__
This macro is defined if and only if this is GNU C. This macro is
defined only when the entire GNU C compiler is in use; if you invoke
the preprocessor directly, '__GNUC__' is undefined.
__STRICT_ANSI__
This macro is defined if and only if the '-ansi' switch was specified
when GNU C was invoked. Its definition is the null string. This macro
exists primarily to direct certain GNU header files not to define
certain traditional Unix constructs which are incompatible with ANSI C.
__VERSION__
This macro expands to a string which describes the version number of
GNU C. The string is normally a sequence of decimal numbers separated
by periods, such as '"1.18"'. The only reasonable use of this macro is
to incorporate it into a string constant.
__OPTIMIZE__
This macro is defined in optimizing compilations. It causes certain GNU
header files to define alternative macro definitions for some system
library functions. It is unwise to refer to or test the definition of
this macro unless you make very sure that programs will execute with
the same effect regardless.
__CHAR_UNSIGNED__
This macro is defined if and only if the data type char is unsigned on
the target machine. It exists to cause the standard header file
'limit.h' to work correctly.
It is bad practice to refer to this macro yourself; instead, refer to
the standard macros defined in
'limit.h'.

3.4.3.2. Nonstandard Predefined Macros
The C preprocessor normally has several predefined macros that vary between
machines because their purpose is to indicate what type of system and
machine is in use. This manual, being for all systems and machines, cannot
tell you exactly what their names are; instead, we offer a list of some
typical ones.
Some nonstandard predefined macros describe the operating system in use,
with more or less specificity. For example,

unix
'unix' is normally predefined on all Unix systems.
BSD
'BSD' is predefined on recent versions of Berkeley Unix (perhaps only
in version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with more or
less specificity. For example,

vax
'vax' is predefined on Vax computers.
mc68000
'mc68000' is predefined on most computers whose CPU is a Motorola
68000, 68010 or 68020.
m68k
'm68k' is also predefined on most computers whose CPU is a 68000, 68010
or 68020; however, some makers use 'mc68000' and some use 'm68k'. Some
predefine both names. What happens in GNU C depends on the system you
are using it on.
M68020
'M68020' has been observed to be predefined on some systems that use
68020 CPUs---in addition to 'mc68000' and 'm68k' that are less
specific.

specific.
ns32000
'ns32000' is predefined on computers which use the National
Semiconductor 32000 series CPU.

Yet other nonstandard predefined macros describe the manufacturer of the
system. For example,

sun
'sun' is predefined on all models of Sun computers.
pyr
'pyr' is predefined on all models of Pyramid computers.
sequent
'sequent' is predefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary to the
ANSI standard because their names do not start with underscores. Therefore,
the option '-ansi' inhibits the definition of these symbols.
This tends to make '-ansi' useless, since many programs depend on the
customary nonstandard predefined symbols. Even system header files check
them and will generate incorrect declarations if they do not find the names
that are expected. You might think that the header files supplied for the
Uglix computer would not need to test what machine they are running on,
because they can simply assume it is the Uglix; but often they do, and they
do so using the customary names. As a result, very few C programs will
compile with '-ansi'. We intend to avoid such problems on the GNU system.
What, then, should you do in an ANSI C program to test the type of machine
it is to run on?
GNU C offers a parallel series of symbols for this purpose, whose names are
made from the customary ones by adding '__' at the beginning and end. Thus,
the symbol __vax__ would be available on a vax, and so on.
The set of nonstandard predefined names in the GNU C preprocessor is
controlled by the macro 'CPP_PREDEFINES', which should be a string
containing '-D' options, separated by spaces. For example, on the Sun 3, we
use the following definition:
 #define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

3.4.4. Stringification
Stringification means turning a code fragment into a string constant whose
contents are the text for the code fragment. For example, stringifying 'foo
(z)' results in '"foo (z)"'.
In the C preprocessor, stringification is an option available when macro
arguments are substituted into the macro definition. In the body of the
definition, when an argument name appears, the character '#' before the
name specifies stringification of the corresponding actual argument when it
is substituted at that point in the definition. The same argument may be
substituted in other places in the definition without stringification if
the argument name appears in those places with no '#'.
Here is an example of a macro definition that uses stringification:
 #define WARN_IF(EXP) \
 do { if (EXP) fprintf (stderr, "Warning: " #EXP "\n"); \
 } while (0)
Here the actual argument for 'EXP' is substituted once as given, into the
'if' statement, and once as stringified, into the argument to 'fprintf'.
The 'do' and 'while (0)' are a kludge to make it possible to write 'WARN_IF
(arg);', which the resemblance of 'WARN_IF' to a function would make C
programmers want to do; see section Swallow Semicolon).
The stringification feature is limited to transforming one macro argument
into one string constant: there is no way to combine the argument with
other text and then stringify it all together. But the example above shows
how an equivalent result can be obtained in ANSI Standard C using the
feature that adjacent string constants are concatenated as one string
constant. The preprocessor stringifies 'EXP''s actual argument into a
separate string constant, resulting in text like
 do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n");
 } while (0)
but the C compiler then sees three consecutive string constants and
concatenates them into one, producing effectively
 do { if (x == 0) fprintf (stderr, "Warning: x == 0\n");
 } while (0)
Stringification in C involves more than putting double-quote characters
around the fragment; it is necessary to put backslashes in front of all

around the fragment; it is necessary to put backslashes in front of all
doublequote characters, and all backslashes in string and character
constants, in order to get a valid C string constant with the proper
contents. Thus, stringifying 'p = "foo\n";' results in '"p = \"foo\\n\";"'.
However, backslashes that are not inside of string or character constants
are not duplicated: '\n' by itself stringifies to '"\n"'.
Whitespace (including comments) in the text being stringified is handled
according to precise rules. All leading and trailing whitespace is ignored.
Any sequence of whitespace in the middle of the text is converted to a
single space in the stringified result.
3.4.5. Concatenation
Concatenation means joining two strings into one. In the context of macro
expansion, concatenation refers to joining two lexical units into one
longer one. Specifically, an actual argument to the macro can be
concatenated with another actual argument or with fixed text to produce a
longer name. The longer name might be the name of a function, variable or
type, or a C keyword; it might even be the name of another macro, in which
case it will be expanded.
When you define a macro, you request concatenation with the special
operator '##' in the macro body. When the macro is called, after actual
arguments are substituted, all '##' operators are deleted, and so is any
whitespace next to them (including whitespace that was part of an actual
argument). The result is to concatenate the syntactic tokens on either side
of the '##'.
Consider a C program that interprets named commands. There probably needs
to be a table of commands, perhaps an array of structures declared as
follows:
 struct command

 char *name;
 void (*function) ();
 };

 struct command commands[] =
 {
 {"quit", quit_command},
 {"help",help_command},
 ...
 };
It would be cleaner not to have to give each command name twice, once in
the string constant and once in the function name. A macro which takes the
name of a command as an argument can make this unnecessary. The string
constant can be created with stringification, and the function name by
concatenating the argument with '_command'. Here is how it is done:
 #define COMMAND(NAME) { #NAME, NAME ## _command }

 struct command commands[] =
 {
 COMMAND (quit),
 COMMAND (help),
 ...
 };
The usual case of concatenation is concatenating two names (or a name and a
number) into a longer name. But this isn't the only valid case. It is also
possible to concatenate two numbers (or a number and a name, such as '1.5'
and 'e3') into a number. Also, multi-character operators such as '+=' can
be formed by concatenation. In some cases it is even possible to piece
together a string constant. However, two pieces of text that don't together
form a valid lexical unit cannot be concatenated. For example,
concatenation with 'x' on one side and '+' on the other is not meaningful
because those two characters can't fit together in any lexical unit of C.
The ANSI standard says that such attempts at concatenation are undefined,
but in the GNU C preprocessor it is well defined: it puts the 'x' and '+'
side by side with no particular special results.
Keep in mind that the C preprocessor converts comments to whitespace before
macros are even considered. Therefore, you cannot create a comment by
concatenating '/' and '*': the '/*' sequence that starts a comment is not a
lexical unit, but rather the beginning of a ''long'' space character. Also,
you can freely use comments next to a '##' in a macro definition, or in
actual arguments that will be concatenated, because the comments will be
converted to spaces at first sight, and concatenation will later discard
the spaces.
3.4.6. Undefining Macros
To undefine a macro means to cancel its definition. This is done with the

To undefine a macro means to cancel its definition. This is done with the
'#undef' command. '#undef' is followed by the macro name to be undefined.
Like definition, undefinition occurs at a specific point in the source
file, and it applies starting from that point. The name ceases to be a
macro name, and from that point on it is treated by the preprocessor as if
it had never been a macro name.
For example,
 #define FOO 4
 x = FOO;
 #undef FOO
 x = FOO;
expands into
 x = 4;
 x = FOO;
In this example, 'FOO' had better be a variable or function as well as
(temporarily) a macro, in order for the result of the expansion to be valid
C code.
The same form of '#undef' command will cancel definitions with arguments or
definitions that don't expect arguments. The '#undef' command has no effect
when used on a name not currently defined as a macro.
3.4.7. Redefining Macros
Redefining a macro means defining (with '#define') a name that is already
defined as a macro.
A redefinition is trivial if the new definition is transparently identical
to the old one. You probably wouldn't deliberately write a trivial
redefinition, but they can happen automatically when a header file is
included more than once (see section Header Files), so they are accepted
silently and without effect.
Nontrivial redefinition is considered likely to be an error, so it provokes
a warning message from the preprocessor. However, sometimes it is useful to
change the definition of a macro in mid-compilation. You can inhibit the
warning by undefining the macro with '#undef' before the second definition.
In order for a redefinition to be trivial, the new definition must exactly
match the one already in effect, with two possible exceptions:

Whitespace may be added or deleted at the beginning or the end.
Whitespace may be changed in the middle (but not inside strings).
However, it may not be eliminated entirely, and it may not be added
where there was no whitespace at all.

Recall that a comment counts as whitespace.
3.4.8. Pitfalls and Subtleties of Macros
In this section we describe some special rules that apply to macros and
macro expansion, and point out certain cases in which the rules have
counterintuitive consequences that you must watch out for.
3.4.8.1. Improperly Nested Constructs
Recall that when a macro is called with arguments, the arguments are
substituted into the macro body and the result is checked, together with
the rest of the input file, for more macro calls.
It is possible to piece together a macro call coming partially from the
macro body and partially from the actual arguments. For example,
 #define double(x) (2*(x))
 #define call_with_1(x) x(1)
would expand 'call_with_1 (double)' into '(2*(1))'.
Macro definitions do not have to have balanced parentheses. By writing an
unbalanced open parenthesis in a macro body, it is possible to create a
macro call that begins inside the macro body but ends outside of it. For
example,
 #define strange(file) fprintf (file, "%s %d",
 ...
 strange(stderr) p, 35)
This bizarre example expands to:
 fprintf (stderr, "%s %d", p, 35)'!
3.4.8.2. Unintended Grouping of Arithmetic
You may have noticed that in most of the macro definition examples shown
above, each occurrence of a macro argument name had parentheses around it.
In addition, another pair of parentheses usually surround the entire macro

In addition, another pair of parentheses usually surround the entire macro
defin ition. Here is why it is best to write macros that way.
Suppose you define a macro as follows,
 #define ceil_div(x, y) (x + y - 1) / y
whose purpose is to divide, rounding up. (One use for this operation is to
compute how many 'int''s are needed to hold a certain number of 'char''s.)
Then suppose it is used as follows:
 a = ceil_div (b & c, sizeof (int));
This expands into:
 a = (b & c + sizeof (int) - 1) / sizeof (int);
which does not do what is intended. The operator-precedence rules of C make
it equivalent to this:
 a = (b & (c + sizeof (int) - 1)) / sizeof (int);
But what we want is this:
 a = ((b & c) + sizeof (int) - 1)) / sizeof (int);
Defining the macro as:
 #define ceil_div(x, y) ((x) + (y) - 1) / (y)
provides the desired result.
However, unintended grouping can result in another way. Consider 'sizeof
ceil_div(1, 2)'. That has the appearance of a C expression that would
compute the size of the type of 'ceil_div (1, 2)', but in fact it means
something very different. Here is what it expands to:
 sizeof ((1) + (2) - 1) / (2)
This would take the size of an integer and divide it by two. The precedence
rules have put the division outside the 'sizeof' when it was intended to be
inside.
Parentheses around the entire macro definition can prevent such problems.
Here, then, is the recommended way to define 'ceil_div':
 #define ceil_div(x, y) (((x) + (y) - 1) / (y))
3.4.8.3. Swallowing the Semicolon
Often it is desirable to define a macro that expands into a compound
statement. Consider, for example, the following macro, that advances a
pointer (the argument 'p' says where to find it) across whitespace
characters:
#define SKIP_SPACES (p, limit) \
 { register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ' ') { \
 p--; break; }}}
Here Backslash-Newline is used to split the macro definition, which must be
a single line, so that it resembles the way such C code would be laid out
if not part of a macro definition.
A call to this macro might be 'SKIP_SPACES (p, lim)'. Strictly speaking,
the call expands to a compound statement, which is a complete statement
with no need for a semicolon to end it. But it looks like a function call.
So it minimizes confusion if you can use it like a function call, writing a
semicolon afterward, as in 'SKIP_SPACES (p, lim);'
But this can cause trouble before 'else' statements, because the semicolon
is actually a null statement. Suppose you write
 if (*p != 0)
 SKIP_SPACES (p, lim);
 else ...
The presence of two statements---the compound statement and a null
statement---in between the 'if' condition and the 'else' makes invalid C
code.
The definition of the macro 'SKIP_SPACES' can be altered to solve this
problem, using a 'do ... while' statement. Here is how:
 #define SKIP_SPACES (p, limit) \
 do { register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ' ') { \
 p--; break; }}} \
 while (0)
Now 'SKIP_SPACES (p, lim);' expands into

Now 'SKIP_SPACES (p, lim);' expands into
 do {...} while (0);
which is one statement.
3.4.8.4. Duplication of Side Effects
Many C programs define a macro 'min', for ''minimum'', like this:
 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
When you use this macro with an argument containing a side effect, as shown
here,
 next = min (x + y, foo (z));
it expands as follows:
 next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));
 where 'x + y' has been substituted for 'X' and 'foo (z)' for
 'Y'.
The function 'foo' is used only once in the statement as it appears in the
program, but the expression 'foo (z)' has been substituted twice into the
macro expansion. As a result, 'foo' might be called two times when the
statement is executed. If it has side effects or if it takes a long time to
compute, the results might not be what you intended. We say that 'min' is
an unsafe macro.
The best solution to this problem is to define 'min' in a way that computes
the value of 'foo (z)' only once. The C language offers no standard way to
do this, but it can be done with GNU C extensions as follows:
 #define min(X, Y) \
 ({ typeof (X) __x = (X), __y = (Y); \
 (__x < __y) ? __x : __y; })
If you do not wish to use GNU C extensions, the only solution is to be
careful when using the macro 'min'. For example, you can calculate the
value of 'foo (z)', save it in a variable, and use that variable in 'min':
 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
 ...
 {
 int tem = foo (z);
 next = min (x + y, tem);
 }
(where I assume that 'foo' returns type 'int').
3.4.8.5. Self-Referential Macros
A self-referential macro is one whose name appears in its definition. A
special feature of ANSI Standard C is that the self-reference is not
considered a macro call. It is passed into the preprocessor output
unchanged.
Let's consider an example:
 #define foo (4 + foo)
where 'foo' is also a variable in your program.
Following the ordinary rules, each reference to 'foo' will expand into '(4
+ foo)'; then this will be rescanned and will expand into '(4 + (4 +
foo))'; and so on until it causes a fatal error (memory full) in the
preprocessor.
However, the special rule about self-reference cuts this process short
after one step, at '(4 + foo)'. Therefore, this macro definition has the
possibly useful effect of causing the program to add 4 to the value of
'foo' wherever 'foo' is referred to.
In most cases, it is a bad idea to take advantage of this feature. A person
reading the program who sees that 'foo' is a variable will not expect that
it is a macro as well. The reader will come across the identifier 'foo' in
the program and think its value should be that of the variable 'foo',
whereas in fact the value is four greater.
The special rule for self-reference applies also to indirect self-
reference. This is the case where a macro x expands to use a macro 'y', and
'y''s expansion refers to the macro 'x'. The resulting reference to 'x'
comes indirectly from the expansion of 'x', so it is a self-reference and
is not further expanded. Thus, after
 #define x (4 + y)
 #define y (2 * x)
'x' would expand into '(4 + (2 * x))'. Clear?
But suppose 'y' is used elsewhere, not from the definition of 'x'. Then the
use of 'x' in the expansion of 'y' is not a self-reference because 'x' is

use of 'x' in the expansion of 'y' is not a self-reference because 'x' is
not ''in progress''. So it does expand. However, the expansion of 'x'
contains a reference to 'y', and that is an indirect self-reference now
because 'y' is ''in progress''. The result is that 'y' expands to '(2 * (4
+ y))'.
It is not clear that this behaviour would ever be useful, but it is
specified by the ANSI C standard, so you need to understand it.
3.4.8.6. Separate Expansion of Macro Arguments
We have explained that the expansion of a macro, including the substituted
actual arguments, is scanned over again for macro calls to be expanded.
What really happens is more subtle: first each actual argument text is
scanned separately for macro calls. Then the results of this are
substituted into the macro body to produce the macro expansion, and the
macro expansion is scanned again for macros to expand.
The result is that the actual arguments are scanned twice to expand macro
calls in them.
Most of the time, this has no effect. If the actual argument contained any
macro calls, they are expanded during the first scan. The result therefore
contains no macro calls, so the second scan does not change it. If the
actual argument were substituted as given, with no prescan, the single
remaining scan would find the same macro calls and produce the same
results.
You might expect the double scan to change the results when a self-
referential macro is used in an actual argument of another macro (see
section Self-Reference): the self-referential macro would be expanded once
in the first scan, and a second time in the second scan. But this is not
what happens. The self-references that do not expand in the first scan are
marked so that they will not expand in the second scan either.
The prescan is not done when an argument is stringified or concatenated.
Thus,
 #define str(s) #s
 #define foo 4
 str (foo)
expands to '"foo"'. Once more, prescan has been prevented from having any
noticeable effect.
More precisely, stringification and concatenation use the argument as
written, in un-prescanned form. The same actual argument would be used in
prescanned form if it is substituted elsewhere without stringification or
concatenation.
 #define str(s) #s lose(s)
 #define foo 4
 str (foo)
expands to '"foo" lose(4)'.
You might now ask, ''Why mention the prescan, if it makes no difference?
And why not skip it and make the preprocessor faster?'' The answer is that
the prescan does make a difference in three special cases:

Nested calls to a macro.
Macros that call other macros that stringify or concatenate.
Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro's actual argument
contains a call to that very macro. For example, if 'f' is a macro that
expects one argument, 'f (f (1))' is a nested pair of calls to 'f'. The
desired expansion is made by expanding 'f (1)' and substituting that into
the definition of 'f'. The prescan causes the expected result to happen.
Without the prescan, 'f (1)' itself would be substituted as an actual
argument, and the inner use of 'f' would appear during the main scan as an
indirect self-reference and would not be expanded. Here, the prescan
cancels an undesirable side effect (in the medical, not computational,
sense of the term) of the special rule for self-referential macros.
But prescan causes trouble in certain other cases of nested macro calls.
Here is an example:
 #define foo a,b
 #define bar(x) lose(x)
 #define lose(x) (1 + (x))
 bar(foo)
We would like 'bar(foo)' to turn into '(1 + (foo))', which would then turn
into '(1 + (a,b))'. But instead, 'bar(foo)' expands into 'lose(a,b)', and
you get an error because lose requires a single argument. In this case, the

you get an error because lose requires a single argument. In this case, the
problem is easily solved by the same parentheses that ought to be used to
prevent misnesting of arithmetic operations:
 #define foo (a,b)
 #define bar(x) lose((x))
The problem is more serious when the operands of the macro are not
expressions; for example, when they are statements. Then parentheses are
unacceptable because they would make for invalid C code:
 #define foo { int a, b; ... }
In GNU C you can shield the commas using the '({...})' construct which
turns a compound statement into an expression:
 #define foo ({ int a, b; ... })
Or you can rewrite the macro definition to avoid such commas:
 #define foo { int a; int b; ... }
There is also one case where prescan is useful. It is possible to use
prescan to expand an argument and then stringify it---if you use two levels
of macros. Let's add a new macro 'xstr' to the example shown above:
 #define xstr(s) str(s)
 #define str(s) #s
 #define foo 4
 xstr (foo)
This expands into '"4"', not '"foo"'. The reason for the difference is that
the argument of 'xstr' is expanded at prescan (because 'xstr' does not
specify stringification or concatenation of the argument). The result of
prescan then forms the actual argument for 'str'. 'str' uses its argument
without prescan because it performs stringification; but it cannot prevent
or undo the prescanning already done by 'xstr'.
3.4.8.7. Cascaded Use of Macros
A cascade of macros is when one macro's body contains a reference to
another macro. This is very common practice. For example,
 #define BUFSIZE 1020
 #define TABLESIZE BUFSIZE
This is not at all the same as defining 'TABLESIZE' to be '1020'. The
'#define' for 'TABLESIZE' uses exactly the body you specify---in this case,
'BUFSIZE'---and does not check to see whether it too is the name of a
macro.
It's only when you use 'TABLESIZE' that the result of its expansion is
checked for more macro names.
This makes a difference if you change the definition of 'BUFSIZE' at some
point in the source file. 'TABLESIZE', defined as shown, will always expand
using the definition of 'BUFSIZE' that is currently in effect:
 #define BUFSIZE 1020
 #define TABLESIZE BUFSIZE
 #undef BUFSIZE
 #define BUFSIZE 37
Now 'TABLESIZE' expands (in two stages) to '37'.
3.5. Conditionals
In a macro processor, a conditional is a command that allows a part of the
program to be ignored during compilation, on some conditions. In the C
preprocessor, a conditional can test either an arithmetic expression or
whether a name is defined as a macro.
A conditional in the C preprocessor resembles in some ways an 'if'
statement in C, but it is important to understand the difference between
them. The condition in an 'if' statement is tested during the execution of
your program. Its purpose is to allow your program to behave differently
from run to run, depending on the data it is operating on. The condition in
a preprocessor conditional command is tested when your program is compiled.
Its purpose is to allow different code to be included in the program
depending on the situation at the time of compilation.
3.5.1. Why Conditionals are Used
Generally there are three kinds of reason to use a conditional.

A program may need to use different code depending on the machine or
operating system it is to run on. In some cases the code for one
operating system may be erroneous on another operating system; for
example, it might refer to library routines that do not exist on the
other system. When this happens, it is not enough to avoid executing

other system. When this happens, it is not enough to avoid executing
the invalid code: merely having it in the program makes it impossible
to link the program and run it. With a preprocessor conditional, the
offending code can be effectively excised from the program when it is
not valid.
You may want to be able to compile the same source file into two
different programs. Sometimes the difference between the programs is
that one makes frequent time-consuming consistency checks on its
intermediate data while the other does not.
A conditional whose condition is always false is a good way to exclude
code from the program but keep it as a sort of comment for future
reference.

Most simple programs that are intended to run on only one machine will not
need to use preprocessor conditionals.
3.5.2. Syntax of Conditionals
A conditional in the C preprocessor begins with a conditional command :
'#if', '#ifdef' or '#ifndef'. See section Conditionals-Macros, for info on
'#ifdef' and '#ifndef'; only '#if' is explained here.
3.5.2.1. The '#if' Command
The '#if' command in its simplest form consists of
 #if expression
 controlled text
 #endif /* expression */
The comment following the '#endif' is not required, but it is a good
practice because it helps people match the '#endif' to the corresponding
'#if'. Such comments should always be used, except in short conditionals
that are not nested. In fact, you can put anything at all after the
'#endif' and it will be ignored by the GNU C preprocessor, but only
comments are acceptable in ANSI Standard C.
expression is a C expression of integer type, subject to stringent
restrictions. It may contain

Integer constants, which are all regarded as long or unsigned long.
Character constants, which are interpreted according to the character
set and conventions of the machine and operating system on which the
preprocessor is running. The GNU C preprocessor uses the C data type
'char' for these character constants; therefore, whether some
character codes are negative is determined by the C compiler used to
compile the preprocessor. If it treats 'char' as signed, then
character codes large enough to set the sign bit will be considered
negative; otherwise, no character code is considered negative.
Arithmetic operators for addition, subtraction, multiplication,
division, bitwise operations, shifts, comparisons, and '&&' and '||'.
Identifiers that are not macros, which are all treated as zero(!).
Macro calls. All macro calls in the expression are expanded before
actual computation of the expression's value begins.

Note that 'sizeof' operators and enum-type values are not allowed. enum-
type values, like all other identifiers that are not taken as macro calls
and expanded, are treated as zero.
The text inside of a conditional can include preprocessor commands. Then
the commands inside the conditional are obeyed only if that branch of the
conditional succeeds. The text can also contain other conditional groups.
However, the '#if''s and '#endif''s must balance.
3.5.2.2. The '#else' Command
The '#else' command can be added to a conditional to provide alternative
text to be used if the condition is false. This looks like
 #if expression
 text-if-true
 #else /* Not expression */
 text-if-false
 #endif /* Not expression */
If expression is nonzero, and the text-if-true is considered included, then
'#else' acts like a failing conditional and the text-if-false is ignored.
Contrariwise, if the '#if' conditional fails, the text-if-false is
considered included.
3.5.2.3. The '#elif' Command

3.5.2.3. The '#elif' Command
One common case of nested conditionals is used to check for more than two
possible alternatives. For example, you might have
 #if X == 1
 ...
 #else /* X != 1 */
 #if X == 2
 ...
 #else /* X != 2 */
 ...
 #endif /* X != 2 */
 #endif /* X != 1 */
Another conditional command, '#elif', allows this to be abbreviated as
follows:
 #if X == 1
 ...
 #elif X == 2
 ...
 #else /* X != 2 and X != 1*/
 ...
 #endif /* X != 2 and X != 1*/
'#elif' stands for ''else if''. Like '#else', it goes in the middle of a
'#if'-'#endif' pair and subdivides it; it does not require a matching
'#endif' of its own. Like '#if', the '#elif' command includes an expression
to be tested.
The text following the '#elif' is processed only if the original '#if'-
condition failed and the '#elif' condition succeeeds. More than one '#elif'
can go in the same '#if'-'#endif' group. Then the text after each '#elif'
is processed only if the '#elif' condition succeeds after the original
'#if' and any previous '#elif''s within it have failed. '#else' is
equivalent to '#elif 1', and '#else' is allowed after any number of
'#elif''s, but '#elif' may not follow a '#else'.
3.5.3. Keeping Deleted Code for Future Reference
If you replace or delete a part of the program but want to keep the old
code around as a comment for future reference, the easy way to do this is
to put '#if 0' before it and '#endif' after it.
This works even if the code being turned off contains conditionals, but
they must be entire conditionals (balanced '#if' and '#endif').
3.5.4. Conditionals and Macros
Conditionals are rarely useful except in connection with macros. A '#if'
command whose expression uses no macros is equivalent to '#if 1' or '#if
0'; you might as well determine which one, by computing the value of the
expression yourself, and then simplify the program. But when the expression
uses macros, its value can vary from compilation to compilation.
For example, here is a conditional that tests the expression 'BUFSIZE ==
1020', where 'BUFSIZE' must be a macro.
 #if BUFSIZE == 1020
 printf ("Large buffers!\n");
 #endif /* BUFSIZE is large */
The special operator 'defined' may be used in '#if' expressions to test
whether a certain name is defined as a macro. Either 'defined name ' or
'defined (name)' is an expression whose value is 1 if name is defined as
macro at the current point in the program, and 0 otherwise. For the
'defined' operator it makes no difference what the defini-tion of the macro
is; all that matters is whether there is a definition. Thus, for example,
 #if defined (vax) || defined (ns16000)
would include the following code if either of the names 'vax' and 'ns16000'
is defined as a macro.
If a macro is defined and later undefined with '#undef', subsequent use of
the 'defined' operator will return 0, because the name is no longer
defined. If the macro is defined again with another '#define', 'defined'
will recommence returning 1.
Conditionals that test just the definedness of one name are very common, so
there are two special short conditional commands for this case. They are
 #ifdef name
is equivalent to '#if defined (name)'.

is equivalent to '#if defined (name)'.
 #ifndef name
is equivalent to '#if ! defined (name)'.
Macro definitions can vary between compilations for several reasons.

Some macros are predefined on each kind of machine. For example, on a
Vax, the name 'vax' is a predefined macro. On other machines, it would
not be defined.
Many more macros are defined by system header files. Different systems
and machines define different macros, or give them different values.
It is useful to test these macros with conditionals to avoid using a
system feature on a machine where it is not implemented.
Macros are a common way of allowing users to customize a program for
different machines or applications. For example, the macro 'BUFSIZE'
might be defined in a configuration file for your program that is
included as a header file in each source file. You would use 'BUFSIZE'
in a preprocessor conditional in order to generate different code
depending on the chosen configuration.
Macros can be defined or undefined with '-D' and '-U' command options
when you compile the program. You can arrange to compile the same
source file into two different programs by choosing a macro name to
specify which program you want, writing conditionals to test whether
or how this macro is defined, and then controlling the state of the
macro with compiler command options. See section Invocation.

3.5.5. The '#error' Command
The command '#error' causes the preprocessor to report a fatal error. The
rest of the line that follows '#error' is used as the error message.
You would use '#error' inside of a conditional that detects a combination
of parameters which you know the program does not properly support. For
example, if you know that the program will not run properly on a Vax, you
might write
 #ifdef vax
 #error Won't work on Vax. See comments at get_last_obj.
 #endif
See section Nonstandard Predefined, for why this works.
If you have several configuration parameters that must be set up by the
installation in a consistent way, you can use conditionals to detect an
inconsistency and report it with '#error'. For example,
 #if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \
 || HASH_TABLE_SIZE % 5 == 0
 #error HASH_TABLE_SIZE not be divisible by a small prime
 #endif
3.6. Combining Source Files
One of the jobs of the C preprocessor is to inform the C compiler of where
each line of C code came from: which source file and which line number.
C code can come from multiple source files if you use '#include'; both
'#include' and the use of conditionals and macros can cause the line number
of a line in the preprocessor output to be different from the line's number
in the original source file. You will appreciate the value of making both
the C compiler (in error messages) and symbolic debuggers such as GDB use
the line numbers in your source file.
The C preprocessor builds on this feature by offering a command by which
you can control the feature explicitly. This is useful when a file for
input to the C preprocessor is the output from another program such as the
bison parser generator, which operates on another file that is the true
source file. Parts of the output from bison are generated from scratch,
other parts come from a standard parser file. The rest are copied nearly
verbatim from the source file, but their line numbers in the bison output
are not the same as their original line numbers. Naturally you would like
compiler error messages and symbolic debuggers to know the original source
file and line number of each line in the bison output.
bison arranges this by writing '#line' commands into the output file.
'#line' is a command that specifies the original line number and source
file name for subsequent input in the current preprocessor input file.
'#line' has three variants:

#line linenum
Here linenum is a decimal integer constant. This specifies that the

Here linenum is a decimal integer constant. This specifies that the
line number of the following line of input, in its original source
file, was linenum .
#line linenum filename
Here linenum is a decimal integer constant and filename is a string
constant. This specifies that the following line of input came
originally from source file filename and its line number there was
linenum . Keep in mind that filename is not just a file name; it is
surrounded by doublequote characters so that it looks like a string
constant.
#line anything else
anything else is checked for macro calls, which are expanded. The
result should be a decimal integer constant followed optionally by a
string constant, as described above.

'#line' commands alter the results of the '__FILE__' and '__LINE__'
predefined macros from that point on. See section Standard Predefined.
3.7. Miscellaneous Preprocessor Commands
This section describes three additional preprocessor commands. They are not
very useful, but are mentioned for completeness.
The null command consists of a '#' followed by a Newline, with only
whitespace (including comments) in between. A null command is understood as
a preprocessor command but has no effect on the preprocessor output. The
primary significance of the existence of the null command is that an input
line consisting of just a '#' will produce no output, rather than a line of
output containing just a '#'. Supposedly some old C programs contain such
lines.
The ' #pragma ' command is specified in the ANSI standard to have an
arbitrary implementation-defined effect. In the GNU C preprocessor,
'#pragma' commands are ignored, except for '#pragma once' (see section
Once-Only).
The ' #ident ' command is supported for compatibility with certain other
systems. It is followed by a line of text. On certain systems, the text is
copied into a special place in the object file; on most systems, the text
is ignored and this directive has no effect.
3.8. C Preprocessor Output
The output from the C preprocessor looks much like the input, except that
all preprocessor command lines have been replaced with blank lines and all
comments with spaces. Whitespace within a line is not altered; however, a
space is inserted after the expansions of most macro calls.
Source file name and line number information is conveyed by lines of the
form
 filename linenum flag
which are inserted as needed into the middle of the input (but never within
a string or character constant). Such a line means that the following line
originated in file filename at line linenum .
The third field, flag , may be a number, or may be absent. It is '1' for
the beginning of a new source file, and '2' for return to an old source
file at the end of an included file. It is absent otherwise.
4. Acknowledgements.
The GNU preprocessor is protected by copyright to the Free Software
Foundation Inc, as are all support files and documentation. Further
distribution is encouraged under the terms of the GNU license.

GNU cpp was ported to QDOS by Dave Woodman.

C68 Compiler
NAME
 c68/c386/c86/c30 - Compile preprocessed C source.
SYNOPSIS
 c68 [options] [input_file [output_file [listing_file]]]
 c386 [options] [input_file [output_file [listing_file]]]
 c86 [options] [input_file [output_file [listing_file]]]
 c30 [options] [input_file [output_file [listing_file]]]

 cARM [options] [input_file [output_file [listing_file]]]
 cPPC [options] [input_file [output_file [listing_file]]]
DESCRIPTION

c68 is a publicly available ANSI C compiler. The compiler can also operate
in a mode that is compatible with the original Kernighan and Richie (K&R)
definition. The user can select K&R mode (which causes many ANSI specific
features to be disabled) by a run-time parameter option. The default is
ANSI compatible mode as this is what most people would wish to use.
Although generically the compiler is known under the name of c68 the actual
program name normally varies according to the target environment in which
it is hosted. The names used are c68 when hosted on Motorola 680x0 systems;
c386 when hosted on Intel 386 (or better) systems running in 32 bit mode;
c86 when hosted on an Intel 8086 (or better system) running in 16-bit real
mode; cARM when hosted on a Acorn ARM Risc processor; c30 when hosted on a
Texas Instruments TMSC30 processor; cPPC when hosted on a Power PC
processor.
The compiler was originally developed to run on the MINIX operating system,
but is known to be in wide use on a wide variety of other operating systems
such as LINUX, TOS (Atari), QDOS/SMSQ (Sinclair QL) and EPOC (Psion 3a).
The source has been specifically written with maximum portability in mind.
The compiler is slightly unusual in there is the capability for
simultaneous support of multiple target processor types and/or multiple
assemblers. The user specifies at the time that the compiler is built which
target processors and combination of options are to be supported. If
support for multiple processors and/or assemblers are configured to be
built in, then options other than the default can be selected by
appropriate runtime parameter options. This can make the compiler very
useful as a tool for cross-development between different hardware
platforms.
The compiler takes the output of a C pre-processor, and compiles it to give
assembler source. If no output file is specified on the command line then
the compiler writes the generated assembler code to standard output. If in
addition there is no input file specified then the compiler reads the C
source from standard input. Finally if the compiler run time option
requesting a listing is used and no listing file is specified, the compiler
writes it to standard error.
The options available to control the behaviour of the compiler are listed
below. The options to the compiler can also be passed as -Qoption in
addition to the syntax given below. This is to make it easier for the
front-end programs (typically called CC) to decide which options belong to
the compiler phase. Not all options are necessarily available in all
versions of the compiler as some of them are dependent on the settings in
the compiler configuration file at the time that the compiler is actually
built.
GENERAL OPTIONS
These are options that are not dependent on the target processor type, and
are general in nature. Where the option can be a list, then multiple
options from the list can be specified separated by commas. There must be
no spaces between the options in this case.

-?
Display a message giving the full list of options available in this
particular version of the compiler. It also details the default
settings for the parameters. This option can be very useful as it
always reflects the choices of settings in the compiler configuration
file that were actually used when generating this version of the
compiler. If you find a parameter option listed in this document
appears to be ignored, then this is the way to check if the version of
the compiler you are actually using has been built with that option
enabled.

The values listed are organised so that the first section applies to
setting global to all variants of the compiler, and then sections
specific to each target processor type for which support has been
included when the compiler was built.

The output is normally too long to fit onto a single screen, so you may
need to redirect into a file to see all the options.
-v
Output additional information during the compile process. If the
compiler was built without the VERBOSE configuration option set then
this is merely a message giving the version number of the compiler. If
the VERBOSE configuration option was used when the compiler was built,
then additional progress information is output during the compile
process.

Default: The compiler as supplied is not normally built with the
VERBOSE option and merely provides the version number message if -v is
used.

-warn= n
Control the severity level of warning and diagnostic messages that will
be output during the compilation process. Messages with a higher
severity value (i.e. less severe) than the value specified will not be
output. See later for more information on the effect of possible values
for n .

Default: -warn=3
-error= n
Make messages that are normally only warnings to be treated as errors
instead. The value of n specifies what severity of messages that would
normally be only warnings are instead to be treated as errors. This
option is often used in conjunction with the maxerr option..

Default: -error=0
-maxerr= n
Sets the maximum error count to the value of n . This is the maximum
number of errors that will be reported before the compiler abandons a
compile. As one error can cause others to occur, in a cascade effect,
it is often a good idea to set this to a low value in the region of 10-
20 errors which fits on one screen.

Default: -maxerr=200
-debug= option_list
This option is only available in a version of the compiler built with
the DEBUG configuration option defined. It is used to control the
amount of debug information that is written to the listing file. The
option_list can be any combination of the following:

global
peep
expr
code
register
symbol

Default: No debug information output.

N.B. The DEBUG configuration option when building the compiler is
normally only set if you are developing new code to be included in the
compiler or investigating faults. It is therefore never normally
included in any generally distributed binaries.
-align= yes | no
All processors tend to have default alignments at which they generate
most efficient code. The compiler will use the setting of the -align
option to decide whether to use the processor optimum alignment, or ask
the compiler to attempt to use a different alignment. A yes value for
this option means align structures and unions using the same rules as
applied to the member that has the strictest alignment rules, while no
means use the default value for the processor type. In particular if
you want structures or unions which only contain 'char' data types to
be packed as closely as possible (and therefore possibly start on odd
addresses) you must use the -align=yes setting.

Default:
-align=yes for Intel targets (any boundaries)
-align=no for 68000 and ARM targets (even boundaries)
-align=yes for TMS C30 targets (even boundaries)
-asm= yes | no
Specifies whether the use of the asm keyword should be allowed in your
C source. Use of the asm keyword is not part of ANSI C and will
definitely result in non-portable code.

Support for the asm keyword is not included in the compiler unless the
ASM configuration option is set at the time the compiler is built. We
do not normally include such support in binaries we put on general
distribution.

Default: -asm=no
-extension= yes | no
Specifies whether options that are under consideration for inclusion in
the next ANSI C standard (amendment 2) should be included.

Support for these options will only be included in the compiler if the
EXTENSIONS configuration option is set when the compiler is built. We
normally do include such an option in binaries we put on general
distribution except when the size of the compiler is constrained by
memory limits. For details of what options are affected by this keyword
refer to the section later in this document labelled "EXTENSIONS TO
ANSI C".

Default: -extensions=no
-extern= yes | no
Output details of external symbols in this module to the listing file.
This is intended in the future to provide the basis of a lint-style
facility to provide cross-module consistency checking.

Whether support for this option is included in the compiler is
controlled by the EXTERNAL configuration option at the time the
compiler is built. We do not normally include such support in binaries
we put on general distribution.

Default: -extern=no
-fcheck= yes | no
This option is only relevant in versions of the compiler that were
configured at build time to not include support for floating point, but
that did have the FLOAT_CHECK configuration option set. Setting -
fcheck=yes means that floating point keywords will be recognised and
you will get errors output if you try and use such keywords. Setting -
fcheck=no means that these keywords are not recognised as C keywords.

Default: fcheck=no
-format= yes | no
Activate additional checks for the 'printf' and 'scanf' families of
library routines. If active, then the parameters following the format
string are checked as being compatible with the format string.

This option is only available if the FORMAT_CHECK configuration option
was set at the time the compiler it is built. This option is very
useful so we normally try and include it, but the support is sometimes
removed to save memory when this is critical.

Default: -format=yes (check parameters)
-icode
Output run-time debugging information to the listing file. Intended
mainly for debugging the compiler itself.

This option is only available if the compiler was built with the ICODE
configuration option defined. This option is not normally defined for
binaries that we put on general distribution.

Default: -icode=no
-int= 16 | 32
Specify whether the length of int declarations should be 16 bit (same
as a short) or a 32 bit (same as a long). There is a lot of code around
that assumes sizeof(int)==sizeof(char *) so getting this setting
correct for your target platform is important.

Default:
c386: -int=32
c68: -int=16 (MINIX systems)
-int=32 (QDOS/SMS systems)
c86: -int=16 (Psion 3a systems)
c30: -int=32
-lattice= yes | no
Older versions of Lattice C had partial support of prototypes in which
a variable number of parameters was indicated by finishing the
parameter list with a comma (rather than the ANSI style of using ,...).
The use of this option means the Lattice syntax will also be accepted.

Default: -lattice=no
-list= yes | no
Control listing of symbol table.

Support for this option is only available if the LIST configuration

Support for this option is only available if the LIST configuration
option was included when the compiler was built. This option is
primarily an aid to helping us debug the compiler, so support for this
option would not normally be included in any distribute binaries.

Default: -list=no
-obsolete= yes | no
Specifies whether warnings should be generated if you use an option
that is currently part of the ANSI C standard, but which the ANSI
committee have warned may be removed from future versions of the ANSI C
standard. Examples of this is support for K&R style function
definitions.

Default: -obsolete=no (no warnings)
-packenum= yes | no
Specify whether the compiler should use the smallest integer type that
is capable of containing all the enumeration values that are defined
for a particular enumeration type. If -packenum=no is in effect then '
int ' is used as the enumeration type.

This option is only supported if the PACKENUM configuration option was
set at the time the compiler was built. We normally do have this option
supported in any binaries we put on general distribution.

Default: -packenum=no
-revbit= yes | no
Control the order in which the compiler allocates the bits in a
bitfield. The -revbit=yes option causes the bitfield to be allocated
starting from the highest number bit downwards, rather than the default
of allocating them from bit 0 upwards.

Default: -revbit=no (start at bit 0)
-topspeed= yes | no
Control whether certain specific extensions to the C syntax that are
used by the TopSpeed C compiler should be treated as valid or not.

N.B. The fact that the syntax is accepted does not mean that the same
effect will be obtained as when used under TopSpeed - in most cases the
additional information is simply ignored.

Whether this option is supported is determined by whether the TOPSPEED
configuration option was set at the time the compiler was built.

Default: -topspeed=no
-trad= yes | no
Determine whether the compiler should reject most of the ANSI
extensions to the original K&R definition and work instead in
"traditional" mode. For more detail on what ANSI options are not
supported when this option is set, see the section later in this
document on K&R Compatibility Mode.

Default: -trad=no
-uchar=yes
Specifies whether the char data type is considered as an unsigned
integer type with values in the range 0 to 255, or a signed integer
type with the range +127 to -128.

Default: -uchar=no (signed char)
GENERAL CODE GENERATION OPTIONS
These are options that affect the code generation process, but that are not
dependent on the target processor type.

-g
Output additional information for debugging purposes. Branch
optimisation is also suppressed even if the -O option has been
specified. The current effect of this option is to include line
directives in the generated assembler output, plus the text of the
current source line as a comment. Not all the assembler can accept the
line directive, so you may find that you cannot generate the object
code from such an assembler source file. This can still be useful if
you wish to see exactly which C source lines caused particular
assembler code to be generated.

Default: No debugging information is generated.
-O
Specifies that maximum optimisation available is to be used. This can
significantly reduce the size of the generated code, and will also
normally slightly improve on run time. It can, however, slow down the
compilation process. You can also use the -peep option to turn on just
certain parts of the optimisation process.

Note that this option is ignored if the -g or -opt=no options are also
specified in the command line.

Default: The optimisation triggered by this option is not performed.
-code= yes | no
Specifies whether code is to be generated, or if this run is merely
being used to check for errors in the source code. The advantage of
specifying the -code=no option if you are merely looking for errors is
that the compiler will run faster if no attempt is made to generate
code.

Default: -code=yes
-longdouble= yes | no
If set to 'yes' then 'long double' is treated as being a distinct type
from 'double' with different support routines.

Default: -longdouble=no

NOTE. The software support routines for 'long double' are not currently
available for use with c386 / c86 / c68 so you would normally only
consider using this option if generating inline FPU instructions.
-opt= yes | no
Control the operation of the global optimiser. Normally the optimiser
is active as it results in more efficient code. If you wish to suppress
all global optimisations then you can specify the -opt=no option. You
would not normally use this option unless you suspect an error in the
optimiser. Using the -opt=no option will override the -O option if it
is also specified.

Default: -opt=yes
-prefix= string
This allows the prefix that is added to external symbol names (normally
either an underscore character, or a null string) to be changed. The
compiler takes whatever follows the equals sign as the string value.
Quotes should NOT be added unless required by the parameter parsing
mechanism of the host operating system.

Default: This is really determined by the standards of the target
operating system. As issued the setting is:

-prefix=_
-reg= yes | no
Specifies constraints on how the compiler is allowed to allocate
variables to registers. Normally the compiler will try to do automatic
allocation of variables to registers according to their run-time usage.
The -reg=no option forces the use of register variables only when
explicitly requested by the programmer.

Default: -reg=yes
-separate= yes | no
Determine whether the compiler should allocate strings and constants in
the same segment as the code, or in a separate data segment.

Default: -separate=no
-stackcheck= yes | no
Specify whether calls should be made to a support routine to perform
stack checks at the start of each function. To use this option, it is
necessary to have implemented the appropriate (system dependent)
support routine.

Default: - stackcheck=no
-stackopt= safest | minimum | average | maximum
Used to control whether the 'lazy stack updating' optimisation is to be
used. The meanings of the various values are:

used. The meanings of the various values are:

safest Suppress this level of optimisation. It is advisable to suppress
lazy stack optimisation on routines which are recursive in nature.
Failure to do so may lead to excessive stack space being required to
successfully run this program.

minimum A certain amount of optimisation is done, but nothing that is
considered dangerous. This is the safest mode of optimisation assuming
you allow this type of optimisation at all.

average Allow optimisation for functions whose name starts with an
underscore.

maximum Allow optimisation for functions whose name starts with an
underscore, or which are called via a function variable. This
effectively optimises all function calls.

See the section on optimisation later in this document for more detail
on the implications of the various settings for this optimisation.

Default: -stackopt=minimum
-trace= yes | no
Control the generation of run-time trace information. Intended in the
future to help support a source code debugger. However, at the moment
this capability is incomplete. This option is only available if the
compiler was built with the TRACE configuration option set. The
compiler as normally supplied is not set to have this option built in.

Default: -trace=no
-trans= yes | no
This option is used if you are working on a system which can only
support symbol names of limited length. It allows you to make certain
that all names in the assembler output are only 8 characters in length
(a special algorithm is used for names that are longer than this). This
is used if the assembler phase cannot handle long C names. Support for
this option is only included if the TRANSLATE configuration option was
set when the compiler was built. As most modern systems can support
longer symbol names we normally omit support for this option in
binaries that are put on general distribution.

Default: -trans=no
MOTOROLA 68K OPTIONS
The options listed in this section apply when generating code for Motorola
68K family of processors. They will only be available if support for the
Motorola 68K processors was specified at the time the compiler was built.

-codemode= absolute | small | large
This option is used to tell the compiler what addressing modes to use
for jump instructions. The meanings of the options are:

absolute Any generated jump instructions use absolute addressing mode.
Typically this means that runtime relocation of the generated program
needs to be done.

small Jump instructions will use relative addressing modes assuming the
'small model'. This means that all target of jump instructions are
within a 16-bit displacement of the source. If you set this and it
turns out not to be true you will almost certainly get errors when you
try and link your code.

large Jump instructions will use relative addressing modes assuming the
'large model' This means that all targets of jump instructions are
within a 32-bit displacement of the source (which will always be true).

Note that although the small and large options generate position
independent code, the resulting program will not be position
independent unless any supplied libraries you intend to use have also
been generated to use this option, and any variables (that are not auto
variables) are accessed using position relative addressing.

Default: -codemodel=absolute
-datamodel= absolute | small | large
This option is used to tell the compiler what addressing modes to use

This option is used to tell the compiler what addressing modes to use
for accessing program variables. The meanings of the options are:

absolute Variables are accessed using absolute mode. Typically this
means that runtime relocation of the generated program needs to be
done.

small Variables are accessed using 'small model' addressing. This means
16-bit displacements from the register specified in the -regdata
parameter. If you set this and it turns out not to be true you will
almost certainly get errors when you try and link your code.

large Variables are accessed using 'large model' addressing. This means
32-bit displacements from the register specified in the -regdata
parameter.

Note that the code generated by the small and large options requires
the address of a specific external label to be loaded into the register
specified by the -regdata parameter as all addresses are generated as
displacements from this label. Typically this is done in the program
start-up module.

Only change this option from the default if your library supplier tells
you that you can, or you are very sure you know what you are doing.
Also there is normally not much to be gained from using this option
unless any supplied libraries you intend to use have also been
generated to use this option.

Default: -datamodel=absolute
-fpu= yes | no
Specify whether operations involving floating point variables should
generate in-line calls to a hardware floating point unit, or whether
calls are made instead to library support routines. Using library
support routines allows floating point operations to be carried out
purely in software.

Default: -fpu=no
-fpureturn =yes | no
This option is used to tell the compiler whether the library routines
are such that floating point results are returned in the hardware FPU
registers, or in normal registers. Note you should not normally change
this value from the default unless you have been specifically advised
to do so.

Default: -fpureturn=no
-interrupt =yes | no
This option is used to decide whether functions should be terminated
with a RTS or a RTE instruction. You would want a RTS in normal code,
and a RTE in an interrupt handler.

The way that you would most likely use this option is by by using it
with an inline #pragma statement rather than as a command line option.
In other words along the lines of:

#pragma interrupt=yes
void special_func()
{
.... code for function
}
#pragma interrupt=no

This would have the effect of only the single function specified having
a RTE instruction to terminate it with all others having an RTS as the
return instruction.

Default: -interrupt=no
-peep= none | peepopt_list | all
Control the level of peephole optimisation that should be done. Past
experience has shown that some of the more obscure bugs reported on the
compiler are those where the peephole optimiser part of the compiler
has made an invalid optimisation. You would therefore use this option
if you suspect that the compiler has generated incorrect code, and you
want to look at what would be generated if some or all of the the
peephole optimisation was not done.

The meanings of the options are:

none All peephole optimisations are suppressed.

all All peephole optimisations are performed.

You can also exercise a finer level of control by specifying the exact
combination of peephole optimisations that you want from the following
options:

instruction This controls whether instruction sequences should be
replaced by more efficient combinations.

jumps This controls whether jump optimisation should be used which
tries to common up re-occurring bits of code. This normally produces
significant size savings in the generated code.

flow This tries to analyse the flow of the code to eliminate redundant
loads of registers. A significant size savig normally results from this
option. However if it goes wrong, the results can be rather
unpredictable.

Default: -peep=all
-probe= no | yes
Specify whether stack probes should be generated each time a stack
frame is generated. These can be desirable if using the compiler in a
multi-tasking environment and with a 680x0 based system which has
hardware protection for invalid memory accesses. The problem is that
not enough space is always left on the stack to store information for a
restart of an instruction, and stack probes insure that the stack has
enough allocated memory to accommodate the needs of the routine.
Support for this option is only included if the PROBES configuration
option was set when the compiler was built.

Default: -probe=no

Note: The compiler as supplied is not normally set to have this option
compiled in. Also there is no point in attempting to use it if your
system does not have hardware that will detect attempts to access
memory addresses that are outside the stack.
-regdata=a n
Specify which address register is to be used as the index register for
access to variables. This parameter is only relevant if the setting of
the -datamode specifies that absolute addressing is not being used.
Note that no check is made that the settings do not conflict with any
of the other -regxxxx options.

Default: -regdata=a5
-regframe=a n
Specify which address register is to be used as the frame pointer. Note
that no check is made that the settings do not conflict with any of the
other -regxxxx options.

Default: -regframe=a6
-regtemp= register_list
Specify which registers are treated as scratch registers. Note that no
check is made to ensure that you have left enough for the compiler to
be able to sensibly generate code, or that the settings do not conflict
with any of the other -regxxxx options.

Default: -regtemp=d0,d1,d2,a0,a1,fp0,fp1,fp2
-regunused= register_list
Specify which registers should not be used. This would be used if you
needed to ensure that a particular register was never corrupted for
some reason. Note that issued libraries will not have been built with
this setting, so use in average programs is not much use unless the
libraries are rebuilt to match. Note that no check is made that the
settings do not conflict with any of the other -regxxxx options.

Default: -regunused=
-target=n
Used to specify the target processor type. Values supported are:

68000
68010
68020
68030
68040

Default: -target=68000

If support for multiple processors and/or assemblers was configured
when the compiler was built, then you can specify a 68k target with a
specific assembler using the following options:
-ack68k
Generate 680x0 code. Use the ACK assembler syntax for the output.
-cpm68k
Generate 680x0 code. Use the CPM assembler syntax for the output.
-gas68K
Generate 680x0 code. Use the GNU assembler syntax for the output.
-qmc68k
Generate 680x0 code. Use the QMAC assembler syntax for the output.

INTEL 386 OPTIONS
The options in this section apply when generating 32-bit code for Intel 386
(or better) processors. They will only be available if support for the
Intel 386 processor was specified at the time the compiler was built.

-fpu= yes | no
Specify whether operations involving floating point variables should
generate in-line calls to a hardware floating point unit, or whether
calls are made instead to library support routines. Using library
support routines allows floating point operations to be carried out
purely in software.

Default: -fpu=yes

N.B. We do not supply suitable library routines to do software
emulation of floating point with the compiler.
-fpureturn =yes | no
This option is used to tell the compiler whether the library routines
are such that floating point results are returned in the hardware FPU
registers, or in normal registers. Note you should not normally change
this value from the default unless you have been specifically advised
to do so.

Default: -fpureturn=no
-peep= none | peepopt_list | all
Control the level of peephole optimisation that should be done. Past
experience has shown that some of the more obscure bugs reported on the
compiler are those where the peephole optimiser part of the compiler
has made an invalid optimisation. You would therefore use this option
if you suspect that the compiler has generated incorrect code, and you
want to look at what would be generated if some or all of the the
peephole optimisation was not done.

The meanings of the options are:

none All peephole optimisations are suppressed.

all All peephole optimisations are performed. It is equivalent to
giving -peep=flow .

You can also exercise a finer level of control by specifying the exact
combination of peephole optimisations that you want from the following
options:

flow This tries to analyse the flow of the code to eliminate redundant
loads of registers. A significant size savig normally results from this
option. However if it goes wrong, the results can be rather
unpredictable.

Default: -peep=all

If support for multiple assemblers and/or processors types was
specified when the compiler was built, then a 386 processor target plus

specified when the compiler was built, then a 386 processor target plus
a specific assembler can be specified using the following options:
-bas386
Generate 386 code. Use the syntax for Bruce Evan's 386 assembler for
the output.
-gas386
Generate 386 code. Use the GNU 386 assembler syntax for the output.
-masm386
Generate 386 code. Use the Microsoft MASM assembler syntax for the
output
-sysv386
Generate 386 code. Use the Unix SVR4 assembler syntax for the output.

INTEL 8086 OPTIONS
The options listed in this section apply when generating 16-bit code for
use on Intel processors. They will only be available if support for the
Intel 8086 processor type was specified at the time the compiler was built.

-fpu= yes | no
Specify whether operations involving floating point variables should
generate in-line calls to the a hardware floating point unit, or
whether calls are made instead to library support routines. Using
library support routines allows floating point operations to be carried
out purely in software.

Default: -fpu=yes
-peep= none | peepopt_list | all
Control the level of peephole optimisation that should be done. Past
experience has shown that some of the more obscure bugs reported on the
compiler are those where the peephole optimiser part of the compiler
has made an invalid optimisation. You would therefore use this option
if you suspect that the compiler has generated incorrect code, and you
want to look at what would be generated if some or all of the the
peephole optimisation was not done.

The meanings of the options are:

none All peephole optimisations are suppressed.

all All peephole optimisations are performed. It is equivalent to
giving -peep=flow .

You can also exercise a finer level of control by specifying the exact
combination of peephole optimisations that you want from the following
options:

flow This tries to analyse the flow of the code to eliminate redundant
loads of registers. A significant size saving normally results from
this option. However if it goes wrong, the results can be rather
unpredictable.

Default: -peep=all
-pointer= 16 | 32
Specifies that the code should be generated to conform to the small
memory model (64K data + 64K code segments) which uses 16 bit pointers
or the large model which uses 32 bit pointers.

Default: -pointer=16

If support for multiple processors and/or assemblers was configured
when the compiler was built, then you can specify the target to be a
8086 processor and a specific assembler can be specified using the
following options:
-bas86
Generate 8086 code. Use the syntax for Bruce Evan's 16 bit 8086
assembler for the output.
-gas86
Generate 8086 code. Use the GNU assembler syntax for the output.
-masm86
Generate 8086 code. Use the Microsoft MASM assembler syntax for the
output
-sysv86
Generate 8086 code. Use the Unix SVR4 assembler syntax for the output.

TEXAS INSTRUMENTS TMSC30 PROCESSOR OPTIONS
The options listed in this section will only be available if support for
the Texas Instruments TMSC30 DSP processor was specified at the time the
compiler was built.
NOTE The TMSC30 support was developed by and is maintained by:

Ivo Oesch,
Selzweg 1,
3422 Kirchberg,
Switzerland.
email: b19oesch@isbe.ch (valid until March 1997)

-collect= yes | no
This option is used to control the level of effort that is put into
removing redundant moves. The 'yes' value implies try harder.

N.B. This option is likely to be removed or combined with some other
option in the future.
-delayed= n
This controls the condition under which delayed branches are used. The
values of 'n' should be in the range 0 to 3. The meaning of the
different vales is as follows:

0 No delayed branches are used

1 At least one useful instruction must follow to be able to use a
delayed branch, or alternatively up to to 2 nops are allowed to be
added to be able to use a delayed branch.

2 At least two useful instruction must follow to be able to use a
delayed branch, or alternatively not more than 1 nop.

3 All three instructions following the delayed branch must be useful to
be able to use a delayed branch.

The implementation of this option is done by taking 'useful'
instructions from before the branch (i.e. the branch instruction is
moved backwards in the generated instruction stream, and if this is not
sufficient also moving instructions from the branches target and
adjusting the target location accordingly.
-forcedsave= none | option_list | all
Forces the compiler to save specified registers on function entry and
restore them when leaving a function. The 'option_list' may be any
combination of the following register names:

none No registers are saved.

all All registers

You can specify specific registers by using any combination of the
following (comma separated):

r0,r1,r2,r3,r4,r5,r6,r7
ar0,ar1,ar2,ar3,ar4,ar5,ar6,ar7
dp,ir0,ir1,bk,sp,st,ie,if,iof,rs,re,rc

In addition you can use rn to mean all r? registers and arn to mean all
ar? registers.

It usually will only makes sense to use this option for special
interrupt routines, so should not be switched on via the comand line.

The most likely way you would use this option is by including the
following type of code sequence in your source:

#pragma forcedsave=all
special Interruptroutine
#pragma forcedsave=none

(This option was sdded since I needed it to get a realtime-operating
system running, and it was needed for context-switching - I had to
force a save of all registers onto the stack before switching the
context (Reload SP and FRAMEPTR))

context (Reload SP and FRAMEPTR))
-mul32= yes | no
If enabled then real 32-bit multiplication is used for longs. If not
enabled then the TMS320C30 24-bit multiplciation instructions are used
for longs (and also any shorter integral type).
-optbranch= node | low | medium | hard
Control the effort that the peephole optimiser puts into optimising
branch isntructions. The values have the following effects:

none No branch optimisation is done

low Only moving of blocks or replacing conditional jumps over loads
with conditional loads.

medium In addition to the above, if the code before a branch
instruction is the same as that before the target of the branch, then
move the branch backwards and try to eliminate any resulting redundant
code.

hard In addition to the above, try and common up any instruction
sequences leading up to a branch to the same location.
-parallel= none | normal | all
*** DJW *** Not sure what this does but it is present in the code.
-peep= none | peepopt_list | all
Control the level of peephole optimisation that should be done. Past
experience has shown that some of the more obscure bugs reported on the
compiler are those where the peephole optimiser part of the compiler
has made an invalid optimisation. You would therefore use this option
if you suspect that the compiler has generated incorrect code, and you
want to look at what would be generated if some or all of the the
peephole optimisation was not done.

The meanings of the options are:

none All peephole optimisations are suppressed.

all All peephole optimisations are performed.

You can also exercise a finer level of control by specifying the exact
combination of peephole optimisations that you want from the following
options:

flow Used to enable the data flow analyzer. The data flow analyser will
walk through the generated code keeping track of registers and
attempting to replace each data access with a cheaper operation if
possible.

CAUTION: This optimisation could lead you to violate a volatile
constraint that you tried to apply at the C level. A work-around is to
add a dummy 'asm' statement' something like asm("*Dummy, stops dataflow
analyzer") before any statement which accesses operandas with volatile
qualifiers. This stops the dataflow analyzer being able to do any
replacements at this point.

Using this option can add significantly to the compile time - typically
about a sixth.

pipeline This is used to control whether optimizations should be done
that attempt to minimise pipeline conflicts arising from the usage of
address registers as operands in instructions and in address
generation. The optimisation involves re-ordering code sequences where
possible to avoid such conflicts.

3operand Converts wherever it is possible two operand instructions into
three operand instructions. This may open new paths for the other
optimiser stages.

parallel Controls whether the peephole optimiser should attempt to use
instructions that can be executed in parallel where possible. It
involves replacing specific instructions with their parallel
equivalents. Currently only ldi||ldi, ldi||sti and sti||sti
combinations are supported.

remap Controls remapping of registers. For example an

remap Controls remapping of registers. For example an

ldi rx,ry

is removed if ry can be replaced with rx in the following code or if rx
can be replaced by ry in the preceeding code sequence.

This optimisation adds significantly to the compile time of programs.

debug *** DJW ***

Not sure what this does but is allowed for in the parameter options
present in the code.

Default: -peep=all
-probe= no | yes
Specify whether stack probes should be generated when each stack frame
is built. This option is only available if the PROBES option was
configuration option was set when the compiler was built.

Default: -probe=no
-pseq= string
This option would rarely be changed as it is used for fine tuning of
the peephole optimiser. It allows you to control both the number of
passes made by the peephole optimiser, and also the specific
optimisations that should be attempted in each branch. The 'string'
passed as a parameter is in the form nnn/n...n/nnn/.../n where n is a
number between 0 and 6. Each number controls specific optimisations
that are done in that pass of the optimiser, and the slashes separate
passes of the optimiser.

The meanings of the various numbers used in the string are as follows:

0 Do only simple standard optimisations

1 Combine forward. Arithmetic instructions with a following load is
combined to give a 3-op instruction wherever possible.

2 Combine backward. Arithmetic instructions with a preceeding load is
combined to give a 3-op instruction wherever possible.

3 Commutative. If a commutative arithmetic/locical instruction is
followed be a load and the load can be avoided if the operands are
swapped then this is done and the load deleted.

4 Do the optimisations that are controlled by the -remap option as
longas it is active.

5 Do the optimisations that are controlled by the -collect option as
long as it is active.

6 Do the optimisations that are controlled by the -dataflow option as
long a it is active.

The default value currently built into the compiler is:

-pseq=54321/6/543210

If you find a sequence that give better results then please let Ivo
know
-ramconst= yes | no
If enabled then large integer constants (more than 16 bits) are put
into the .const segment which must be in the same data page as all
other data segments. If not enabled, then large constants are
constructed using ldi, shift and or instructions.

Whether this option is relevant or not will depend on whether you are
constrained for space in the data page.
-shortfloat= n
Controls the cases in which short float constants are used according to
the value of 'n' as follows:

0 Short float constants are only used if we are absolutely sure that

0 Short float constants are only used if we are absolutely sure that
they will not bring any loss in precision in the given constant.

1 Constants of the type 'float' are always represented in short form if
they are in range. Constants of type 'double' and 'long double' only if
there is also no loss in precision.

2 All floating point constants are represented in short form if they
are in range (between -255 and +255) even if there is a loss in
precision.

If support for multiple processors and/or assemblers was specified when
the compiler was built, then you can specify the target to be a TI
MSC030 processor and a specific assembler can be specified using the
following options:
-rosc30
Generate code for the TI TMSC30 processor in the Rossin assembler
format. This should also be compatible with the official TI assembler
format.

ENVIRONMENT VARIABLES
If the compiler has been built to support environment variables, then the
environment variable that corresponds to the name of that version of the
compiler (i.e."C 386 ", " C86 ", " C68 " or " C30 ") is checked to see if it
is present, and if so is assumed to contain options in the same format as
the command line options. This is done before processing the command line.
Command line options will therefore over-ride the environment variable
settings in the event of conflict.
The environment variable method is a very convenient way of setting
defaults (such as the warning level) when you want a different one to the
one built into the compiler.
EXIT CODES
The compiler returns the following error codes:

 0 EXIT_SUCCESS. The compilation was successful. That is the source
file was compiled, and there were no fatal errors.

 other EXIT_FAILURE. One or more fatal compilation errors were reported.
SUPPORT FOR #pragma DIRECTIVES
The ANSI C standard provides the #pragma statement as a way of allowing
compilers to support non-standard (and typically non-portable) extensions
to C. The support in the compiler for #pragma is behaves as follows:

 a)

 If the text following the #pragma statement is valid for a command
line option, then it is interpreted as being one. No check is made if
this is sensible. A typical use for this facility is to perhaps
temporarily turn up a warning level for a small section of the
program. Another possible use is to dynamically change some of the
code generation options such as the level of optimisation. If trying
to take account of this facility please note that code is only
generated when the end of a function is reached, and it is the
settings for code generation at that point that are used. It is not
possible to change such settings on a statement level basis.

 b) If the text following the #pragma option is not recognised then the
#pragma statement is simply ignored.

N.B.

 Please note that there is a high chance that we might change the
above rules for #pragma support in future release of the compiler.

SUPPORT FOR asm KEYWORD
It is possible to build support for the 'asm' keyword into the compiler.
This is, however, a very limited support in that it suffers from the
following limitations:

The text of the assembler code that is passed as a parameter to the
'asm' keyword is not syntax checked in any way - it is simply passed
unchanged into the generated assembler file.
If you want to reference a global variable then you need to add any
prefixes (typically an underscore) to the names yourself.
It is not possible to reference static or auto variables as these have
internally generated labels.

We have no immediate plans to upgrade this support in any way. The use of
the 'asm' keyword is completely non-portable and not part of the ANSI
standard, so we do not feel the need to invest much work in getting it
working. After all you can always write free-standing assembler routines
that are added to your program at link time.
EXPLOITING COMPILER OPTIMISATIONS

This section discusses the optimisation methods used within the compiler
and how you can code to exploit these too maximum advantage.
The philosophy that was used when developing the compiler was to try and
strike a good balance between the efficiency of the optimisations that are
done and the code/runtime penalties of doing the optimisations in the first
place.
The decision was made to limit the optimisations that are will be done to
those that can be done by pure static analysis of the generated code. More
complex methods of optimisation have been avoided. The result has been a
family of compilers that produce surprisingly good code without too much
penalty in the runtime size or performance of the compilers.
To understand some of the following sections, you have to realise that the
code generation of the compiler happens in two basic stages:

 a)

 Generic code is generated that will work under all situations. No
consideration is given at this stage as to whether the particular
values of operands mean that shorter variants of instructions could be
used. At this stage the following optimisations are performed:

Allocating variables to registers
Removing redundant stack updates.

 b)

 The peephole optimiser is invoked that looks at the generated code
to see how it can be improved. The optimisations that occur at this
stage are:

Choosing optimum code sequences.
Commoning up repeated code sequences
Eliminating redundant or unnecessary code.

The programmer can often increase the effectiveness of these optimisation
processes by writing code appropriately.
Allocating Variables to Registers
The compiler will try and optimise the use of registers. You can stop this
automatic allocation of variables to register by using the -reg=no runtime
option to the compiler.
The compiler first allocates any variables for which the programmer has
explicitly used the keyword register , and then (assuming there are still
free registers) allocates further variables to registers using an algorithm
that looks at how frequently they are referenced in the source program.
This algorithm considers variables as suitable for holding in registers if
they are referenced enough times so that the overhead of loading them into
registers is less than the gains in code generation size of having them in
registers.
This results in the following tips:

 a)
 Avoid using the register keyword unnecessarily. The built in
algorithms for allocating variables to registers are very good, and
often will achieve better results than the programmer.

 b)

 Consider assigning variables used in loops explicitly with the
register keyword. Because only static analysis techniques are used,
the compiler optimises for space, and may not realise the run time
performance advantage of keeping loop variables in registers (albeit
possibly at the cost of increasing code size).

Removing Redundant Stack Updates - "Lazy stack updates"
If there are several calls to functions without any intervening transfers
of control, then the compiler can accumulate the stack tidying operations
normally performed after such calls and do them all at as late a stage as
possible. This means that multiple small stack adjustments can be replaced
by a single larger one (or even sometimes not do it at all if the end of a
function is reached first). This optimisation results therefore in both
size and speed gains.
There are times, however, when it is inadvisable to do this optimisation.
You can therefore exert tight control over exactly this optimisation by
using the -stackopt=xxxx runtime option. The values of xxx have the
following effect:

safest
This disables this optimisation completely. This is advisable if you
have routines which make any significant number of recursive calls
(either directly or indirectly via other routines). This is because it
is likely that there will be obsolete parameters left occupying space
at the point of recursion. This can cause excessive stack usage if the
recursion is to any depth.
minimum

minimum
This is the safest form of stack optimisation and is the default
compiler operation. With this option, stack optimisation is done unless
a function call is found which is to alloca(), a function whose name
starts with an underscore, or a function that is being called
indirectly via a function variable (which means its name is
indeterminate). This behaviour is to allow for the occasional routine
(typically an assembler routine in a library) that directly manipulates
the stack and can return with the stack set to a different value to
that on entry. Note that standard C routines cannot exhibit this
behaviour.
average
This option allows for optimisation of calls to routines that contain
an underscore. Its behaviour is otherwise as described for n=minimum .
This option can have significant gains in the situation in which
underscores are being added to the user defined names for the purposes
of name hiding within libraries.
maximum
This option allows for optimisation of calls to routines that are
called via a function variable (and whose name is therefore
indeterminate). This level of optimisation can have a larger gain than
is at first apparent. This is because the C68 optimisation for the use
of registers can result in the address of a frequently called function
being held in a register variable. This level of optimisation allows
the lazy stack optimisation to be applied to such calls as well. This
level of optimisation should be safe for pure C code. However, it is
not the default as it is very difficult to track down problems arising
from doing lazy stack optimisation when it is incorrect to allow it.

Choosing Optimum Code Sequences
This optimisation is simply a case of examining the code generated looking
for common code sequences that can be replace by faster and/or shorter
ones. This level of optimisation can be disabled by using the -opt=no
keyword. However, there is normally little to gain by disabling this
optimisation unless you suspect an error as it has little detrimental
effect on compilation speed.
Commoning up repeated code sequences
The compiler will attempt to common up repeated sequences of code within a
function. This can result in significant reduction in code size. However,
as this optimisation can impose a significant time penalty on the
compilation process, it is only invoked if the -O runtime option is
supplied to the compiler.
To maximise the potential gains that will be achieved by this optimisation
the following tips may be useful:

 a)

 Try and ensure that the code sequences leading up to return
statements or break statements within a switch construct are the same.
This will allow the compiler to only generate the code once and
implement all repeated occurrences of such code as simple branches to
the first one.

 b)
 If you have such sequences that simply differ by one variable, then
it may be worth assigning that variable to a temporary one and using
that if as a result a larger sequence of code is common.

Removing Redundant or Unreferenced Code
This optimisation is done only if the -O runtime option to the compiler was
used. It looks for any code sequence that cannot be reached. If the code in
question was a direct result of the way the programmer wrote the source
code then, if level 4 warnings are active, appropriate warning messages
will have been output during the parsing stage. However, this situation can
also arise as result of the effects of previous stages in the optimisation
process.
KNOWN BUGS AND LIMITATIONS
The following are known bugs in the 4.5 release of the compiler.

Adjacent wide string literals are not concatenated.

The following undefined behaviours are not detected:

An attempt is made to modify a string literal of either form.
An object is modified more than once, or is modified and accessed
other than to determine the new value, between two sequence points.
The value of an uninitialised object that has automatic storage
duration is used before a value is assigned.

ANSI FEATURES NOT SUPPORTED
The following features specified in the ANSI standard are NOT supported

The following features specified in the ANSI standard are NOT supported

Trigraphs. It is possible, however, that you have a pre-processor that
handles trigraphs, in which case this is done there rather than in the
compiler program.

ANSI EXTENSIONS SUPPORTED
If the -extensions=yes run-time option is used and the EXTENSIONS
configuration option was set when the compiler was built, then the
following additional functionality is supported. These are based on the
proposed amendment to ANSI C that has not yet been ratified.

The C++ style of comment is allowed (i.e. those starting with the //
sequence).
The ' restrict' keyword is recognised and the associated syntax rules
for restricted pointers.
Other new reserved words such as ' class ', ' private ' and ' public '
are recognised and flagged as errors when used as variable names.

CHANGES TO FEATURES IN K&R COMPATIBILITY MODE
If K&R compatibility mode is specified by using the -trad=yes run-time
option, then the following changes occur in the features supported by the
compiler:

The long double qualifier is not allowed.
The use of the long float qualifier as a synonym for double is
permitted.
The const keyword is not allowed.
The volatile keyword is not allowed.
The signed keyword is not allowed.
String concatenation is not performed.
Single copies of identical strings are not generated. Instead separate
copies will be generated every time a string is used.
ANSI style function prototypes are not allowed.
ANSI style function declarations are not allowed.

ERROR AND WARNING LEVELS
The errors and warnings within the compiler are classified into various
severity levels. The higher the level, the more pedantic the level of
messages that are output. By default all messages with severity 0 are
errors, and all those with higher levels are merely warnings. The -warn=n
and -error=n runtime parameter options allow the user to vary the default
treatment of these levels.
The compiler is normally supplied with warning level 3 set as the default
warning level (if not changed via the command line or in an environment
variable). It is good practice to try and write code that compiles without
warnings even at levels 4 or 5. There are then less likely to be subtle
bugs lurking in your code that are coding mistakes that are difficult to
spot. A real zealous coder will definitely want to achieve level 6, and
possibly level 7. You have to be a zealot to want to expend the effort
required to get code to compile warning free at level 8.
The levels currently supported are as follows:
 0 Messages at this level are always errors. If you specify this as awarning level, then effectively all warning messages are disabled.

 1
 These are severe warnings that should not normally be suppressed. They
typically relate to problems at the code generation stage of the
compiler or to constructs which only some compilers will allow.

 2
 These relate to problems with the code that normally indicate problems
or potential problems. They are typically easy to fix - normally by
adding a cast or something similar.

 3
 This level relates to warnings that are commonly encountered when
porting code. The warnings at this level may not indicate an error, but
they should certainly be checked out.

 4
 This level of warning indicates problems that are often encountered in
porting, but that are probably not an error. It is still a good idea to
get your own code to compile cleanly at this level of warning as it
will minimise problems later.

 5

 This level of warning is for short cuts that experienced C programmers
often use, but that are occasionally done in error. You are most likely
to find this level useful when trying to track down an error that you
are having trouble locating. It is good practice to write code that is
warning free even at this level.

 6
 This level is very strict. It is primarily intended to help spot code
that might cause problems if you intend to port the program to another
machine or compiler.

 7

 This is an extremely pedantic level. It is intended to allow you to
help you write extremely "clean" code. It will also help with porting
programs although the warnings generated at this level are for items
that have been found to be less likely to cause problems than those
reported at level 6.

 8
 This mode is extremely strict. So much so, that it is not always
possible to write the code in such a way as to completely eliminate all
level 8 warnings.

ERROR AND WARNING MESSAGES
The following is a list of the error messages that can be output by the
compiler. In most cases the messages are self-explanatory, but where this
is not so, additional information is given about the possible cause of the
error message.
Where variable information can be inserted into the message, then this has
been specified using the printf format string method.
LEVEL 0
This level of message is always an error. It is not possible to make the
compiler treat such messages merely as warnings.

& operator may not be applied to bitfields
The ANSI standard does not allow the address operator to be aplied to
bit-fields.
& operator on register variable '%s'
The ANSI standard does not allow the & operator to be used on variables
that have been qualified with the register keyword.
{ expected on initialiser
If you are initialising a complex structure such as an array or
structure, then the initialisation values should be enclosed in braces.
an object type expected
A reference to an object was expected but not encountered. This could,
for example, be generated by attempting to increment/decrement a
pointer to a function.
arithmetic type expected
an integral type (long, int, short or char) or a floating point
type(float, double or long double) was expected.
break not allowed here
A break statement was encountered when not in a do, while, for or
switch statement.
cannot nest function definition '%s()'
The ANSI C standard does not allow function definitions to be nested.
cannot subtract a pointer from an integral value
It is only allowable to subtract an integral value (long, int, short or
char) from a pointer, and not the other way around.
case not allowed here
A case statement has been encountered when not within a switch
statement.
character constant unterminated or too long
Either the terminating quote character was missing from the character
constant or else there were too many characters within the character
constant.
constant expression expected
During a variable initialisation an expression was encountered which is
not a constant expression.
constant expression exceeds representable range of type '%s'
This will normally occur when you try and either assign or initialise a
variable with a constant that is outside the range that will fit in the
given type.
constant integer expression expected
During a variable initialisation an expression was encountered which is
not a constant integral expression.
continue not allowed here
A continue statement has been encountered when not within a do, while
or for statement.
declared argument '%s' missing
A K&R function definition has an entry in the parameter definition list
which is not in the parameter list of the function.
duplicate case label 'case %ld'
A case statement has been encountered for a value which has already
been associated with a previous case statement inside the same switch
statement.

statement.
duplicate default label in case
A default label has already been encountered inside the switch
statement. Only one such label is allowed.
duplicate label '%s'
The label has already been found within the current block.
enumeration constant too large
An enumeration value has been defined which is too large to fit within
an 'int' type.
error dereferencing a pointer
An attempt has been made to derefence an object that cannot be
dereferenced. An example might be to try *i = 3; where i is an integer.
error doing a cast
An attempt to perform an illegal cast operation. An example might be an
attempt to cast a structure to a structure of a different size.
error while scanning a parameter list
This implies that the compiler has encountered something unexpected
while scanning a parameter list. It is commonly caused by a misplaced
comma, or a mispelled type keyword.
expression expected
An expression was expected and not encountered. This can happen, for
example, if the condition in an 'if' statement is missing.
extern definition of '%s' redeclared static
You have earlier declared as globally visible a function or variable
that you have now defined as static and therefore limited to the
current scope.
floating point constant expected
An attempt was made to initialise a floating point variable with an
expression that could not be evaluated to a floating point constant.
function declarator not allowed here
This can be encountered if an attempt is made to write a function
definition which returns a function - it is only possible to return a
pointer to a function.
function returning array type
A function is not allowed to return an array type. It can only return a
pointer.
function type expected
An attempt has been made to call a function by using an variable which
is not a function pointer.
function '%s' declared but never defined
This will occur if you put a forward declaration for a function in a
file, and then never define that function. It could also occur if you
meant to forward declare a library function, but omitted the 'extern'
storage class specifier.
function '%s()' default promotion / prototype mismatch
This is typically caused by mixing ANSI and K&R methods of function
declaration and definition. This is of particular importance for
functions which have parameters of types 'char', 'short' or 'float' as
the parameter promotion rules for these types are different for K&R and
ANSI declarations and definitions.
function '%s()' mismatched number of arguments
The number of parameters does not agree between two different
declarations for the same function.
function '%s()' prototype mismatch
This indicates that the for the specified function, there are
incompatible definitions or declarations. This can be either in the
type returned, or the number or types of the parameters.
general error
This error means that a consistency check within the compiler has
failed. Please report the circumstances that caused the problem, and
ideally provide a sample of code that can be used to reproduce the
problem. It is preferable if any code that is supplied to illustrate a
problem has already been passed through the C pre-processor. This
eliminates any dependencies on system specific header files.
identifier expected
The name of an identifier was expected but some other token was found
instead.
identifier list not allowed on function declaration
A function declaration has been encountered which has a K&R style
paramter list. Such a list is only valid on function definitions and
not function declarations.
illegal cast from '%s' to '%s'
You have specified a cast operation between to types that are not cast
compatible.

compatible.
illegal character '%c'
A printable character has been encountered in the source which is not
legally allowed in any C token.
illegal field width
You have specified a width to a bit field that is too large. ANSI
restricts bit field widths to being no larger than that of the 'int'
data type.
illegal initialization
The compiler has recognised that you are trying to initialize a
variable, but the type of initialization you are trying to do is not
permitted.
illegal redeclaration of '%s'
The function/variable has been declared in a way that is incompatible
with an earlier use.
illegal 'sizeof' operation
An attempt has been made to take the size of an item that does not have
a size attribute. An example might be to try and take the sizeof a
function name.
illegal storage class
A storage specifier has been used multiple times or else in an
inappropriate place.
illegal type combination
Type specifiers have been used in a combination which is not valid. An
example might be to try and use "short char".
illegal unprintable character (value=0x%x)
An unprintable character has been encountered in the source which is
not legally allowed in a C source value. As it is unprintable the
hexadecimal value that corresponds to its internal representation is
given in the error message.
"implicit conversion to pointer on register variable '%s'"
Self explanatory.
"incomplete '%s' declaration"
Self explanatory.
"initialization invalid"
Self explanatory.
"integral type expected"
A variable with an integral type (long, int, short or char) was
expected.
"l-value required"
A l-value is simply an expression which it is legal to have on the left
side of an assignment expression. This means that you have an
assignment (or an implicit assignment) where this is not true.
"modified 'const' value"
An attempt has been made to change the value of an object that was
declared as 'const'.
"parameter count incorrect for function %s"
The number of parameters passed in the function call does not agree
with the number that is specified as required in the function
prototype.
"pointer type expected"
Self explanatory.
"problem with pre-processor output"
This indicates that what looks like a preprocessor symbol (one starting
with #) was found in the source file, and it was not one that the
compiler expects to get past the pre-processor. This is typically
caused by trying to use the compiler on raw C source before it has gone
through the C pre-processor.
"qualifier already specified"
This means that there are duplicate qualifiers of the same type
referring to the same variable or function declaration/definition. The
second one will simply be ignored, but the source should be corrected.
"qualifier mismatch"
When comparing two type definitions the 'const' or 'volatile'
qualifiers do not match.
"'restrict' only allowed on pointer types"
The 'restrict' qualifier can only be applied to variables that are of
pointer type.
"return expression of type void"
It is not possible to return an expression which evaluates to type void
.
"return value specified to void function"

"return value specified to void function"
A return statement has been found that is attempting to return a value
for a function that was defined as returning void (i.e. no value
returned).
"scalar type expected"
A type which is an integral type (long, int, short, char) or a floating
point type (float, double, long double) or a pointer was expected.
"string constant unterminated or too long"
This message may well occur well after the point at which the string
constant started. It is quite often caused by mismatched comments or
#if / #endif directives.
"tag usage '%s' mismatch"
An attempt to use a struct, union or enum tage more than once but
applied to a different type than that used in the original use.
"too many initializers"
The number of initializer values would exceed the size of the variable
space allocated to hold them.
"type specifier '%s' already specified"
A type specifier has been used more than once. An example might be: int
int i;
"type mismatch error"
When comparing two type definitions for compatibility they did not
match.
"type/operand has unknown size"
An attempt has been made to use the size of a type when the type is an
incomplete type and therefore has not size information available.
"undefined identifier '%s'"
An attempt to use an identifier before it has been defined. A common
cause is that the name has been misspelt.
"undefined label '%s'"
A goto statement is attempting to go to a label which has not been
defined within the current scope.
"unexpected end of file"
This is typically caused by a mismatch between the number of start and
close braces.
"unexpected symbol '%s' found"
This simply means that the symbol shown was not legal at this point,
and the compiler has been unable to specify the error more accurately.
"value of escape sequence out of valid range"
The backslash escape character has been used to define a character
constant with a value that is too large to fit into the range of values
that are legal for a character.
"visibility specifier '%s' only allowed with 'class'"
You can only use this type of visibility specifier in conjunction with
a class declaration or definition (ANSI extension).
"void parameter is passed to function %s"
An attempt to pass a parameter which has a type of 'void'. This is not
allowed.
"'%s' is not a struct/union member"
You have used the specified variable name in a context in which a
structure or union member name is required, and the name is not defined
as being part of the structure or union in question.

LEVEL 1
This level of message is used to indicate code that although allowed by C
is extremely bad coding practice, and as a result is normally not what the
programmer meant.

"bit field type should be unsigned or int"
The type for a bitfield should be of type int or unsigned int. Some
compiler allow other types (such as short) but this is an extension to
ANSI and is not portable.
"extern definition of '%s' redeclared static"
Self explanatory.

LEVEL 2
This level of warning is used to indicate code that may well not be an
error. However, experience has shown that in reality the code does not
perform the action that was intended.

"conversion between incompatible types '%s' and '%s'"
This message indicates that the two types in question are not defined
by the C standard to be compatible. If you really mean the statement,
then the message can be suppressed by use of a suitable cast.

"format string for %s() incorrect"
This indicates that the format string for a format string for a routine
from the specified printf/scanf family of routines is incorrect.
Typically this means that there is a % symbol that is not followed by a
legal conversion character.
"size of parameter %d changed by prototype on function %s"
This implies that an implicit cast was applied as a result of a
prototype being in scope. Care would need to be taken when porting such
code to an environment which does not have an ANSI compatible C
compiler. It is often a good idea to add an explicit cast to such calls
as this at least makes it clear what is happening, and will make code
more portable.
"'sizeof' value is zero"
"'sizeof' value %d is greater than '65535'"
This will occur when the size of a sizeof operator is set to be only 16
bits, and the result of a sizeof operator is larger than 16 bits. The
data type returned by the sizeof operator is in fact determined by the
value defined for TP_SIZE in the configuration file (config.h) used
when c386/c68 was compiled. It is important that this value should
agree with the value defined for size_t in your system include files.
"\x not followed by any hex characters"
The \x sequence that ANSI specifies as being used as an escape sequence
to introduce a hex character was not followed by values that could be
interpreted as hex.

LEVEL 3
This level of message indicates code that is probably not an error, but is
untidy. Messages in this category can normally be suppressed by making
simple modifications to the source code.

"constant %ld not within range of type '%s'"
You have tried to assign a constant to a variable that is too large to
fit into a variable of that type. An explicit cast will eliminate this
warning, but a better solution is to change either the data type or the
constant so that the warning is no longer relevant. Note that there is
one case where you sometimes get an unexpected complaint about a
negative constant being out of range. This occurs when you use a
bitwise not operator on a signed field. This is potentially non-
portable. The recommended solution is to only use this operator on
unsigned fields or unsigned constants (so you can normally just add a U
to the end of the constant to make it usnigned).
"conversion between incompatible pointer types"
Very common message when a pointer of one type is assigned to a pointer
of a different type. Inserting the relevant cast will suppress this
message.
"dangerous truncation of pointer to '%s'"
You have tried to store a pointer in an integral type that is not large
enough to hold pointers without the risk of losing information. This is
typically because a programmer has made the assumption that the size of
a pointer is the same as sizeof(int). If you mean it then add an
explicit cast to stop this warning being generated.
"division by zero"
You have tried to divide an expression by a zero constant. This is
typically because a more complex expression, possibly involving pre-
processor macros, has evaluated to zero.
"dubious %s declaration; use tag only"
This normally means that a structure or union pointer has been
encountered using a tag which has not been defined. This can often
happen when a tag is encountered for the first time in a function
prototype. As this tag goes out of scope at the end of the function
prototype this means that you can never call the function with a
parameter of the correct type. To avoid this problem either the
structure definition must precede the prototype, or you must forward
declare the structure type before the prototype.
"escape ignored in sequence '\%c'"
The character following the \ is not one that is supported as a valid
escape sequence. The effect is that the \ character is lost, and the
next character is handled unchanged.
"function '%s' declared but never defined"
This normally means that there is a forward declaration for a static
function, but that the code defining that function is not present.
"implicitly declared function: 'int %s()'"
This means that there is no declaration (either ANSI or K&R) in scope
for this function. If the function is a standard library function, then
it means that the relevant header file has not been included.
"no value specified in 'return' statement"

"no value specified in 'return' statement"
This occurs when a return statement is found for a function that has an
implicit int type. It can be suppressed by defining the function to be
of type void .
"parameter before ',...' causes undefined behaviour"
The last parameter before a varardic parameter list is of a type that
may cause undefined behaviour. This is because the type of that
parameter is such that it cannot safely be used within the macros
defined in the stdarg.h header file.
"qualifier inconsistent with type 'void'"
This implies a const or volatile qualifier used in conjunction with a
void type.
"redeclaration of '%s'"
The define variable or function has been defined more than once. This
is typically because it is defined in multiple different header files.
It is a good idea to try and set up header files so that each variable
or function is only defined in one place to avoid any potential
confusion that might later arise if you change one declaration and not
the other one.
"returning address of a local variable"
You have returned the address of a local variable (i.e. one on the
stack). This is very unlikely to be what you meant to do.
"using out of scope declaration for %s"
This means that an externally linked routine or variable is used
outside the block in which it was declared.

This is commonly caused by using routines for which the correct header
file has not been defined as this causes an implicit declaration at the
first usage, and then this message subsequent functions which use that
same routine.
"'%s' is always positive"
This message occurs if you try and test and unsigned value for being a
negative value (i.e. less than zero). This does not make sense, so is
almost certainly a logic flaw in your program.

LEVEL 4
Messages at this level are not strictly speaking errors, but they do
indicate code that could be improved. In particular, they indicate code
that might have portability problems.

"& operator on function ignored"
The & operator was specified on a function reference. It is not
required as it is implicit.
"%d expression to '?:' operator cast to void"
You appear to be throwing away the specified result. Did you meant to?
"argument '%s' implicitly declared 'int'"
This means that an argument to a function has been specified which has
not been explicitly given a type. It has therefore been treated as an
int. Declaring the argument type explicitly will stop this message
being generated.
"array type used in '%s' statement"
An array type was used as the condition for an 'if' or 'switch'
statement. Although legal this will almost always not be what was
intended.
"definition of '%s' hides an earlier definition"
This occurs when a variable name is used in an inner block that has the
same name as one that has a wider scope. It is just a warning that
during the duration of the block the variable at the outer level will
be inaccessible.

The commonest cause is when the name of a parameter to a function is
the same as that used for a global variable.
"empty statement"
An empty statement has been found following a construct like an if or
while statement.

There are situations in which this is exactly what the programmer
meant, but it might also be due to an accidental semicolon being
present.

If you meant to have an empty statement then a way to eliminate this
warning is to simply put a statement at the appropriate place of the
form:

(void)variable;

(void)variable;

The cast to void will mean that the optimiser will ensure that no code
is generated, but the presence of the statement tells the compiler that
you know there is not a missing statement or extra semi-colon.
"function '%s' redeclared, assumed static"
Self explanatory.
"if statement has no effect"
The if statement has an empty statement in the result branch. This does
not normally make much sense, so you probably did not mean it.
"implicit cast of pointer loses const/volatile qualifier"
An assignemnt of a variable which has a 'const' or 'volatile' has been
made to a variable which doe not have the corresponding 'const' or
'volatile' qualifier.
"K&R style function"
This message will only be output if the -obsolete=yes runtime option to
the compiler has been used. It is a warning that in the future that
support for K&R style function definitions may be removed from the ANSI
C standard.
"parameter %d to function %s() promoted to '%s'"
This means that the size of a parameter was changed according to K&R
promotion rules. This message can be suppressed by having an ANSI style
prototype of function definition in scope, or by using an explicit
cast.
"pointer difference between different pointer types"
You have subtracted to pointers of different types. This construct is
potentially non-portable. The portable way is to cast both pointers to
long before doing the subtraction.
"shift by %d" outside range of '%s'"
You have attempted to shift a value by more than the number of bits in
the field which will always result in zero. Did you mean this?
"statement not reached"
This message means that the statement in question is preceded by a
construct that means program flow cannot reach the statement.

A typical cause might be code that follows a return statement without a
label. This can quite often happen in the more subtle context of a
switch statement in which all cases are terminated by return
statements, but there is then code following the end of the switch
statement.
"storage specifier not at start of definition"
The ANSI C standard has declared that a future version of the standard
may require storage specifiers to be used only at the start of
definitions. The current version of the ANSI C standard allows more
leeway.

LEVEL 5
"! operator used with a constant expression"
It is very unusual to use the not operator with a constant expression -
you can always rewrite such an expression to eliminate the need for the
not operator. It is much more likely that you really meant to use some
other operator.
"'%s' has 'const' qualifier but is not initialised"
As you can never change a variable of const type it does not make much
sense not to initialise it. Another common mistake is that you meant
this to be a declaration of an external variable but you omitted the
extern keyword.
"'%s' modified and accessed between sequence points"
The standard for the C language allows the compiler implementor some
latitude about the order in which expressions are evaluated, but also
defines very carefully the sequence points at which the programmer can
assume the result has been calculated.

If you use a construct that both modifies a variable abd accesses its
value between such points, then the result is implementation defined
and therefore almost certainly non-portable.
"'%s' modified more than once between sequence points"
The standard for the C language allows the compiler implementor some
latitude about the order in which expressions are evaluated, but also
defines very carefully the sequence points at which the programmer can
assume the result has been calculated.

If you use a construct that modifies a variable twice between such
points, then the result is implementation defined and therefore almost
certainly non-portable.

certainly non-portable.
"assignment of negative value to '%s'"
You have assigned a negative value to an unsigned type. This means that
the value will simply be stored using the bit pattern of the negative
number and will normally result in a large value being stored. If you
meant this and want to suppress the warning simply add an explicit
cast.
"assignment in conditional context"
This means that there was no conditional test found, so it is possible
you put an assignment when you meant to put an equality test. This
message can be suppressed by testing the result of an assignment
against zero.
"dangling 'else' statement"
This is a warning that a construct of the form

if (test)
...
else
if (test2)
...
else

has been encountered, and it is possible that the last 'else' statement
is not associated with the if statement that the programmer mean. Use
of braces to clarify the statement will suppress this warning.
"format mismatch with parameter %d on function %s"
This message is output when checking format strings for the 'printf'
and 'scanf' families of routines against the following parameters. This
indicates the parameter is not of the type indicated by the format
string.
"ignored return value from function %s"
This means that you did not use the return value from a function.
Inserting a (void) cast before the function call will suppress this
message.
"label '%s' declared but not used"
A common cause of this can be leaving the 'case' keyword of a branch of
a switch statement. This can be remarkably hard to spot sometimes as
the code is still syntactically correct.
"mismatch on storage specifier"
The function definition has a different storage qualifier on a
parameter than the prototype for the function. Typically this is the
inconsistent use of the register keyword. This is currently allowed
under the ANSI C standard, but not recommended.
"no prototype defined on called function %s"
This occurs if the function has been earlier defined via a K&R
definition, and there is no ANSI prototype in scope.
"no value specified in implicit 'return' statement"
The end of a function definition has been reached so that there is an
implicit return. The type of the function is not void so in theory
there should be an explicit return statement with a value. However,
much C code is written so that the type of a function is defaulted
(which means it becomes int) and the return value of a function is not
used. Explicitly declaring the function type as void will stop this
message being output.
"result of expression has been discarded"
You have asked the compiler to calculate something and then never used
the result. This code will therefore be ignored.
"unary '-' applied to unsigned expression"
The expression is unsigned, so if the result would be negative you may
not get the result you expect (it will become a large positive
number!).
"variable '%s' may be used before set"
It appears that you have used the above variable before you have
assigned a value to it.

Sometimes this will happen in loops and it may not be obvious how to
suppress the message.
"variable/function '%s' not used"
There is a variable and/or function that has been declared but not
used.

This check is done at the end of a function/block. This means that for
a variable, the line number quoted with this message is that for the
brace at the end of the block that defines the unused variable. For an

brace at the end of the block that defines the unused variable. For an
unused static function, the line number quoted will typically
correspond to the end of the source file.

LEVEL 6
The warnings that occur at this level are not normally relevant to the
average user.

"a cast from '%s' to '%s' loses accuracy"
This is really not a problem if the action is what was intended. You
can eliminate the warning by putting in an explicit cast.

The purpose of this warning is to highlight situations in which there
may be an implicit assumption built into the code as to the size of a
field of a particular type, which may not be true on the current
machine.
"constant promoted to '%s'"
A constant has been implicitly promoted due to the way it has been
used. You can avoid this warning by either making sure the constant is
of the right type or adding a cast.
"expression involving floating point"
There is an expression that involves floating point, and you are
working with a version of the compiler that recognises the keywords for
floating point, but that is not able to generate code for floating
point.
"implicit cast of '%s' to enumeration value"
An integral type (long, int, short, char) has been assigned to a
variable which is of an enumeration type. You can add an explicit cast
to eliminate the warning.
"initialisation incomplete - remaining fields zeroed"
This message is output if the initialisation statement supplied for a
data item would not initialise all elements of that item.

There are often times when this is exactly what the programmer meant to
do, but occasionally it is due to the initialisation being incomplete.
"parameter before ',...' causes undefined behaviour"
Technically this is the same warning as the message with the same text
that is output at warning level 2. We move the warning to level 6 when
the parameter in question is a function pointer because this is
actually more likely to give the expected behaviour than the other
types that cause the level 2 version of the message.
"possibly unnecessary cast from '%s' to '%s'"
You have added some explicit casts that seem to be unnecessary and may
result in redundant code being generated.
"use of 'char' is possibly non-portable"
The ANSI standard allows the 'char' data type to be either signed or
unsigned as an implementation defined decision. You should therefore be
wary of making assumptions about whether characters or signed or
unsigned if you want to write code that is portable between different
machines, or even different compilers on the same machine.
"use of 'char' as array index is possibly non-portable"
The C standard leaves it up to the implementor whether the 'char' data
type is signed or unsigned. You can eliminate this warning by either
using a different data type or adding an explicit cast to either
'signed char' or 'unsigned char'.

LEVEL 7
The warnings that occur at this level are not normally relevant to the
average user. They are extremely pedantic in nature and are normally only
really relevant to tidying up the code.

"C++ keyword used"
This says that you have used a name for an identifier that would be a
reserved word with a C++ compiler.
"constant expression used in '%s' statement"
A constant expression has been used for the condition in an 'if' or
'switch' statement. This does not really make much sense. This warning
can help pinpoint the situation in which the condition test is not
quite what you meant it to be.
"function not using ANSI style parameters"
A function has been found that is using K&R style methods of declaring
its parameters. ANSI have declared their intent to remove support for
this construct in future releases of the ANSI C standard.
"implicit cast of 0 to pointer type"
This occurs when the constant zero has been used in a circumstance
(normally as a parameter to a function) in which a pointer type is

(normally as a parameter to a function) in which a pointer type is
expected. The ANSI standard specifically allows zero to be used in such
circumstances without an explicit cast to a pointer type as an
equivalent to the NULL pointer type. However, most modern systems will
define NULL using something like:

#define NULL ((void *)0)

in which case NULL can be used instead of zero when you really mean it
which will stop this warning from being output.
"partially elided braces on initializer"
This rather cryptic message can be output when initialising unions,
arrays and structures. The C standard says that initialisers for all
such constructs should ideally have braces around them. This message
therefore means that the bounds of a particular element of the data
structure had to be deduced from its position in the initialisation
list rather than being explicitly bounded by braces.

The requirement to suppress this message is that the values for an
union, array or structure must start and end with braces. In the case
of more complex structures such as an array of structures there must be
braces around the whole set of values (ie the array) and also braces
around the values for each occurrence of the structure.
"signed types with bitwise operator possibly non-portable"
ANSI states that if you try to do bitwise operations with negative
number, then the result is implementation defined. The implementation
is free to decide on whether the sign bit is propagated or not. Such
code will therefore somitemis give different results on different
compilers.
"switch has no 'default' statement"
It is always a good idea to have a default statement in all switch
constructs. If you do not expect to get there, then simply include a
line of the form

assert(0);

as the operation to be performed. That way you will pick up any logic
errors which result in the default branch unexpectedly being taken.
"unnecessary cast to 'void'"
This is when a void expression is explicitly cast to a void. This is a
null operation, so you do not need to specify the void.

LEVEL 8
The warnings that occur at this level are not normally relevant to the
average user. They are extremely pedantic in nature and are normally only
relevant to those who are writing code that has to conform to the very
highest standards - perhaps for applications that are safety critical as an
example.
It can be very difficult to eliminate all warnings at this level. As a
result, whether the warnings at this level are even output at all is
determined by the configuration options set at the time the compiler is
built.

"%s has already been declared"
You have declared the function or variable more than once. The
definitions are the same so this is harmless, but you might want to see
if you can remove one of the declarations to avoid any potential future
problems where you change one declaration and not the other one.
"'%s' has not been previously declared"
This will occur if the first time the compiler comes across an
externally visible function is when it is defined. It is good practise
to have declarations of all such functions used in a shared header file
if they are not.
"implicit cast from '%s' to '%s'"
This occurs when an assignment or expression evaluation generates an
implicit cast. There are times when due to the way the compiler works
it will not be possible to eliminate this warning.

AUTHOR(s)
Versions prior to release 4.0:
Christoph van Wullen.
ANSIfication work and other enhancements in Release 4.0 and later
releases:
Keith Walker
email: kdw@oasis.icl.co.uk

email: kdw@oasis.icl.co.uk
(bug fixes, IEEE support, ANSIfication)

Dave Walker
email: d.j.walker@x400.icl.co.uk
(IEEE support, Errors/Warnings, documentation)
TMSC30 support:
Ivo Oesch
Selzweg 1, 3422 Kirchberg, Switzerland
email: b19oesch@isbe.ch (valid until march 1997)

CHANGE HISTORY
The following is the change history of this document (not the compiler
itself). It is intended to help users who are upgrading to identify the
changes that have occurred.
 12
Jun
93

 Added full list of error messages that can be output by the
compiler.

 10
Jul
93

 Added specification of new -frame parameter option for C68 variant.

 10
Oct
93

 Checked that list of error/warning messages corresponds to those
actually in C68 v4.3, and expanded some of the explanations.

 19
Mar
94

 Updated to add new parameter types for C68 Release 4.4 and also
updated the lists of error and warning messages.

 28
Apr
94

 Major Revision

Major changes to the section that talks about optimisation
methods.
Updated lists of error and warning messages bring it in line
with those that can now be output by the compiler.

 21
May
94

Added descriptions of -align and -packenum.
Updated lists of warning messages.

 10
Nov
95

Updated list of error and warning messages.
Merged in known bug list.

 24
Nov
95

 Added description for -prefix runtime parameter option.

 07
Sep
96

 Major Revision

Updated all parameter descriptions to conform to the new
syntax.
Added descriptions of new parameters that have been added.
Re-ordered the options description to more clearly show which
options are only relevant to particular target processor types.
Updated lists of error messages and warning messages to bring
it in line with current compiler version.

 04
Oct
96

 The -short and -small runtime options renamed to -int and -pointer
respectively, and the list of valid options changed.

 16
Nov
96

 Documented changed options to the -peep parameter, and various
larger scale changes within the TMSC30 specific parameters.

 10
Dec
96

 Documented new -interrupt option for use with the 68K code
generator.

AS68 Assembler
NAME

NAME
 AS68 - assembler for use with C68 system
SYNOPSIS
 AS68 [options] input_file output_file
DESCRIPTION
The assembler used by the C68 system is a derivative of the "Sozobon"
public domain JAS assembler. It has been ported to QDOS and modified to
produce SROFF output.
The JAS assembler was designed for compatibility with the Alcyon assembler.
It, and thus AS68, do not provide many features the assembly language
programmer might want. AS68 is intended more for use by a compiler front-
end. AS68 generally produces smaller code than the Alcyon assembler because
it is smarter about generating short branch instructions. Also, AS68 uses
no temporary files and runs quite a bit faster than Alcyon.
Some of the command line options are accepted for compatibility with the
Alcyon assembler, but are actually ignored. The following command line
options are supported:

= <number>
Set the stack space. This should not be needed with C68 Release 2.00 or
later.
% <number>
Set the heap space. This should not be needed with C68 Release 2.00 or
later.
-N
Do not generate short branch instructions.
-V
Print a version message.
-l
Ignored.
-u
Ignored.
-s dir
Ignored.
-L n
By default, no local symbols are placed in the symbol table of the
output. This option instructs AS68 to put all symbols into the symbol
table if n is 2 or greater. If the option -L1 is given, symbols whose
name does not start with 'L' (ie internal labels generated by the
compiler) are written to the symbol table.

DIRECTIVES
The following is a list of the directives supported by the assembler. This
version of the assembler is compatible with source intended for the Alycon
Assembler, and also for the MINIX ACK assembler. Many of the directives
therefore exist in two forms.

.align n
Position on an boundary that is a multiple of n . Typically used to
round to multiples of 2 or 4.
.ascii
Define a series of ASCII string (not zero terminated).
.asciz
Define a zero terminated ASCII string.
.bss
Start the BSS section.
.comm
Start of a common section
.data
Start the DATA section. Equivalent to ".sect data"
.dc.n
Define data elements. The size of the elements is determined by the
value of 'n' which can be 'b' for bytes, 'w' for words or 'l' for long
words.
.data1
Equivalent to dc.b
.data2
Equivalent to dc.w
.data4
Equivalent to dc.l
.ds .n m

Define unitialised space. The size of the data elements is defined by
'n' which can be b for bytes, s for words or l for longs. The number of
elements of this type is defined by m.
.define
Make the name globally visible outside this module (ie. and XDEF).
.end
.equ
.even
Ensure next instruction is on an even memory address.
.extern
Assume the name is an external name in another module (ie. an XREF).
.globl
Make the name globally visible (ie. an XDEF).
.org
.rom
.sect section
Start the specified section
.space n
Equivalent to ds.b n
.text
Start the TEXT section

Comments can be included by preceding them with either the semi-colon or
the exclamation mark sysmbols. If they start in column 1, then asterisk is
also accepted.
Hex numbers can be written in either of the following forms:
 $00 Normal assembler style
 0x00 C style
KNOWN BUGS

 1.

 The assembler will (now) accept operands of the form label-label.
However incorrect code will be generated if both operands are not in
the same source file, and both in the same segement. No warning or
error message is given.

This is due to the fact that this capability was added as a "quick
hack" for use by C68 rather than by humans. If anyone does the work to
make the support more generic and remove the above restrictions, then
please pass the results to D.J.Walker.

CHANGE HISTORY
The following is the change history of this document (not AS68 itself). It
is intended to help users who are upgrading to identify the changes that
have occurred.

01 Jun 94 DJW
A section added on the fact that label-label constructs are now
supported in a limited fashion.

Make
NAME
 make - maintain, update and generate groups of programs
SYNOPSIS
 make [-f makefile] [-acdeiknpqrst] [target_list]
DESCRIPTION
Make is a utility designed to formalise the relationships between the files
that make up a large computer program; a suite of programs; a list of
repetitive tasks and provide an easy way of keeping them up to date.
Make may be invoked with various arguments. These are:-

-f makefile
This option, followed by the name of a file, changes the default
makefile read from just 'makefile' in the current directory to the name
given. Eg.

EX MAKE;'-f arcmake'

would use arcmake as the makefile.
-a
Try to guess at undefined ambiguous macros (such as $* and $<).
-c
This option changes the line continuation character (by default this is

This option changes the line continuation character (by default this is
'\' backslash). It should be followed by the new line continuation
character, eg.

-c+ would use +.

This will be overridden if the directive .LINECONT is used in the
makefile.
-d
Print debugging information regarding the analysis of a 'makefile'.
-e
Environment variables will override assignments within makefiles.
-i
This performs the same function as the .IGNORE directive. It allows
make to continue on error.
-k
Abandon work on the current entry if it fails, but continue with any
other targets that are not dependent on the failed target.
-n
Stops make from executing any of the commands it would run to put a
target up to date. It just prints the commands it would have run. This
is useful for testing if a makefile will run the commands you expect it
to.
-p
Print all macros and targets after analysing the makefile.
-q
Interactively question the 'up-to-date'ness of targets.
-r
Do not use built in rules.
-s
This has the same effect as the .SILENT directive, it stops make from
printing out the commands it is executing before it runs them.
-t
Touch the targets (causing them to be updated) rather than running the
usual commands to update them.

Any other arguments to make are taken as targets to make. If no targets are
defined, then make will use the first target defined in the makefile.
Therefore if a makefile has no list of targets then just running
 EX make;' [option list] '
will cause it to make the first target it finds in the makefile. However,
if another target is provided on the command line then make will make that
target or targets instead of the first target.
Make updates a target only if its dependencies are newer than the target.
Missing files are always deemed to be outdated.
CREATING THE MAKEFILE
For example, suppose you are writing a database program in C. The program
consists of several source files, ending in _c , several header files that
the C files include, ending in _h . When the _c files are compiled they
produce object files ending in _o . These files are then linked with a
library or set of libraries ending in _a to produce the final database
program. Now, imagine you have altered one of the header (_h) files. Some
of the _c files (the ones that include the changed header file) will need
to be recompiled and the entire program re-linked to create the database.
You could just keep a note of which files depend on which header files and
issue the commands to re-compile them and re-link manually, but make
provides a way of re-creating the entire program using a single command.
In order for make to issue the commands to re-compile the files it must
know which files depend on which. It reads this dependency information from
a special file that the user creates called a makefile. When make starts up
(by typing :
 EX make
in the simplest case) it reads a file called makefile in the current data
directory. This file must contain the list of files belonging in this
particular project and their dependency files, plus the commands neccesary
to re-create them. Next make looks at the dates of the target files (the
files we need to keep up to date) and compares them with the dates of the
dependency files (the files that the target files depend on). If any target
file is older than any of its dependency files then make issues the
commands to re-make the target file. As an example:
Suppose we have a program called sed. This consists of two C source files
sedcomp_c and sedexec_c. Both source files #include a file sed_h. The file
we want to keep up to date is sed, so this is the first target we include

we want to keep up to date is sed, so this is the first target we include
in the makefile, along with the command needed to re-create it from its
object files (sedcomp_o and sedexec_o)
 sed : sedcomp_o sedexec_o
 ld -o flp1_sed sedcomp_o sedexec_o
The first part of the line (sed :) tells make that sed is a target, and
that it depends on the files after the colon (sedcomp_o and sedexec_o). The
next line is the command needed to re-create sed, assuming that the file
sed_link is on flp1_ and we wish to create sed on flp1_ also. For the
purposes of this example we will assume that the default data directory is
on flp1_. Note that the line(s) containing the command(s) to be executed
must NOT start in column 1.
The next lines in the makefile are secondary targets (they are listed after
the first one).
 sedexec_o : sedexec_c
 cc -c sedexec_c
 sedcomp_o : sedcomp_c
 cc -c sedcomp_c
Similarly, the first two lines state that the files sedexec_o and sedcomp_o
depend on their respective c files, and that to re-create the _o files from
the _c files the compiler cc needs to be run.
Finally the fact that both sedcomp_o and sedexec_o depend on sed_h needs to
be stated. This is done by the lines:
 sedcomp_o : sed_h
 sedexec_o : sed_h
Note that for this dependency no rule to re-create is given, so the
previous rule to recreate _o from _c is used when make is running. This is
simply a way of stating dependency.
Thus our complete makefile is:-
 #
 # A test makefile
 #
 sed : sedcomp_o sedexec_o
 ld -o ram1_sed sedcomp_o sedexec_o

 #
 # Now the _o dependencies
 #
 sedcomp_o : sedcomp_c
 cc -c sedcomp_c
 sedexec_o : sedexec_c
 cc -c sedexec_c

 #
 # Finally the _h dependencies
 #
 sedcomp_o : sed_h
 sedexec_o : sed_h
Note that # is used as a command specifier and white space is freely used.
There must, however, be a space between the filenames and colons. The
command line to run does not have to be on a separate line from the
dependency definition, but can insteaad be placed after it to save space.
In this case there is a semicolon in between the dependecy abd command. Our
dependency
 sedcomp_o : sedcomp_c
 cc -c sedcomp_c
could have been written thus:
 sedcomp_o : sedcomp_c ; cc -c sedcomp
It would be very tedious however, to have to specify all dependencies so
explicitly when working on a big project, so make has some intelligence and
some short cuts built in. For instance, make knows that to re-create a _o
file you can compile the _c file with the same name and that such _o files
depend on their _c files. Also make has a macro facility which makes using
lists of filenames much easier. For instance, our previous makefile cound
be re-written as:
 #
 # Better makefile
 #
 CFLAGS = -c -h
 OBJECTS = sedcomp_o sedexec_o

 OBJECTS = sedcomp_o sedexec_o

 sed: $(OBJECTS)
 ld -o flp1_sed $(OBJECTS)

 $(OBJECTS) : sed_h
This is much shorter (but a lot less clearer). The changed structure of the
make file is as follows. The line
 CFLAGS = -c -h
is a macro that tells make to use these particular flags to pass to the c
compiler cc when it re-makes a _o file from a _c file. The actual command
 CC -c -h <filename>
is now not included. This is because make understands how to create a _o
file from a _c file. It does not, however, know how to turn an assembly
language file ending in _asm into a _o object file - it can be taught how
to do this but more of this later. The second line is a macro that
introduces a convenient shorthand for referring to the object files that
sed is composed of. The line
 OBJECTS = sedcomp_o sedexec_o
means that whenever the characters $(OBJECTS) are encountered, they are to
be replaced with the characters sedcomp_o sedexec_o . The macro name must
be preceded by a $ and surrounded with parentheses to make it easy for make
to decide this is a macro, not a file name. So the line
 sed : $(OBJECTS)
expands into
 sed : sedcomp_o sedexec_o
just as we used in our first makefile. Likewise the line
 $(OBJECTS) : sed_h
expands to say that both _o files are dependent on the sed_h file. More
than one file can be placed before and after the colons; this just says
that all the files before the colon depend on all the files after.
There are special macros already built into make. These are:
@, $?, $, $<, *>, $C, $P, $D
and these will be explained later. Macros and command lines may be more
than one line long: to get a long macro (for instance a list of object
files file1_o ... file10_o) may be split over a number of lines, so long as
each line except the last ends in a line continuation character (\ is the
default). Eg:
 OBJS = file1_o file2_o file3_o \
 file4_o file5_o file6_o file7_o \
 file8_o file9_o file10_o
The macro $(OBJS) will expand into the entire list of files.
ENVIRONMENT
The environment is read by make . All variables are assumed to be macro
definitions and are processed as such. The environment variables are
processed before any makefile, but after processing make 's default rules.
Thus environment variables override default rules, and these in turn can be
superseded by assignments in makefiles. If the -e option is used with make
, then environment variables also override assignments within makefiles.
The MAKEFLAGS environment variable (if present) is processed by make as
containing any legal input option (except -f and -p) defined for the
command line. Further, upon invocation, make "invents" the variable if it
is not in the environment, puts the current options into it, and passes it
on to the invocations of commands. Thus MAKEFLAGS always contains the
current input options. This feature can be particularly useful for "super-
makes" whereby make invokes further instances of itself.
IMPLICIT RULES
As supplied make has default rules that allow it to compile and link C
programs. Make understands that to re-create _o files from _c files the
command
 $(CC) -c $(CFLAGS) $<
is executed. The macro $(CC) is pre-defined to be cc , the macro $(CFLAGS)
is pre-defined to be a null string, and $< expands into the filename of the
target being made. This allows you to substitute any command with its own
flags for the cc command usually used, just by re-defining the $(CC) macro.
For instance if you bought a better C compiler called wombat_c for the sake
of argument, you could force it to be run instead of the ordinary cc by
typing

 CC = wombat_c
at the start of your makefile. Likewise, any different flags you may use
can be used by re-defining CFLAGS . The complete list of default rules
built into make is given at the end of this document.
To enable make understand how to create files from another extension an
implicit rule can be defined. This is of the form :
 (target extension)(source extension) :
 <commands to be run>
As an example of this the current definition to turn _c files to _o files
is
 _c_o :
 $(CC) -c $(CFLAG) $<
An implicit rule must start with an underscore, followed by the extension
type of the dependent files, followed by another underscore and the
extension type of the target files, ending with a colon. The next line
contains the command used to re-create the target file.
As a more useful example, the GST macro assembler assembles files ending in
_asm and creates files ending in _rel. These are ordinary object files
however, so we would rather that they had an extension _o to match the
files produced by the C compiler. To assemble a file wombat_asm in the
current data directory of flp1_ to produce a file wombat_o (also
in flp1_) you would run the command from SuperBasic
 EX DEV_MAC;'flp1_wombat_asm -NOLIST -NOSYM -BIN flp1_wombat_o'
(-NOLIST and -NOSYM stops the normally verbose output of the assembler).
To turn this into an implicit rule to assemble any file with an extension
of _asm into a file of the same name ending in _o in the current data
directory the following lines would be added to the makefile:
 _asm_o :
 DEV_MAC C*_asm -NOLIST -NOSYM -BIN C*_o
INTERNAL MACROS
There are number of internal macros that are useful for writing rules for
building targets. They are:

$C
Current data directory

Useful when calling programs that don't recognise the toolkit 2
directory defaults.
$P
Current program directory

as above.
$D
Current destination directory

as above.
$*
Current make target with no extension

Eg. if the implicit rule being used is _c_o and the rule is used to re-
create test_o then $* expands into test.
$@
Complete filename of current target being made.
$<
The names of the files that caused the target to be remade

Eg. if the rule _asm_o is used to re-create test_o then $< expands into
test_asm
$?
The names of the dependency files that are out of date.
$>
The name of the source file out of date.

To include a $ character in the makefile use $$.

DIRECTIVES
The makefile can also include some directives that tell how to behave while
it is running. These are:

.SILENT:
This causes make not to write out the commands it it executing to re-
make a file. The default behavior is that it writes out a command just
before running it (note that this does not stop output from the
commands that make runs however). The same can be achieved on a command
by command basis by prefixing a command with a @ character. Eg.

 @cc $(OBJ)

would run cc but not print out the command line before executing.
.LINECONT : <character>
This changes the default line continuation character for make. Normally
this is a \, which allows commands and macros to extend over several
lines. Eg.

 .LINECONT +

will change it to be a plus character.
.IGNORE:
Including this directive causes make to continue trying to make files
if any command returns with a non-zero error code. Normally make will
terminate if any of the commands it runs return a non-zero error code;
this causes it to soldier on regardless. (Useful if you are redirecting
the output of make to a file and just want to read about the errors
when you return from coffee !). The same directive can be turned on, on
a command by command basis, by prefixing the command with - Eg.

 -cc $(OBJ)

would run cc but ignore any error code it returned.
.SUFFIXES : <list of file extensions>
This tells make in what order it should make files using implicit
rules. Normally make just re-creates files with the required extension
in the order that they were declared in the makefile Eg. declaring

 _asm_rel : <command list>
 _c_o : <command list>

will cause _rel files to be re-created before _o files, however,
declaring

 .SUFFIXES : _o _rel

would cause the reverse to be true.

CASE INDEPENDENCE
This version of make conforms to the standard Unix standard of all names
being case dependent within the Makefile. It is not necessary, however,
that the actual files held on the QDOS media have their filenames in the
same case as in the Makefile.
FINAL NOTE
The correct operation of make depends entirely on the time stamps of files
being correct. So if you don't have a battery back up for your QL clock it
is ESSENTIAL that you set the time and date every time you power up the
machine, otherwise make will make very silly mistakes.
FINAL MAKEFILE
An example makefile for the 'arc' program (public domain, available from
the QUANTA library).
Makefile for ARC
 CFLAGS = -c -h

 OBJS = arc_o arcadd_o arccode_o arccvt_o arcdel_o \
 arcdos_o arcext_o arcio_o arclst_o \
 arclzw_o arcmatch_o arcpack_o arcsq_o \
 arcsvc_o arctst_o arcunp_o arcusq_o arcmisc_o

 SRCS = arc_c arcadd_c arccode_c arccvt_c arcdel_c \
 arcdos_c arcext_c arcio_c arclst_c arclzw_c \
 arcmatch_c arcpack_c arcsq_c arcsvc_c \
 arctst_c arcunp_c arcusq_c arcmisc_c

 arc: ${OBJS}
 ld -o $Carc $(OBJS)

 ${OBJS}: arc_h

 arc_h: arcm_h arcs_h
 touch arc_h
DEFAULT RULES BUILT INTO MAKE
The complete list of default rules built into the current release of make
on QDOS is equivalent to a Makefile made up as follows:
Define default directories
 C = current Working directory (as given by getcwd())
 P = current Program directory (as given by getcpd())
 D = current Data directory (as given by getcdd())
define default program names
 CC = cc
 AS = as68
 LD = ld
 CO = co
 MV = mv
 RM = rm
 YACC = yacc
 ASM = mac
define default program flags
 CFLAGS =
 ASFLAGS =
 LDFLAGS =
 COFLAGS = -q
 RMFLAGS = -f
 YFLAGS =
 ASMFLAGS = -NOWINDS
Default rules when using RCS
 _h,v_h :
 ${CO} -p $(COFLAGS) $< >$*.h
 _s,v_s :
 ${CO} -p $(COFLAGS) $< >$*.h
 _x,v_x :
 ${CO} -p ${COFLAGS} $< >$*.x
 _s,v_o :
 ${CO} -p $(COFLAGS) $< >$*.s
 $(CC) -c $(CFLAGS) $*.s
 ${RM} ${RMFLAGS) $*.s
 _x,v_o :
 ${CO} -p $(COFLAGS) $< >$*.x
 $(CC) -c $(CFLAGS) $*.x
 ${RM} ${RMFLAGS) $*.x
 _c,v_o :
 ${CO} -p $(COFLAGS) $< >$*.c
 $(CC) -c $(CFLAGS) $*.c
 ${RM} ${RMFLAGS) $*.c
 _y,v_c :
 ${CO} -p $(COFLAGS) $< >$*.y
 $(YACC) -c $(YFLAGS) $*.y
 ${MV} y.tab.c $@
 ${RM} ${RMFLAGS) $*.y
 _asm,v_rel :
 ${CO} -p ${COFLAGS} $< >$*_asm
 ${CC} $*_asm -BIN $*_rel ${ASMFLAGS}
 ${RM} ${RMFLAGS} $*_asm
Default rules when not using RCS
 _c_o :

 ${CC} -c ${CFLAGS} $<
 _c :
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $<
 _x_o :
 ${CC} -c ${ASFLAGS} $<
 _s_o :
 $(CC) -c $(ASFLAGS) $<
 _y_c :
 $(YACC) $(YFLAGS) $*<
 ${MV} y.tab.c $@
 _asm_rel :
 ${CC} $*_asm -BIN $*_rel ${ASMFLAGS}
 .SUFFIXES : _rel _o _c _x _s _asm _h _y \
 _c,v _x,v _s,v _asm,v _h,v _y,v

C68 Linker
NAME
 ld - Link files to produce program files or RLL libraries.
SYNOPSIS
 ld [options] [cfile_o] [-llibrary]'
DESCRIPTION
The ld linker is used to produce binary code that is ready to run. This
code can be any of:

An EXEC able program that can be run directly.
A RLL (Runtime Link Library) for use with the RLL system.
Pure binary code that is loaded via RESPR commands.

After the files comprising a C program have been compiled into object
(SROFF) files they must be linked, together with selected library routines,
to produce an executable program. This is done by the program LD , which
replaces the program LINK that is the traditional linker that is commonly
used on the QL.
LD is much more UNIX like in use than LINK . This is makes it more
consistent with the rest of the C68 system which has its origins on UNIX
based system. In addition, the LD linker is far more efficient than the
original LINK program in that it runs about 3 times faster, and also the
resulting program is smaller. It is also possible to run LD in a
compatibility mode where it can produce output in the same format as the
original LINK program.
The different linkers have used different standards for the way that they
store relocation information in the output file. To allow maximum
flexibility, the ld version 2.xx series has the ability to produce output
that uses a variety of different formats:

ld version 2.xx format that was introduced to support the RLL system.
This format (which is the default) allows more information to be
stored in the target file than earlier formats catered for.
ld version 1.xx. This is the format that was used by all versions of
the c68 system prior to release 4.25.
GST LINK format. This is the format produced by the traditional GST
linker, and the more recent Quanta QLINK variant.

If either of these last two formats are required, then the appropriate
command line option must be used. OPTIONS
The following command line options are available for use with the ld
linker.

-f n
The output format required. The values available for 'n' are:

 0 GST LINK or Quanta QLINK format
 1 LD version 1.xx format
 2 LD version 2.xx format

You can also add any combination of the following values although many
of them will not make sense unless using LD v2.xx format. For a more
detailed discussion of the implications of these settings, see the

detailed discussion of the implications of these settings, see the
section concerning the start of the UDATA area later in this document.

 4 Set the UDATA area to NOT reuse the relocation area. If you are
using GST format, then you would normally use this option as well.

 8
 Set the UDATA area to NOT reuse the BSS XREF area. This only makes
sense if you are either using RLL libraries, or alternatively have
used the option (-z xref) to include external references.

 16 Set the UDATA area to NOT reuse the BSS RLIB area. This only makes
sense if you are linking with RLL libraries.

 32 Set the UDATA area to NOT re-use the BSS XDEF area. This is the
normal default for a RLL, but not for other target types.

 64 Set the UDATA area to reuse the BSS XDEF area. This is the normal
default for everything except a RLL.

 128 Set the UDATA area to reuse the BSS Header area. Normally if any theBSS XDEF area is present then this would not be re-used.
Default: -f2
-L library path
This option allows the order of searching of library files to be
changed. The order of searching for libraries is:

Any library directories specified using the -L option. If multiple -L
options are specified, then these are searched in the order they are
specified on the command line.
The LIB sub-directory of the current program (PROG_USE) device. For
example, if the default program directory is flp1_ then libraries
would be expected to be found in flp1_lib_ .
The current data (DATA_USE) directory.
If a specified library cannot be found in any of these locations, then
an error message will be output.
-l libname
Search a statically linked library looking for any modules in the
library that will satisfy any of the currently outstanding external
references. If any such modules are found then add them to the output
file.
Library names are normally specified on the command line after all the
object files. This is, however, not mandatory. The libraries and object
files are processed in the order specified on the command line. Note
that only a single pass of a library is done so that including a
library too early in the command line may cause routines to not be
included that you might want.
By convention library names are given in a specially compact format.
The names for libraries are made up by adding a prefix of 'lib' and an
extension of '_a' to the name specified on the command line. For
example the main C library is called libc_a and the maths library is
called libm_a.
Thus to link with the math library, you would use -lm , to link with
the standard C library -lc . A full library pathname is never given in
this parameter, but you can specify a search path (using the -L
option). So, if you wanted to link with a private library called
libmine_a , which was in a directory flp1_mylib_ then the two options
you would need on your command line are :
 -L flp1_mylib_ <object files > -lmine
where:
 flp1_mylib_ = library path
 -lmine = library to search
It is not necessary to specify the default C library (using -lc) as if
there are any outstanding references it is always searched as the last
library (although you would do no damage if you specified it
explicitly). This library includes most of the routines described in
the C library description, along with many other run time routines that
need to be included.
-m listing_options
This causes a listing file to be produced for the program. The name of
the file produced is always <output_file_name>_map so if no output name
has been specified then the map file will be called a_out_map . If the
output file had been specified using -otest then the listing file would
be called test_map .
The amount of detail included in the map file will depend on the
options supplied. There must be at least one option, but you can
specify more than one by simply concatenating them together (e.g. -mls
). The options available are:

 A symbol listing will be produced in address order.

a A symbol listing will be produced in address order.

l

 A library listing will be produced. This will indicate each library
that is searched and where it is located. If the m option is also used,
then the library detail lines will be inserted at the appropriate
points in the module listing.

m

 A module listing will be produced showing the details of each module
that is included in the link. This will be in the order in which the
modules are included.

s

 A symbol listing will be produced giving symbols in alphabetical
order, and showing for each symbol where it is defined.

x

 A cross-reference listing will be produced showing for each symbol
where it has been called from. This option will also imply the 'l'
option as that information is also listed for each symbol.

 Note, however, this will miss any cases where the reference to a
symbol is in the same module that it is defined in as this is handled
purely at the assembler stage.
There is also a listing summary produced that shows the link
statistics. This is inserted after the library/module listings and
before the more detailed symbol listings.
Note that if the -v option is used and there is no listing file being
produced, then this summary information is written instead to the
console.
-o outputfile
This allows the name of the output file to be specified. For example
using a -otest would cause a program called test to be produced.
Default: -oa_out
-R name[/ version]
This indicates that LD is to build a RLL rather than a normal program.
The 'name' part of the parameter is the name that will be given to the
RLL thing. This has a maximum length of 16 characters - and more than
this will be ignored.
The (optional) version part is the version number (which is of the form
m.nn where m is the major version number and nn is the minor version
number. In practise LD will do no validation on this version number
beyond checking its length to be 4 characters and will simply copy the
value supplied into the RLL header. If the version number information
is not supplied, then a value of "1.00" will be used.
The use of this parameter will also modify the default behaviour of LD
as follows:

The default start-up module is changed to be rll_o as this is the one
normally needed when building a RLL.
The output program will have any required UDATA space included in the
file to simplify the loading process for the RLL Runtime Link Manager
(RLM).

-r libname
Search a RLL library. A RLL library is one that is dynamically linked
to a program at runtime. Although LD does nto add it to the output file
it does search it to determine which external references would be
satisfied by including this library. The same locations will be
searched as are specified earlier for the -l option.
The name of a RLL library is made in a similar way to that for
statically linked libraries except that the extension is _rll . For
example the maths library would be specified by using -rm which would
cause LD to look for a RLL library called libm_rll .
RLL libraries can also have what are called 'RLL stub libraries'. These
are small statically linked libraries that need to be linked in to help
interface to a RLL. These have the same name as the associated RLL, but
with an extension of _rls . Therefore the stub version fo the maths
library specified using -lm would be libm_rls . LD will look for such a
stub library any time a RLL is specified, and if there is one it will
statically link it in before the RLL library file. However stub
libraries are optional, and no error will be given if no stub library
is found.
Note that if a RLL library is linked in, it is necessary for this
library to also be present at runtime for the program to run
successfully. For more information on the RLL system see the RLL_DOC
file.
The other point to note is that no RLLs are linked in by default, not
even the libc_rll file. This is to ensure that unless the user
explicitly asks for RLLs to be used the default action is to do static
linking as in earlier releases of the ld linker.
-s startup_file

This option specifies a different startup file from the standard one.
Using the special format of -s- means that no start-up module is to be
used.
The startup file is the code that does all the run time relocation that
allows C programs to run correctly where they have been loaded in the
QL. Unless you have written your own startup file that does runtime
relocation correctly it is probably best to leave this option alone.
If this parameter is ommitted, then the startup modules that are used
will be:
 crt_o for standard programs
 rll_o for RLL libraries
The startup file is searched for using the same paths as are used when
searching for libraries (as described under the -l option). Examples on
when you might want to used different values are:

 -
screspr_o

 if you are using C to build code that is going to be loaded as
a resident extension rather than used as an EXEC able program.
For more details see the C68QDOS_doc documentation file.

 -s- if you are going to use LD as a replacment for the LINK linker
and you are not writing C68 compiled code.

-V
Output a message giving information about the version of LD being used.
This message will be sent to the listing file if one is to be produced,
and otherwise to the console.
-v
This means run in verbose mode. It also implies the -V parameter. This
will always cause the program version to be output a link summary to
always be produced. If no listing file is being output these will be
sent to the console, otherwsie to the listing file.
-z defs
Force a fatal error if undefined symbols remain at the end of the link
process. This is the default action.
-z nodefs
Allow undefined symbols. This might be used if you are developing a
program and you know the symbols in question will not be used. It can
also be used when building a RLL to allow an undefined RLL to be linked
in dynamically at run-time. However as any attempt by a program to
actually use an undefined symbol is likely to cause a system crash this
option should be used with extreme caution.
-z udata
Store any UDATA space as part of the file data rather than simply
storing the size required as part of the information in the file
header.
This is the default if building a RLL.
You are recommended to use this parameter when building code that is to
be loaded via RESPR or LRESPR instructions.
-z xref
Include a list of any unsatisfied external references in the program,
and the details of the RLL that will satisify them. This is very
similar to the -nodefs option mentioned above, except that this option
expects you to have used the -r option to specify the RLL that will be
used to satisfy the reference at runtime.
This is actually the default when building the -r parameter is used to
link in a RLL.
-z xdef
Include a list of externally visible definitions that are contained in
this program or RLL.
This is the default when you have used the -R parameter to specify that
you are building a RLL.

The following options will also be recognised by LD for compatibility with
earlier versions, but they will simply be ignored and have no effect. This
is because the relevant areas are now allocated dynamically.

-bufl size [K]
This allows the user to specify the buffer size in reading the object
files and library files. The default buffer size is 8K. This is quite
small, but as ld does all its work in memory, its requirements for
memory space are quite fierce. Unless linking is unacceptable slow or
you have lots of memory to spare it is probable best to leave this
option alone (except to decrease it). Eg. -buf32K would allow a 32K
buffer for reading library and program files.
-bufp size [K]
This allows the user to specify the size of buffer to hold the complete
image of the program that is being linked. Normally this is set to 50K

image of the program that is being linked. Normally this is set to 50K
which is enough for most small programs. If you want to link a very
large program then use a larger value here. Alternatively if you know
your program is very small then you could sacrifice program buffer
space for library buffer space.

Following the options the object files to link are specified. These may be
any valid QL filename, with the directory extensions provided by a C
program (eg. .._.._test_o, test1_o, etc.). No wildcards are allowed in the
ld command line as the order of files linked is important in ld, and this
could not be guaranteed if wildcards were used.
The linker produces files that are smaller than the equivalent produced by
the GST 'link'. The program files produced set the job data size field in
the QDOS files header. THIS MUST NOT BE MADE SMALLER by any toolkit routine
as if this is done the programs produced will FAIL to relocate properly at
runtime and crash the QL ! YOU HAVE BEEN WARNED ! Making it bigger is a
waste of space as this data area is only used during program
initialisation, and is not used for the runtime stack or heap.
ENVIRONMENT VARIABLES
The LD linker will make use of the Environment Variables specified below if
they are set. These environment variables are processed before the command
line options, so in the event of any clash, the command line parameters
will take precedence.

LIB_DIR
This can be used to specify the default program directory.
LD_OPTS
Any parameters taht would be valid on the LD command line can be set in
this environment variables.

START OF UDATA AREA
This section is only relevant to those who are trying to make advanced use
of ld . In normal use one will not need to use (or even understand) the
contents of this section.
It revolves around the fact that normally the information held in the BSS
section of a program or RLL is often only required at initial load time.
After that it is no longer required. It would therefore save on memory if
this space could be re-used for other purposes. Most programs also contain
a UDATA section that is used to hold uninitialised data. If you can re-use
this space after the initialisation phase is finished then the program will
need less memory to run.
Another aspect to consider is whether any space for the UDATA area should
actually be included in the data stored as part of the program file header.
Doing so reduces the size of the file stored on disk, but means that the
loading process needs to take account of this.
The algorithm used by default with ld is as follows:

For a standard statically linked program, the UDATA area starts at the
same address as the start of the BSS Header. The file header is used
to store any additional space that needs to be allocated to complete
the UDATA area. The BSS area will include the following sections:
For a standard statically linked DLL that does not call another RLL,
the UDATA area starts after the end of the BSS XDEF area. Any
additional space required for UDATA is included as part of the data of
the program file.

This default behaviour can be modified by use of the various -f and -z
runtime options.
CHANGE HISTORY
This section details the major changes that have been made to this
document. It is intended primarily for those who are upgrading their
release of C68 to help them identify when and where new information has
been included.
 31 Dec 93
DJW

 Added section on Environment Variables that LD will now
recognised.

 28 Mar 96
DJW

 Updated to reflect the new options that are now available for
use with ld version 2.

C68 Menu System
C68Menu v4.0
1. INTRODUCTION
C68Menu is a front end to the C68 'C' compiler system. It is designed for
those who wish to:

1. Select from a directory listing rather than type in a filename
2. Forget how to start Editors, Compilers, Linkers etc
3. Forget compiler and linker switches like -v -ms etc
4. Add libraries without remembering how to do so, or their names
5. Use make files/alter make files but never have to edit one
6. Use no other fingers than two left thumbs!

2. COMMUNICATING WITH C68Menu
C68Menu is constructed like a form and consists of information boxes and
action boxes. These boxes may sometimes produce sub-forms requesting
further information. There are two main sub-forms: options and directory.
2.1 MOVING ABOUT THE FORM
Cursor keys move a highlighted cursor round the boxes. Pressing the space
bar (or ENTER) will either allow information boxes to be changed or action
boxes to 'act'. Action boxes are labelled inside the box in large letters.
Information boxes have descriptions outside the box and maybe information
inside, both in small letters.
Wherever the cursor is positioned a helpful message is given at the bottom
of the screen stating what happens if space or shift-space is pressed.
Shift-space sometimes gives access to further less used information and
actions.
A quick method of selecting many boxes is achieved by pressing the letter
underlined (usually the first) in the name. Pressing shift with this letter
is like pressing shift-space with the cursor on that box. C68Menu looks for
the shift key to be pressed and ignores CAPS LOCK.
2.2 INFORMATION BOXES REQUIRING EDITING
Selecting some information boxes simply allows editing of the information
in the box. These are mainly located in the options and directory sub-
forms. Editing is performed in the normal QL way followed by ENTER.
2.3 REQUESTS FOR A SINGLE FILENAME
Selecting the MAKE filename box or EDIT action box will produce a sub-form
showing the following infomation boxes: directory, extension and blank
filename. Under these is a scrollable list of files in that directory with
the given extension. At the bottom is a list of actions you may take.
2.3.1 Changing the directory - the hard way
To change the directory, type 'p' and a cursor will allow you to edit the
directory information box.
2.3.2 Filtering out irrelevent extensions
When choosing a file to edit, you may type 'e' and edit the extension box,
usually set to _c by default. This filters out all but those files with the
given extension, unless left blank in which case all will be shown.
When selecting make files, library files and object files (manual linking
only) the extension will be chosen for you and cannot be changed in the
directory sub-form.
2.3.3 Entering a new filename
To choose a new filename, type 'f' then you may edit the filename
information box. Upon typing ENTER the sub-form will dissapear. Entering a
blank filename will not exit the sub-form.
2.3.4 Selecting an existing filename
If you see the file you wish to load in the list of files, simply move the
cursor to it using the up/down cursor keys and press ENTER. If you are not
in the correct directory, you may change the directory as given above but
there is an easier way. Subdirectories are shown as a filename ending in a
space then ->. If you select these and press enter, the directory
information box will be amended and an updated list of files shown.
Similarly, to go up a directory, simply select [parent directory] ->. By
this means you may navigate right back to a list of default devices (win,
flp1_ to flp4_, ram1_ and ram2_) and back through another device.
This system was designed for 'hard' directories (used on winchester drives
and Gold-card (created using MAKE_DIR). For those without this facility,
selecting Suppress Dir in the options form will do nearly the same thing.
More detail about this is given later.
If escape is pressed at any time, you will exit without a filename being
chosen. This will most likely abort any action requiring the information.
2.4 INFORMATION BOXES REQUIRING A SELECTION OF FILENAMES
Selecting the source filenames box and libraries box will produce a similar
sub-form. This consists of a directory name, extension, an upper scrollable
list of possible filenames, a lower scrollable list of chosen filenames and
a list of possible commands. Selecting the directory, extension and
navigating around the files is as mentioned above. To select a file to be
included in the chosen filenames box, select it with the cursor, then press
'a' (for add). This can be done as many times as you wish. To remove files

'a' (for add). This can be done as many times as you wish. To remove files
in this chosen list, press TAB to switch to the lower list of chosen files,
select the required one and press 'r'. TAB will return you to the upper
list. ESCape will exit. You cannot select files that do not yet exist.
2.5 ACTION BOXES
C68Menu has four boxes labelled EDIT, MAKE, EXEC and OPTIONS. Selecting
these will initiate the appropriate action. A fifth box labelled QUIT has
the obvious effect.
2.6 SHIFT-SPACE
Shift-space when positioned on the EXEC action box allows parameters to be
passed to an executed progam.
Shift-space when position on AUTO-MAKE allows just the regeneration of a
make file without the make file being run.
3. CONFIGURING YOUR SYSTEM
3.1 Setting up your System Disk
If you have a system that only has 720Kb floppy disk drives, then it is
recommended that the C68Menu program is put on the disk you use at BOOT
time. As issued, C68Menu is therefore supplied on the RUNTIME 2 disk.
If you have High Density Floppy disks (1.44 Mb) or a hard disk, then it is
recommeneded that C68Menu be located alongside the other C68 programs (such
as CC, C68, LD etc). In addition, you need to ensure that the file 'touch'
is in the same directory as CC. Place the editor of your choice (eg QED) on
this disk if there is room. Those with large disks (winchester or 3.2M) may
copy all files to a directory of their choice.
You can make a bit of extra space available on the C68 System Disk. First,
however, make a copy of the original disk and work with the copy. On this
copy delete all the files that have file names consisting of spaces or
descriptive comments. These files are merely present to allow "comments" to
be added to the information you get when you directory the disk, and are
for documentation purposes only.
3.2 Loading C68Menu
You can now start up C68Menu with
 EXEC_W C68Menu
or
 EXEC C68Menu
This last option will require you to use CTRL-C to switch programs unless
you are using a multi-tasking front-end such as QRAM. The C68 System Disk
contains a BOOT program will start C68Menu up automatically.
3.3 Configuring C68Menu
C68Menu is shipped such that the C68 system is expected to be in the
PROG_USE directory (normally set to flp1_) and user programs in the
DATA_USE directory (normally set to flp2_). These are easily over-ridden
once C68Menu is running.
Press 'o' to select further options:
Notice that the box labelled "C68 System" contains "flp1_". If this is not
the correct destination for your system, select this box by pressing SPACE,
then change the "flp1_" to what you require, ensuring it ends with an
underscore (_).
Under this box is one labelled "C68 Temp". This is used for temporary files
such as preprocessor and assembler files. It is suggested that this be left
as "ram1_" unless you are very short of memory and wish to use a disk
drive.
Similarly, you may select the default extensions for make files and
execution files. These are best left as they are.
Ensure the box labelled "Editor" contains the correct location and name of
your editor (eg flp1_qed).
The options for compiler and linker need not normally be changed.
The option "Suppress dir" should be left set to "Yes" for the moment.
You may set the colours if your monitor/TV does not show them clearly. This
is described later.
Once you are happy with the settings, select SAVE. This will modify the
C68Menu executable file with your information. If you get an error message
saying it could not find C68Menu then you probably have the C68 System
directory incorrectly set.
4. NORMAL OPERATION
4.1 Choose a make file
Before you do anything, you must choose a make-file name. You may not know
the first thing about make files and possibly do not even wish to use one,
but fear not, just give C68Menu a name and it will be magically produced
for you without any further ado. Selecting the make file information box
will produce a directory sub-form where you can type 'f' and enter the
filename. This is entered without an extension (eg prog1). The same name
but with the 'exe' extension will be the name of the executable file.

but with the 'exe' extension will be the name of the executable file.

** A bug in the current release may incorrectly put up **
** <alien format> against this filename - ignore this. **

4.2 Create/edit your source files
Strictly speaking you can edit your source files at any time. Press 'e',
type in a new filename and press ENTER. The editor chosen will then be run
and will automatically read the selected file. When you have finished
editing, exiting the editor (F3 followed by X ENTER in the case of QED)
will return you to C68Menu . Repeat this process for one source file or
many source files. It is normal to have all your source files in the same
directory as the make file (which is the default directory that will be
selected - if you selected a make file first), although this is not
mandatory. Indeed you may require general purpose source files to be in
another directory.
Header files may be created and will require the Extension box being
selected as _h.
4.3 Informing C68Menu about the source files
C68Menu needs to know which source files are to be included in the final
program. Often short programs contain only one. Pressing 's' will produce a
sub-form that will allow you to select one or more source files. When
finished the main form will re-appear and the first few filenames that fit
are listed in the information box.
4.4 Selecting Additional Libraries
By default, the standard library libc _a is always searched. At release
2.00 of C68 this included most C functions and QDOS specific ones. If
floating point numbers are used in your program then libm_a needs to be
selected. This is selected in a similar way to source files. You will find
libc_a in the list of libraries; you never need to select this.
4.5 Selecting AUTO-MAKE
All there is left to do now is to tell C68Menu to GO ! Auto-Make does this.
Rather than remembering which source files need re-compiling when changes
are made and re-linking, C68Menu automatically creates a make file from the
information you have given and passes that make file to the make utility
which determines all these administrative matters.
4.6 Executing the program
Assuming no errors were reported, typing 'x' will run the program. If you
need to pass parameters to it, then shift 'x' will allow these to be set
first.
4.7 What went wrong?
Compiler errors usually give reference to line numbers which can be checked
by re-editing the source.
Linker errors are sometimes more difficult, for example unresolved symbols
are only listed in the map file. To view the map file simply select Edit
and set the Extension to _map, then select the appropriate file.
4.8 Re-making
If you have only edited source files, selecting Auto-MAKE will simply run
make again with the make file already created. If source files and/or
libraries have been added or withdrawn (or certain options changed) then
auto-MAKE will re-create the make file then call make. When a make file is
generated, it searches all your source files for #includes to headers and
#includes in the headers etc in order to determine the dependencies
required by the make file. If you change any calls to headers then shift
auto-MAKE should be run to force a new make file to be generated (which
will re-read the source files). Note, however that other modifications to
header files other than #includes do not require this shifted operation.
This requirement saves C68Menu reading every source file every time you
auto-MAKE.
4.9 Re-loading the make file at a later date
On starting C68Menu , select 'm'. After selecting the correct directory,
your make file should be shown in the list. Selecting this and pressing
ENTER will now not only fill the make file information box but you will
find that the source files and libraries information boxes will be filled.
You may now type 'x' to execute, or edit source files and auto-MAKE, or
remove/add libraries and source files. C68Menu has effectively read the
make file that you produced last time and extracted all the relevant
information.
5. OPTIONS
This menu is rarely required and can be exited with escape.
5.1 C68 System files
720 k floppy disk users will probably have this set to flp1_; however, if
you have placed all C68 files (including touch) in a directory for
tidyiess, change this. This directory need not be a 'hard' type but could
be say flp1_C68_ containing files like flp1_C68_cc, flp1_C68_LIB_libc_a

be say flp1_C68_ containing files like flp1_C68_cc, flp1_C68_LIB_libc_a
etc.
5.2 Extensions
As C68Menu uses make files to store information on how to make different
programs, it was thought wise not to use the convention of calling all make
files 'makefile'! If you object to _mak as an extension or want no
extension then you may change this.
Similarly C68Menu appends _exe to the root of the filename chosen, rather
than calling all executable filenames a_out .
5.3 Temporary files
The "C68 temp" location is where pre-processed and assembler files are put.
Normally this is ram1 _ which speeds up compilation.
5.4 Compiler/linker/maker options
These are set on shipping to reveal some of the diagnostic information that
may be useful. This may be removed. For example, removal of the -ms in the
linker options will speed up the operation by avoiding the creating of a
map file each time. You may require to increase the buffer size, or wish to
halt the compiler after the pre-processor stage etc.
Note that these settings (along with execution file extension) are saved in
the make file. Thus beware that they may change when a make file is loaded.
This allows some make files to have personal buffer and heap sizes.
5.5 Editor location
This gives the full directory and name of the editor. This is to allow
another editor that may not fit only the same disk as the C68 system to be
used. Note that when the C68 system is automatically copied to ram disk
(see later) this filename will be automatically changed if the editor is
also copied.
5.6 Default
This simply undoes all the changes THIS SESSION. Once you save to the
C68Menu execution file and exit, you cannot undo these. Thus you are ill
advised to ever save the setting to your original copy of the C68 system.
5.7 Compile
This is for when you wish to just re-compile a particular source file. A
directory sub-form will appear and after selecting a file, compilation will
take place.
5.8 Link
Link allows you to link object files (that do not have source code
available). You must have filled in the make file box since this gives the
name of the exec file to be produced. If a source files list already exists
on the main form then these will already be chosen and you may navigate
about and choose other _o files. After selecting the filenames and pressing
escape, linking will take place.
5.9 Copy C68 System
For those who have a large amount of memory to spare (ie Gold Card), it is
possible to copy the C68 system across to ram1_ (or elsewhere). You are
first asked to verify the directory you wish to copy from, then the one to,
then, after confirmation, all the files are copied. If the C68 system
directory contains any hard sub-directories, these will NOT be copied
across, thus it is best to leave the headers and library files in soft-
directories as shipped.
If the chosen editor is copied across then this will automatically be
amended so that the ram disk version is used. The C68 system files
directory is also amended.
5.10 Copy Data
It is possible to copy selected files from a directory of you choice to
ram2_ (or elsewhere). First you are given an opportunity to select the
directory to copy from (by default this will be the one containing the last
make file selected). Then the directory to (ram2_ by default). You are then
given a directory sub-form to select files from that directory. At this
point you may not navigate out of this directory and any hard
subdirectories will not be copied. After final confirmation, the selected
files will be copied across and the Home Dir'try ammended on the main form.
If you attempt to quit the program, you will be warned that you are using
ram disk. This same option will allow you to copy selected files back to
your original directory on disk.
5.11 Colours
If your monitor poorly displays the default colours, you may alter most of
these. The colour changing system is rather primitive, it gives you three
lines of letters/numbers
< FORM ><W><LIST ><I>PPS
pbt23siSIpbipbtsiSIpbipip
9777407272779779727470400
The top line indicates to what windows the lower lines refer. <FORM> refers

The top line indicates to what windows the lower lines refer. <FORM> refers
to the main form and sub-forms, <W> to the warning window, <LIST> to the
list of filenames in the directory sub-form, <I> to the input window and
input line, P to the proceed line, S the shadow.
The next line details to what the colour refers: p=paper, b=border, t=main
text, 2=heading text, 3=mid text, s=strip, i=ink, S=highlighted strip,
I=highlighted ink.
The lowest line gives the QDOS colour number for mode 4 (0/1=black,
2/3=red, 4/5=green, 6/7=white), except that 9 gives a rather sexy maroon
stipple. If this last colour is not acceptable, it is advised to change it
to green (4).
The effect will be immediate.
5.12 Save
This checks that C68Menu is in the C68 system directory, locates the area
that contains the options variables in the code and patches the code. If
C68Menu is not in the C68 system directory then, although it can be run, it
cannot have options saved to it.
6. MISCELLANEOUS
6.1 Soft Directories
In order to mimic hard-directories the Suppress Dir box in the options menu
may be set to Yes (space toggles the setting). For both those with and
without hard sub-directories it suppresses soft sub-directories which have
the same directory and the given extension (eg cprogs_fred_c, cprogs_bob_c)
to a single directory (eg cprogs_ ->) and removes all sub-directories which
do not possess a file with the appropriate extension. This only works when
an extension is given. If you select such a sub-directory and press ENTER
then the directory name will change appropriately and a new listing of
files in that sub-directory given. Naturally it cannot tell the difference
between sub-directory names which contain and underscore and a sub-
directory in a sub-directory.
Where the extension box is left blank, this suppression mechanism will not
function as it is impossible to determine what is a file with an extension
and what is a sub-directory followed by a filename without an extension.
The final filename may start with one or more underscores without any
problem.
6.2 DATA_USE and PROG_USE
When shipped, C68Menu will use the DATA_USE directory as the default make
file directory and PROG_USE directory as the default C68 system directory.
This is shown by placing the directory name (only on the main and options
forms) in angle brackets (eg <flp2_cprogs_>). If you save (under the
options form) then if either directory name is in angle brackets then the
appropriate DATA/PROG_USE will be used. If, however, you save when not in
angle brackets, then that specific names directory will be taken as the
default.
The DATA_USE and PROG_USE directories as set outside this program, although
temporarily altered when the program performs some operations, will be left
intact when the program is exited.
6.3 Alien Make Files
If you select a make file that has not been generated by C68Menu , then the
other information boxes will not be filled and the comment (alien) will be
alongside the make filename. If you attempt to auto-MAKE, then you will be
warned but allowed to overwrite this make file.
6.4 Windows
If the warning message window covers up some useful diagnostic information,
then pressing ENTER and holding down will remove the window but not return
back to the form until you release the ENTER key.
If you are multi-tasking with other programs and are using Qram then you
should have no problem with destructive windows. If this is not the case,
then pressing F4 will refresh when in the main or options window.
6.5 Help
A brief two page set of help notes appear when F1 is pressed. These are
just for those who never have time to read documentation (good programs
should not need any!).
6.6 Restrictions
If you specify libraries that are in your make-file directory (along with
source code etc), auto-MAKE will generate the relevent -L and -l<libname>
options for the linker. Because a disconnected list of directories and list
of library names is not sufficient in itself to give the user a list of
library files when a make file is loaded, the list of filenames is also
added to the make file as a sort of comment line. This works fine until you
move the whole make file directory to another location. When the newly
positioned make file is read in, C68Menu cannot tell it has moved and the
list of library files will still refer to the old directory. The make file,
however, will work until then next regeneration of the auto-MAKE file, when
the directory of the original directory will be instigated. This may cause
problems when copying to ram disk.

problems when copying to ram disk.
6.7 History and possibly a future
The author is not very proud of the state of the C68Menu code! A few months
back, feeling deficient in his knowledge of 'C' at work, he decided to
obtain C68 and experiment on his QL at home. To his horror he discovered
Unix! Urgggh! As he had been pampered by MicroSoft Windows and QuickBasic
on a PC, something had to be done about this situation before experimenting
with numerous 'C' programs, that would likely take many iterations to get
even past the compiler let alone work. So out of this requirement was born
C68Menu . This involved many iterations and helpful comments after trying
out early versions, particularly from Dave Walker and Colin Horsman.
C68Menu started as a small beautiful program to attempt to research into a
suitable user interface for the system. The philosophy was: Get the
interface right then optimise the code. No expense (programming time,
memory and speed) has been spared to get the user interface as optimised as
possible for the 'C' user, however the code never got optimised nor, more
importantly, written in 'C' as this would probably avoid it clogging up 10%
of the main C68 disk.
I dare any brave fellow (especially those purists who believe it sacrilege
to write in SuperBasic) to attempt to re-write the program in a more
elegant form. Please contact me if you need help.
C R Johnson
11, The Copse
Tadley
Basingstoke
Hants
RG26 6HX

C68 environment on QDOS and SMS
Release 4.25
This document describes how the C68 implementation of C under QDOS has been
adapted to use the features of the QDOS and SMS operating systems. It also
describes what has been done to keep maximum compatibility with C programs
that have been written to run under Unix - the home of the C language, and
still the commonest source of freely available C source code.
The "C68 for QDOS/SMS" system has been supplied so that its default mode of
operation is to function as far as possible in a manner similar to a
standard C program running under Unix or MSDOS. However, there are a number
of standard options (which are discussed later in this document) for
changing the default behaviour and adapting it to your specific
requirements.
PROGRAM NAME
When it is started up, the a C68 program copies its name into the first
part of the program space. This is so that QDOS/SMS commands for listing
the jobs running can display a sensible name for the job. To set the name
of your program declare it by including the line
 char _prog_name[] = "program_name";
in one of your source files outside any function declarations. Note that
this is NOT the same as
 char *_prog_name="program_name"; /* This is an ERROR */
as the above declares a pointer to a character array, and the code that
copies the program name assumes that _prog_name is the base address of a
character array (not the same thing!).
If no program name is given a default name of C_PROG is used, so _prog_name
need not be defined if you don't mind your program being called C_PROG.
ARGUMENT HANDLING
The command line is parsed into separate elements so that it may be
accessed via the argv[] array. By UNIX convention, argv[0] always points to
the name of the program (this is set to point at _prog_name). The other
arguments (if any) are taken from the command line and are put into the
argv[] argument array. Each argument in the command line should be
separated from the others by one or more whitespace characters.
If you want to include space characters within an argument this can be done
by surrounding the argument value with either single or double quotes.
Therefore to get an argument array of :
 argv[0] = C_PROG
 argv[1] = test
 argv[2] = of multiple
 argv[3] = arguments
then you would invoke your program as follows:
 EX MY_PROG;'test "of multiple" arguments'
Note that the quotes surrounding the words are NOT copied into the argument

Note that the quotes surrounding the words are NOT copied into the argument
string. If you want to include otherwise forbidden characters in an
argument such as ' , or " , or any of the special argument characters = , %
, > , < , (covered later) then they may be included by prefixing them with
a \ character. A \ character may itself be included by using \\ . Therefore
the program invoked by :
 EX MY_PROG;' wombat \"quote "have big" \\ears'
would have an argument array of
 argv[0] = C_PROG
 argv[1] = wombat
 argv[2] = "quote
 argv[3] = have big
 argv[4] = \ears
Arguments that start with the special sequences < , > , >& , >> , >>& , =
and % (which are used for special purposes as identified later in this
document) are not copied into the argument array as they are stripped from
the command line when they are acted on. This will happen automatically
before control is passed to the user code.
You can also use standard C escape sequences within the command line. These
can be character escape sequences (such as \t for a tab character), octal
escape sequences (such as \009) or hexadecimal escape sequences (such as
\x09). Use these escape sequences if you want to put one of the special
reserved characters mentioned in the previous paragraph into a command line
parameter.
If you know that your program does not accept any parameters (although it
may still accept the sequences identified by the special characters), then
you can include a line of the form
 void (*_cmdparams)() = NULL;
in your program outside any function declarations. This will stop the code
that is used for parsing the parameters in the command line from being
added to your program, and will reduce its size accordingly.
REDIRECTION
The C68 system allows a UNIX compatible style of redirection symbols to be
used to redirect the programs input and output streams away from the normal
console channel. Their action is as follows:

< filename
This redirects the standard input (file descriptor 0 or 'stdin') of the
C program so that all reads to it are read from the designated file (or
device). If this is not present in the command line then the standard
input defaults to CON_ .
> filename or
1>filename
This redirects the standard output channel (file descriptor 1 or
'stdout') only, so that it writes to the designated file or device
name. If the file doesn't exist, it creates it, if the file does exist
it is truncated. If this option is not given then the standard output
defaults to the same CON_ channel as stdin or, if this has been
redirected, to a new CON_ channel.
>> filename or
1>>filename
This redirects the standard output channel to the given file or device
name. If the file does not exist it is created, if it does exist it is
opened for appending. All writes will be done to the end of the file,
so no existing data will be overwritten.
>& filename
This redirects both the standard output and standard error (file
descriptor 2 or 'stderr') channels to the designated file or device.
The file is created if it doesn't exist, or truncated if it does.
>>& filename
This redirects stdout and stderr to filename, creating it if it
dooesn't exist, but opening it for appending if it does.
2> filename or
& filename
These redirect the standard error channel (file descriptor 2 or
'stderr') only, so that it writes to the designated file or device
name. If the file doesn't exist, it creates it, if the file does exist
it is truncated. If this option is not given then the standard output
defaults to the same CON_ channel as stdout or stdin, or if this has
been redirected, to a new CON_ channel.
2>> filename or
&> filename
These redirect the standard error channel to the given file or device
name. If the file does not exist it is created, if it does exist it is

name. If the file does not exist it is created, if it does exist it is
opened for appending. All writes will be done to the end of the file,
so no existing data will be overwritten.

If you know that your program will not be have its channels redirected from
the command line (or wish to inhibit this capability), then you can include
a line in your program of the form
 long (*_cmdchannels)() = NULL;
outside any function declarations. This will stop the code that handles
this capability from being included in your program and reduce its size
accordingly.
PASSING CHANNELS FROM SUPERBASIC
C68 allows channels to be passed from SuperBasic to a C68 program via the
command line. This is done by preceding the argument list with the channels
to be passed.
Eg. EXEC c_prog,#1,#2,#0;"parameter list"
The first channel is allocated to stdin , and the last one to stdout . If
three channels are supplied then the second one is allocated to stderr .
These channels are available at all I/O levels (see later). Additional
channels are initially available only at Level 1 I/O (described later).
They are allocated file descriptors starting at 3.
If you know that your program will not be passed channels from SuperBasic
(or wish to inhibit this capability), then you can include a line in your
program of the form
 long (*_stackchannels)() = NULL;
outside any function declarations. This will stop the code that handles
this capability from being included in your program and reduce its size
accordingly.
CONSOLE SIZE AND PLACING
Normally a C68 program will need to open a Console channel to be used for
stdin , stdout , and stderr (assuming none of these have been re-directed).
This Console channel is opened using the name defined in the global
variable _conname . The default is equivalent to defining
 char _conname[] = "con";
If the default is not satisfactory, then alternative details can be
provided by defining this global variable in your own program with a
suitable entry outside any function defintion.
NOTE The settings for the size and placing of the console window used for
stdin and stdout will normally be overridden by a console initialisation
routine as mentioned below. If you have disabled the console initialisation
routine, then the settings from the initial open of the console will remain
in force.
CONSOLE INITIALISATION
When a C68 program starts up and it has not had its standard output
redirected, then it will have a console channel set up for the stdout
device as mentioned above. Various options are then available for
initialisation of the console window.
The default initialisation that is performed if no alternative is exlicitly
specified involves setting up a window according to the values in the
global structure _condetails. This is data item of type WINDOWDEF_t (as
defined in the sys/qdos_h header file). For the default set of values, see
the definition of the global variables at the end of the LIBC68_DOC
document.
Alternatively there is a library routine available which does more
sophisticated initialisation. As well as the initialisation that is
performed by the default routine mentioned above, it will in addition add a
title bar across the top of the window that gives the program name. The
active size of the window will be reduced accordingly. This routine is
invoked by including the following lines in your program at the global
level (i.e. outside any function definition):
 void consetup_title(chanid_t, struct WINDOWDEF *);
 /* above line not needed if qdos.h or sms.h included */
 void (*_consetup)() = consetup_title;
If you are running under the Pointer Environment then this library function
will also define an 'outline window' that will be the same size as this
console window (including borders and title bar). This will cause the
Pointer Environment to tidily save and restore the screen as you switch
between jobs.
If your program is designed so that the Pointer Environment is mandatory,
then there is a more sophisticated module available in the LIBQPTR_A
library called consetup_qpac.
If you wish no automatic console initialisation to be done (perhaps because
you wish to do all of this in your own program code) then you should
include the following line in your program at the global level (i.e.
outside any function definitions):

outside any function definitions):
 void (*consetup)() = NULL;
This will have the effect of disabling any automatic console initialisation
from taking place.
If none of the above options suit your requirements, then you can provide
an alternative routine to be used in place of one of the standard ones. To
provide an alternative routine you proceed as in the example above for
using the consetup_title() routine, but substitute the name of your routine
for 'consetup_title'. The console initialisation routine should have should
have a prototype of the form:
 void my_console_routine (chanid_t console_channel);
PAUSING WHEN A PROGRAM TERMINATES
If you are running under a multi-tasking environment (such as the QJUMP
Pointer Environment) then it is convenient if the program pauses to give
you a chance to read any messages before it exits. This is the default
behaviour for C68 that is built into the library routines. The message that
is displayed is equivalent to defining the global variable
 char *_endmsg = "Press a key to exit";
You can change the message by defining the above global variable in your
own program with a different text. If you do NOT want the program to halt
with a message on exit, then you must set the _endmsg global variable to
NULL at any stage before you exit your program.
The termination message will also be suppressed if stdout has either been
redirected, or if it has been passed as an open channel from another
program. This stops a chain of programs sharing the same output channel
each outputting their own termination message.
By default when the termination message is displayed, the system will wait
indefinitely for the user to press a key. The wait duration is actually
defined by the setting of the _endtimeout global variable. The default
value supplied is equivalent to specifying
 timeout_t _endtimeout = -1; /* Wait forever */
in your program. A positive value means wait that number of 1/50 seconds.
MEMORY ALLOCATION
When a C program is loaded into memory and starts, it first relocates
itself to run at the load address. It then calls QDOS to allocate a memory
area that is used as the base of the programs own private heap and stack
areas.
The heap area is used to satisfy any dynamic memory allocations made via
the malloc() library call. It is also used by many of the library routines
if they need additional workspace.
The stack area is used when a program function is called. It holds any
parameters passed, and the return address for when a function completes. It
also holds all local variables defined within program functions.
The heap can be expanded by allocating new areas from QDOS, but the stack
must never outgrow its initial allocation. Outgrowing the stack area can
have dire consequences, sometimes even causing system crashes. There are
checks when memory is allocated from the heap to check that the stack
pointer has not exceeded the area allocated. However there is no check made
when the stack expands as a result of calls to program functions. In
practise the default stack is sufficient for all except the most demanding
programs.
The programmer can set the default values that will be used for the sizes
of memory areas. If the programmer declines to provide any values then
defaults will be set that are suitable for the vast majority of programs.
In addition, the user can use run-time values to increase the sizes of the
areas.
The programmer sets up these values by defining them as variables outside
any function declaration (to ensure the variables are global in scope). The
default values are equivalent to the programmer defining:
 long _stack = 4L*1024L; /* size of stack */
 long _mneed = 4L*1024L; /* minimum requirement */
 long _memmax = 9999L * 1024L; /* maximum allowed */
 long _memincr = 4L * 1024L; /* increment size */
 long _memqdos = 20L * 1024L; /* minimum for QDOS */
These values of these variables are used by the C68 system in the following
way:

_stack
This is the amount of area to be allocated as the program stack. The
program must never exceed this value while it is running, or undefined
effects are likely to can occur.
_mneed

_mneed
This is the amount of heap space that is initially allocated to the
programs private heap.
_memmax
This is the maximum amount of heap memory that a program is ever
allowed to grab. The default value is so high that this limit
effectively does not apply.
_memincr
To avoid excessive heap fragmentation C68 programs manage their own
private heap, and only allocate themselves more memory from QDOS when
the private heap is exhausted. This is the allocation size in which new
memory is requested from QDOS.
_memfree
This is an alternative way of controlling the maximum memory allocated.
The program is never allowed to allocate itself more memory if it would
reduce the free memory left in the machine below this value.

As was mentioned earlier, in the vast majority of cases you can merely
accept the default values.
Situations sometimes arise, however, in which the user wishes to increase
some of these values at run time. This can be done by including one or both
of the command line arguments:
 =ssss %hhhh
where ssss is a decimal number denoting the amount of stack given to the
program (equivalent to setting the _stack global variable), and hhhh is a
decimal number denoting the amount of heap (equivalent to setting the _heap
global variable).
In the case of the %hhhh option the _memmax value is also set to this value
so that the program will not be allowed to increase its memory allocation
any further. Four digits are used above for illustration purposes only; in
reality, the only limit is the amount of memory in the machine).
DISABLING SETUP OF STANDARD C ENVIRONMENT
You may have noticed that even if you write a very simple program that is
only a few lines long that it will still be around 12-14Kb in size. This is
not because C is inefficient, but because the default startup code that is
included in a C program includes a lot of library routines. These are used
to set up a standard environment for the C programmer. This includes doing
all the following:

Processor identification and program relocation
Parsing the command line parameters
Initialising the standard default channels to be used for input and
output.
Setting up Environment variables
Setting up Dynamic memory support

There may be times when you do not need all this done for you. This would
typically be the case if your program was only going to make use of direct
QDOS/SMS calls for input/output and memory allocation. In this case you can
specify that you do NOT want the default C environment set up and reduce
your program size by about 12Kb. You do this by including the following
line within your program at global scope:
 (*_Cinit)() = main;
In this case the only startup code that will be executed is that involved
with doing the Processor type identifiaction and the program relocation.
Control will then be passed direct to your main() module. The following
parameter values will be passed to main:
 argc This will always be set to 1

argv[0] This will always point to the program name

argv[1]

 This will point to the program stack that was in use at initial
program start-up. This will allow you to access any information
that was passed to the program on the stack.

AUTOMATIC HANDLING OF FOREIGN FILENAMES
Many systems make use of special characters in filenames to act as
directory seperators and to identify the 'extension' part of a filename
(which traditionally identifies the file type). As an example Unix uses the
' /' (slash) character as a directory seperator and the ' . ' (full stop)
character to identify the start of the file extension. MSDOS uses ' \ '
(back slash) as the directory seperator and also uses ' . ' as the file
extension character.
QDOS and SMS traditionally use the ' _ ' (underscore) character for both of
these purposes.

these purposes.
If you are porting a program that is meant to run on a foreign system (such
as Unix or MSDOS) it can be a real nuisance to find everywhere where a
filename is manipulated to change it to the QDOS/SMS standard. This problem
can be obviated by including the following lines in your program at global
scope:
 #include <fcntl.h>
 int (*_Open)(const char *, int, ...) = qopen;
This will then automatically convert any attempts to open files using the
foreign filename standard into calls that conform to the QDOS/SMS standard.
If you want a more detailed description of exactly what happens refer to
the description of the qopen() library routine, the _Open vector and the
_Qopen_in and Qopen_out global variables which are all described in the
LIBC68_DOC file.
INPUT/OUTPUT LEVELS
The input/output facilities under C68 are structured as a series of Levels
depending on the level of abstraction that is wanted. These levels can be
summarised as:
 Level 2 Generic C input/output
 Level 1 UNIX compatible input/output
 Level 0 QDOS specific input/output
Each level has library calls that can open, read and write files. Opening a
file at a specific level also does implicit opens at the lower levels, but
not vice versa. This will probably be clearer when you have read the
following descriptions of each level.
C LEVEL FILE POINTERS (Level 2 I/O)
In standard C, programs communicate to the outside world via File Pointers.
This interface is completely supported by C68. It is the level that you
should work at if you are new to C, or if you want to write programs that
will be portable to other systems. This level of interface is referred to
in the C68 documentation as Level 2 I/O.
A point to note is that C does its own internal buffering, and the buffers
are only flushed when end-of-line is reached. For console and screen
channels this is often not convenient. You can disable the buffering by
using a statement of the form
 setbuf (file_pointer, NULL);
or
 setnbf (file_pointer);
(the second option is less portable as it is not supported by all systems)
in your program before you do any reads or writes to the file. You will
find that you need to do this also on any file in which you are going to
mix the Level 2 I/O with either Levels 1 or 0 as defined in following
sections.
An alternative solution is to ensure that you have always done a fflush()
operation on the file in question before you do level 1 or level 0 I/O. The
advantage of this is that the C level I/O is more effecient, against the
fact that that you have to remeber to do the fflush() calls to force output
to be displayed before using any level 1 or level 0 calls.
If files are opened at Level 2, then Levels 1 and 0 are also implicitly
opened.
UNIX LEVEL FILE DESCRIPTORS (Level 1 I/O)
This next section is only relevant if you are trying to use the C68 I/O
interface that corresponds to the Unix I/O interface. Unix systems have an
I/O interface available to C programs which is lower level than the
standard C interface, and maps directly onto underlying operating system
calls. C68 provides library routines which mimic the Unix system call
interface. This helps with porting programs from Unix systems to QDOS with
C68. This level of interface is refered to in C68 as Level 1 I/O.
Under the Level 1 I/O interface C communicates to the outside world via
file descriptors. These are positive integers starting at zero that specify
output channels. By convention the stdin , stdout and stderr correspond to
the file descriptors with values 0, 1 and 2 respectively. You can always
obtain the Level 1 file descriptor associated with a file opened using
Level 2 I/O by using the library call
 level_1_fd = fileno (level_2_file_pointer);
Note that it is not possible to go the other way and obtain the Level 2
File Pointer from the Level 1 File Descriptor. Always therefore use the
open type appropriate to the highest level of I/O you wish to perform on a
file.
The level 1 file descriptor is different from the 32 bit QDOS channel id.
The QDOS channel id can be obtained from the Level 1 file descriptor by
using the library call:
 qdos_id = getchid(level_1_fd);
Given this information, how does this version of C handle the QDOS window

Given this information, how does this version of C handle the QDOS window
interface? Well, as much as possible it ignores it and tries to run as a
"glass teletype", which is what most UNIX programs expect. However, there
are some useful pieces of information about the way screen I/O is handled.
If a file descriptor (hereafter known as an ' fd ') is opened onto a CON
device by the open() call, it is by default opened in 'cooked' mode. That
is; all reads will wait until the required number of characters are
available (or enter is pressed); all characters typed are echoed on the
screen; full QDOS line editing is available; all pending newlines are
flushed after the read call completes.
If the mode is changed to 'RAW' (fd opened with O_RAW flag set, or fcntl()
or iomode() library calls done on a fd channel) then all reads are done
without echoing on the screen; no line editing is performed; no pending
newlines are flushed; no cursor is enabled; and the results of a one byte
read are available immediately. So to read one character immediately with
no echo and receiving all cursor and function key presses (a perennial
problem for C programmers writing interactive software), just open the fd
in O_RAW mode (or change an already open one to RAW), then use
 read(fd, &ch, 1);
to read a character. Note that under C68 characters with an internal value
higher than 127 will be returned as a negative value as char is a signed
value.
Normally all I/O is done with an infinite timeout, but if you are running
in supervisor mode or just want reads and writes to return immediately you
can force the level 1 I/O calls (those that use fd's) to use a zero timeout
by either opening the file descriptor with the O_NDELAY flag set, or doing
a fcntl() library call to set the O_NDELAY . This forces calls to return
immediately if they are 'not complete' with the appropriate error.
As the QL uses newline (' \n ' ascii 10) characters to designate End-Of-
Line (as do UNIX systems) then there is no option to open a level 2 file
(pointed to by a FILE pointer defined in stdio.h) in 'translate' or
'binary' mode. Such calls, eg. fopen("file", "rb"); will succeed but the
binary flag will be ignored. By default, level 1 files may be opened in
O_RAW mode by setting the _iomode external variable to O_RAW before any
files are opened.
To change an open file descriptor the fcntl() or iomode() calls may be used
(defined in fcntl.h). The fcntl() call changes the flags set in the
underlying control structures according to the values of the flags defined
in fcntl.h. Eg. to set a channel in raw mode read the value of the _UFB
flags using fcntl() then set O_RAW mode with the same call.
 flags = fcntl(fd, F_GETFL, 0);
 fcntl(fd, F_SETFL, flags | O_RAW);
The iomode() call has a similar effect to the above but toggles the state
of any flag. Eg. if a fd is set to O_RAW , doing
 iomode(fd, O_RAW);
will set it to raw mode, then doing the same iomode() call on it again will
set it back to cooked mode.
QDOS CHANNEL IDENTIFIERS (Level 0 I/O)
The C68 system allows you to call the underlying QDOS I/O system directly
by-passing the higher levels of I/O. This level of interface is referred to
as Level 0 I/O.
To access QDOS directly you need the QDOS channel id. You can obtain the
QDOS channel id associated with files opened using Level 2 or level 1 I/O
by using the library routines:
 qdos_id = fgetchid (level_2_file_pointer);
 qdos_id = getchid (level_1_file_descriptor);
If you initially open a file at level 0, it is also possible to create a
level 1 file descriptor or a level 2 file pointer to allow you to
manipulate the file at the higher levels. To do this you can use the
library routines:
 level_2_file_pointer = fusechid (qdos_channel);
 level_1_file_descriptor = usechid (qdos_channel);
Note that the fusechid() call will also create a corresponding level 1 file
descriptor (which you can obtain, if required, by using the fileno()
library call).
It is important if you mix QDOS level I/O with one of the higher levels
that you have disabled any buffering at the higher level. Failure to do
this is almost certain to result in output appearing in an unexpected
order. For convenience, the stdout file is unbuffered by default.
INPUT TRANSLATION
Many Unix systems use have special keyboard sequences to input control
characters from the console. The normal QDOS console driver does not
recognise such control sequences. Therefore when input is being done from a

recognise such control sequences. Therefore when input is being done from a
console device a special routine (called _conread()) has been provided
that is called at the appropriate point. The special characters that are
acted on are:

CTRL-D
Passes an EOF code to the user program.

N.B Programs which use the LIBCURSES or the LIBVT libraries get alternative
versions of the _conread() routine. Refer to the documentation on these
libraries for more details.
If the user knows that this input translation will not be required, then
the program size can be reduced by including the following code in your
program:
 int (*_conread)() = NULL;
If user programs wish to provide alternative input handling to the default,
then they can provide there own version of the _conread() routine. The user
supplied routine would be included by using a line of the form:
 int (*_conread)() = my_read;
The code for the existing _conread() routine (which is provided on the C68
SOURCE 1 disk) should be used as a guide on how to go about this.
OUTPUT TRANSLATION
The C language defines a number of escape sequences that can be included in
the user program. These range from the common ones such as \n for newline
to more esoteric ones such as \t (tab), \b (backspace) and \a (alarm). The
normal QDOS console driver does not recognise such escape sequences.
Therefore when output is being done to a console device a special routine
(called _conwrite()) has been provided that is called at the appropriate
point.
N.B Programs which use the LIBCURSES or the LIBVT libraries get alternative
versions of the _conwrite() routine. Refer to the documentation for these
libraries for more details.
If the user knows that this output translation will not be required, then
the program size can be reduced by including the following code in your
program:
 int (*_conwrite)() = NULL;
If user programs wish to provide alternative output handling to the
default, then they can provide there own version of the _conwrite()
routine. The user supplied routine would be included by using a line of the
form:
 int (*_conwrite)()=my_write;
The code for the existing _conwrite() routine (which is provided on the C68
SOURCE 1 disk) should be used as a guide on how to go about this.
DIRECT CONTROL OF KEYBOARD INPUT
It is possible to get at the keyboard input before it is seen by any of the
standard C library code. A typical use of this vector might be if you want
to intercept particular keystrokes and act on them independently of your
main C program. To do this you include a line in your program at global
scope of the form:
 int (*_readkbd)(chanid_t,timeout_t,char *) = myroutine;
The default setting of this vector is to point to the operating system call
(io_fbyte() for QDOS and iof_fbyt() for SMS) that gets a single byte from
the keyboard.
An example of how this vector can be used is shown in the readmove()
routine described in the QPTR part of the standard C library.
IMPLEMENTATION OF PIPES
Owing to the closeness between QDOS and UNIX the concept of opening pipes
between processes is easily accommodated. The only problem is that pipes
have to have both ends opened at the same time (there is no concept of
'named' pipes under QDOS) which means that both ends of a pipe are owned by
the job that opened them (usually the parent job in a tree of jobs).
This means that after opening the pipes the parent job must stick around
until all use of the pipes by the child jobs have finished, or the child
jobs get a rude shock when they try to read or write to a closed pipe after
the parent has terminated (assuming the child jobs are made independent of
the parent, i.e. owned by SuperBasic).
Otherwise the pipe() call acts as normal, creating an input and output pipe
connected to each other. The size of the output pipe is specified in the
global variable _pipesize , which is normally set to 4096 bytes, but can be
changed by the program by including the line:
 int _pipesize = required_size; /*Outside any function */
RUNNING CHILD JOBS
The standard libc_a library has calls that mimic the UNIX fork() and exec()
calls closely, but not exactly. The deviations are due to differences in

calls closely, but not exactly. The deviations are due to differences in
the underlying operating system.
The exec() calls load and activate a job and the parent job that called
exec() waits until the child job has finished, and reports its error code.
This is unlike the UNIX exec() , which overlays the currently running
program with another.
The fork() calls load and run a child job whilst the parent program
continues to run, returning the QDOS job id of the child job. This is in
contrast to the UNIX fork() which duplicates the running process.
After a fork() call the parent job may choose to wait for any of its child
jobs to terminate (an example of wanting to do this would be if after
creating pipes between two child jobs; the parent needs to wait for both
jobs to finish before closing the pipe that it owns. The wait() call allows
this. It returns -1 immediately if there are no child jobs, otherwise it
waits for one of its child jobs to finish (it actually puts itself to sleep
waiting for a child termination - it does not busy-wait) and then it
returns the error code from the newly terminated job, and the job id of the
newly terminated job. An example of its use is:
 /* Start a load of child jobs */
 ...
 fork(..);
 fork(..);
 fork(..);
 ...
 while(wait(NULL) != -1)
 ; /* Wait for all jobs to finish */
All jobs started by fork() or exec() are started with a priority of
_def_priority . This is a global variable in qlib_l, and so may be changed
from its starting value of 32. Channels may be passed to jobs in the fork
and exec calls, these are used as the standard in, out, error and further
channels. Note that these are passed according to toolkit 2 protocols.
These state that the first channel passed is the job's standard input, the
last channel passed the job's standard output, and all others are available
to the job from file descriptor 2 (stderr) and up. This means that to pass
fd 2 as stdin, fd 4 as stdout, fd 1 as stderr, and also pass channels 0 and
3, the channels array passed to fork or exec should be:
 chan[0] = 5; /* Number of channels to pass */
 chan[1] = 2; /* stdin */
 chan[2] = 1; /* stderr */
 chan[3] = 0;
 chan[4] = 3; /* General channels */
 chan[5] = 4; /* Stdout */
Note that the actual QDOS channels that the fd's use are passed on the
stack. This means that for fork() calls, where the parent and child jobs
are both active at the same time, then any changing of the channels
position by read() , write() or lseek() calls will alter the read/write
pointer on the channel for BOTH jobs. Thus it is better not to access
channels given to child jobs whilst the child jobs are active, unless you
are very careful about the consequences. One way of doing this is to close
the channels that a parent has just passed to a child, to prevent the
parent accessing them again.
DEFAULT DIRECTORIES FOR OPENING FILES
The I/O routines in the C68 libraries will all make use of Toolkit 2
default directories when attempting to open files. The default directories
will be used any time a full absolute path name is not given for a file.
The DATA_USE directory is used for normal open statements within programs,
and the PROG_USE directory for attempts to access system files (such as
child programs). Extended forms of the file opening functions (fopene()
and opene()) are also available to allow the programmer to specify exactly
which default should be used in any particular case.
If a program is started from SuperBasic, then it inherits its default
directories from SuperBasic. The program can subsequently issue calls to
change them (using the chdir() , chpdir() and chddir() library functions).
These will affect subsequent file open calls made by the program, but will
leave the SuperBasic settings unchanged.
If a C68 program starts another child C68 program, then the child program
inherits the current default directory settings of its parent job, rather
than the current settings at the SuperBasic level.
WARNING
There can be a problem if you try and use a filename that could be confused
with a device name. The C68 system will probably try and open the device
rather than the filename that you expected to be used. This is because c68
will try and open the device first.
This means that names that begin with items like the following (probably

This means that names that begin with items like the following (probably
followed by and underscore and further text) are likely to not work
correctly:
 pipe
 ser
 spell (if you use the QJUMP Spell checker)
The same would apply to any other name that could be confused with a simple
device on the system in question.
ENVIRONMENT VARIABLES
The C68 system allows for the use of Unix style Environment variables. For
more detail on how environment variables are used look at "Environment
Variables" document (in the file ENVIRON_DOC).
If a program is started from SuperBasic, it inherits its environment
variables from SuperBasic. The program can subsequently issue calls to
change its own environment variables (using the putenv() function) without
affecting the settings at the SuperBasic level.
If a C68 program is a child of another C68 program, then the child program
inherits the current environment variables of its parent job, rather than
the current superBasic settings.
C68 follows UNIX convention in that the main() function in the user program
is passed a third parameter (char *argp[]) which gives a user program
details of its initial environment. The argp parameter is an array of
pointers terminated by a NULL pointer. Each entry in this array points to a
single environment variable. These environment variables are each C strings
of the form NAME=value.
WARNING
The argp array will no longer be valid if the user program performs any
putenv() library calls. The global environ variable can, however, be used
instead as this is updated by putenv() calls.
READING QDOS DIRECTORIES
There are various sets of routines for reading directories. The simplest
are the Unix compatible set. These will automatically reformat the
information to the Unix style for directory entries.
There are two other sets of library routines that deal with reading QDOS
directories. One set of these (the ones that return struct DIR_LIST
pointers) are for producing sorted lists of filenames, sorted on any
criterion (as QRAM produces).
The other set are for scanning a directory file by file (the read_dir type
of calls). These take less memory but whilst the directory is open no new
files can be created by any job, as the directory structure is locked by
the job owning the channel id to the directory. Note that this means the
calling job itself as well, so opening a directory file, then trying to
create a new file in that directory will cause the job to deadlock forever
(the create file call is waiting for the directory to be released, which
cannot happen until the create file call finishes!).
These directory reading calls take wildcard parameters (as described later
in this document) and will return short names if the current data directory
is being read (eg. if the current data directory is flp1_test_, containing
files flp1_test_file1, and flp1_test_file2, then reading the current
directory will return the names file1 and file2, rather than the complete
name).
Also directory searches may be limited on file attributes (program, data,
directory etc.) Defined constants are provided in qdos.h to allow any range
of file attributes to be selected on a directory read (OR'ing the required
types together allows more than one type to be recognised by the reading
routines).
QDOS AND SMS TRAPS
The full range of QDOS and SMS trap calls are provided as separate routines
in the C68 libraries. Several of the most useful vectored routines are also
available although not all of them.
The graphics calls have been expanded to work with both integer and C
double precision floating point arguments. As a rule, the sd_i type graphic
routines take integer arguments, whereas the sd_ type routines take double
arguments.
Conversion routines have also been provided. There are some that convert
short and long integers and double precision floating points to and from
QDOS/SMS floating point. There are another set that convert between C and
QL string formats.
For any extra routines that are needed to call toolkits etc. the routines
qdos1() , qdos2() , and qdos3() are provided that allow direct access to
the QDOS traps.
The QDOS/SMS system variables are pointed to by an external variable
_sys_vars . This is set at startup time to point to the base of the system
variables.
There may occasionally be times when you need to go into supervisor mode

There may occasionally be times when you need to go into supervisor mode
(thus disabling multitasking). To do this the _super() and _user() calls
are provided. The _super() call sets your program into supervisor mode, and
the _user() function exits from supervisor mode.
Note that, as supervisor mode uses a different stack to user mode it is
VITAL that your program does not return from the function that called
_super() before calling _user() first. _user() puts the program back into
user mode and restores the program's ordinary stack. The _super call is not
re-entrant, ie. If you call it when you are in supervisor mode, your
program will crash (although we hope to lift this restriction in a future
release of C68).
It is bad practice to use Supervisor mode unnecessarily. Therefore you
should avoid using supervisor mode unless you really need it.
USING FLOATING POINT
The versions of printf and scanf (and the variants of these) that support
floating point are considerably larger than those that do not. To save
including this overhead in the vast majority of C programs that do not use
floating point, the standard C library LIBC_A only contains versions of
these routines which do not support floating point.
To use the versions that do support floating point you need to include the
maths library LIBM_A by specifying the -lm parameter to either CC or LD.
This will cause the floating point variants of the above routines to be
included in preference to the integer only ones in LIBC_A.
If you attempt to print any floating point numbers and you have forgotten
to include this library then the message
 "No floating point"
will be printed where the number would otherwise have been printed.
SIGNAL HANDLING
C68 programs that are compiled with Release 4.15 or later will by default
support signal handling as described in the SIGNALS_DOC file.
WILDCARD HANDLING
In a number of places you will find reference to 'wildcard', particularily
in reference to filenames. The style of wildcard supported is the same as
that in Unix. This means that:

1. The character * is used to represent a string of any characters, and
of indeterminate length.

2. The character ? is used to represent a single character of any value.
3. The characters [and] are used to give a range of characters at a

given point. These can be individual characters (i.e. [ab] means 'a'
or 'b') or a range of characters (i.e.[a-c] means 'a' or 'b' or 'c').

4. If you want one of the special characters used above as an actual
character value then it is preceded by \ .

To look at some examples to help clarify this:
 *_c Any file finishing with the letters _c
 *_c A file name whose exact name is '*_c'.
 [a-
z]*_[ch]

 Any file whose name starts with a letter, and which finishes
with either '_c' or '_h'.

 ???_c Any file whose name is exactly 5 letters long, and whose last
two letters are '_c'.

There are routines in the supplied LIBC_A that support this form of wild
card, so it is easy to implement it in your own programs.
WILDCARDS IN COMMAND LINES
A situation in which you commonly want to use wildcards is when passing
filenames as parameters to a C program. It is possible to get C68 to
emulate the Unix shell capability whereby the command line is scanned for
any arguments that contain wildcards, and if any are found they are
expanded into a list of matching filenames. This can be achieved in C68 by
including lines of the form
 void (*_cmdwildcard)() = cmdexpand;
somewhere in your program outside any function declaration. If you wish
alternative wildcard expansion to that provided then you can use your own
routine in place of the supplied cmdexpand() routine (but use the source of
the supplied one as your model).
For details on how to write such routines it is best to examine the source
code for the cmdexpand() routine which is present on the SOURCE issue disks
(in the LIBC_INIT_src_zip archive).
USING THE GST LINKER WITH C68
The output '_o' files that are produced by C68 are in standard QL SROFF
(Sinclair Relocatable Object File Format). They are thus acceptable to the
the standard GST LINK program (or the Qunata QLINK program which is just a

the standard GST LINK program (or the Qunata QLINK program which is just a
bug-fixed version of LINK). LINK writes its relocatable information in a
different format to the LD linker, which means that it is necessary to use
a different startup module to the ones provided for use with LD . A
suitable start up module for EXECable programs is provided as 'qlstart_o'
with the C68 system.
Note that the GST LINK program is not capable of linking RLLs, or of
linking programs that will use RLLs. For this you must use the LD linker
(v2.00 or later).
It is assumed that if you intend to use LINK, then you know how to run it,
so no additional intructions are included in this document.
CHANGE HISTORY
This is a short summary of the changes that have been made to this
document. The intention is to make it easy for users who are upgrading to
find any new information.

 02 Oct 93 DJW
 Changed the statements that show how global vectors are
set to include parameter types as required by C68 Release
4.00 onwards.

 10 Nov 93 DJW
 Removed part about possible conflict with assembler
reserved words. Cannot now happen as all external C symbols
now start with an underscore character.

 31 Dec 93 DJW Removed section on Winchester disk support as no longerreally relevant.

 Changed statements for initialising global function
vectors as parameter types no longer required (assuming
QDOS_H has been included (i.e. undid change of Oct 93).

 25 Apr 94 DJW Minor changes and corrections for the 4.13 release.

 03 Sep 94 DJW
 Added paragraph on using fflush() for mixing level 2 I/O
with levels 1 or 0 as an alternative to running channe;
unbuffered.

 20 Jan 95 DJW Added description of the _Cinit, _Readkbd and _Openvectors.
 10 Aug 95 DJW Added comments to section on default directories andsimple device clashes
 28 Sep 95 DJW Added description of _endtimeout global variable tosection on termination message.
 Added short section on signals.

 28 Apr 96 DJW
 Moved section on using GST LINK program to this document
as being a better lcoation than the documentation of the ld
program.

Environment Variables
INTRODUCTION
This document discusses the topic of Environment variables in C68. It
covers how they are set up, how they are accessed, and why you might want
to use them in the first place.
WHY USE ENVIRONMENT VARIABLES
Environment Variables are an idea that has been adopted from the UNIX
operating System. Environment variables are basically global variables that
use to control certain aspects of how your system will run. Typically you
would set up standard values during the loading of your system, although
you may modify some of them at a later date.
In QDOS terms, this means that you can set up information in your BOOT file
that can be later interrogated by other programs running. This can make it
much easier to centralise the control of your system rather than having to
tell each program separately as you run it.
An important feature of Environment Variables is that they are NOT cleared
if you load a new SuperBasic program. Thus they remain set for the duration
of your session (or at least until you reset your machine).
SUPERBASIC INTERFACE
The SuperBasic interface is provided as four extensions to the SuperBasic
interpreter, the code for which in contained within the ENV_BIN file
provided with the standard C68 distribution. This file should be LRESPR 'ed
if you wish to make use of the facilities that it offers.
The four extensions provided are as follows:-
 SETENV A procedure that allows you to set the value of an environment

variable

ENV_LIST

 A procedure to list the settings of your current environment
variables to a channel (usually the screen)

ENV_DEL A procedure to delete an existing environment variable

GETENV$

 A function that returns the value of a specific environment
variable.

GETENV$ variable.
USING THE SUPERBASIC INTERFACE
The first thing that you are likely to want to do is to set the value of
one or more environment variables. This is done by using SuperBasic
statements of the form:
 SETENV " NAME = VALUE"
This sets up an environment variable NAME, and gives it the value VALUE.
For instance, the command
 SETENV "TMP=ram1_"
gives the environment variable TMP the value of ram1_. It is worth noting
that the VALUE part may be null, ie
 SETENV "TMP="
will assign a null string to the variable TMP. This should be contrasted
with the putenv() usage, below as used in the C environment.
Subsequently setting another value for the same variable causes the
previous definition to be overwritten. Most users will set values at
startup from within their boot files.
You can obtain a listing of the current settings of all your Environment
Variables at any time by using a SuperBasic command of the form:
 ENV_LIST
or
 ENV_LIST #n
This causes all currently defined environment variables to be written to
the channel specified, or #1 by default.
If you decide that you wish to completely remove an Environment Variable,
then this can be done by using a SuperBasic command of the form:
 ENV_DEL " NAME "
This procedure will remove an environment variable definition completely.
In many cases this will be equivalent to using the SETENV command to give a
variable a null value. They are not quite the same as at the C level one
will result in the getenv() call returning NULL, and the other will result
in it returning a pointer to a zero length string.
If you want to interrogate the value of a particular Environment Variable
from within a SuperBasic program, then this can be done by using the
function:
 GETENV$(" NAME")
This allows the environment variables to be manipulated from SuperBasic.
The GETENV$ function will return the value of and environment variable, or
a null string if not found. Hence, after:
 a$="test=debug level 1"
 SETENV a$
PRINT GETENV$("test") would print the string "debug level 1"
but
PRINT GETENV$("TEST") would print a null string (since Environment variable
names are case sensitive).
and the sequence
 b$ = GETENV$("TMP")
 IF b$ = "" THEN
 b$ = "RAM1_"
 SETENV "TMP=" & b$
 ENDIF
 SETENV "TMP_FILE=" & b$ & "WORK_TMP"
will ensure that the TMP variable is set, and that another environmental
variable, TMP_FILE, contains a reference to a file WORK_TMP on the same
device.
C68 C LEVEL INTERFACE
The Environment Variables capability interface is built into all C68
programs that are compiled with Release 2.01 or later of C68.
The routine main() is now passed an additional parameter at program startup
that points to the environment variables (if any) that are currently set
up. The syntax of main() is now therefore:
 int main (int argc, char * argv[], char * argp[])
 {
 ...
where the argp variable is an array of string pointers. Each entry points
to a single NULL terminated string which is in the form:
 STRING=VALUE
and the list is terminated by a NULL pointer.
A user program has a number of library routines available to manipulate

A user program has a number of library routines available to manipulate
environment variables:

the routine getenv() can be used to obtain the value of a specific
named Environment Variable. A NULL pointer is returned if the
specified Environment Variable does not exist. i.e.
 getenv("TEMP");
would return a NULL if the TEMP Environment variable did not exists,
and a pointer to its value if it did. Please note that the returned
value may also be a zero-length string for an Environment Variable
that does exist, but that has not been assigned a value.
the routine putenv() can be used to give a value to an Environment
variable. This will change the value if the named Environment Variable
already exists, or create an new value if does not. Therefore a call
of the form:
 putenv("TEMP=ram1_");
would set the environment variable TEMP to a value of ram1_.
If you want to remove an environment variable completely then call it
assigning a zero length value. i.e.
 putenv("NAME=");
would delete the environement variable NAME (This is a slightly non-
standard treatment).

INHERITING ENVIRONMENT VARIABLES
If a number of c68 compiled jobs are chained together then the environment
variables of each slave job are inherited from the owner. The master job
will obtain its values from the settings in SuperBasic.
This inheritance factor is important as it means that if a library call is
used to change one of the environment variables, then this is remembered
and passed on without changing the setting that is current at the
SuperBasic level.
STANDARD ENVIRONMENT VARIABLES
A number of standard Environment Variables are set up automatically by the
C68 system. These are
 PROG_USE
 DATA_USE
 SPL_USE
They contain the values for the Program, Data and Destination directories
respectively. If the program has been started from Superbasic and these
Environment Variables have not been explicitly set at the SuperBasic level,
then these Environment Variables will have the same values as you have set
up using the Toolkit 2 commands PROG_USE, DATA_USE and SPL_USE.
TIP: If you want your C programs to use a different default directories to
those used by Superbasic programs, then you can set any one of the
DATA_USE, PROG_USE or SPL_USE environment variablesexplicitly at the
SuperBasic levle.
WHAT PROGRAMS USE ENVIRONMENT VARIABLES
To determine whether a program will use any environment variables, it is
necessary to look at the documentation for that program.
Examples of programs that are supplied as part of the C68 system that DO
make use of Environment Variables are the CC, C68 and MAKE programs - refer
to the documentation on each program for the details.
AUTHOR(s)
Original version - Dave Nash.
C code modification - Dave Walker.
SuperBasic interface extension - Dave Woodman.
CHANGE HISTORY
This is a short summary of the changes that have been made to this
document. The intention is to make it easy for users who are upgrading to
find any new information.
 25 Apr 94 DJW Minor changes and corrections for the 4.13 release.

QDOS/SMS Signal Handling Extension
1. INTRODUCTION
This document describes the implementation of the SIGNAL device driver for
QDOS and SMS. Initially C68 compiled programs have been seen as the main
users of this facility, but the implementation is actually language
independent so that it can be used from any language [although processing
signals by good old SB interpreter could pose a problem].
This document is structured in such a way that the general information is

This document is structured in such a way that the general information is
given first. Subsequent sections get deeper into the way that the SIGNAL
system has been implemented. You only need read, therefore, as much of the
document as you think is relevant to the use you want to make of the SIGNAL
system.
The SIGNAL system was developed by:
 Richard Zidlicky
 [address and contact details removed at request of author]

If you have any feedback on the SIGNAL ssytem, then it can be provided
either directly, or via Dave Walker (Issue co-ordinator of the C68 system).
2. BACKGROUND
In UNIX and similar operating systems signals are used for a number of
purposes:

1. signalling and handling soft and hardware errors and exceptions like
stack overflow, illegal ops, div by zero, bus and address exceptions

2. notifying processes about a situation needing urgent response, for
example communication with sockets or special devices

3. for (asynchronous) communication between processes
4. handling of certain keyboard or timer events like ctl-c(INT) or ctl-s,

alarms, or events generated for example by the window manager
(SIGWINCHD)

5. telling the process that it exhausted its limit on certain resources
like memory, CPU time, number of open files

In all of the above cases the normal execution of the process is
interrupted (at any point), its context saved and the handler for the event
is called. If the user program has not supplied an explicit handler for a
particular signal type, then the system supplied default handler is used
instead.
In QDOS and SMS option (a) is already (largely) implemented through
MT.TRAPV but, unlike signal handlers, the handler routines are called in
supervisor mode and also need to take care of the differing stack frames
formats used by different members of the 68xxx family of processors. Sooner
or later the signal extension will offer some option to take care of this.
It is my intention to provide an implementation for (b), (c), (d) and (e)
in QDOS through the signal extension.
At the moment (c) and (d) is working fine (at least on some machines).
The mechanism provided means that in principle (b) and (e) is no problem
either, but you need some special way to generate the events - a job
checking for a special keyrow combination or a button or hotkey appear more
appropriate in a QDOS enviroment than rewriting console drivers to send
signals on ctl-\ etc.
The SIGUTIL program (described later in this document) is a simple exmaple
how signals could be interactively generated in QDOS or SMS. A more elegant
way of doing this would be to define buttons representing the signals that
could be drag & dropped into the application's window.
(e) would work but QDOS does not use this possibility - it is therefore
only useful at the moment for resources that are not managed by the
operating system.
(b) (and partly also (e)) require that it is possible to send signals from
within device driver code or extern interrupt handlers, currently this can
be done only from the scheduler loop.
3. INSTALLATION
To load the signal extension, use the instruction
 LRESPR sigext_rext
If in addition, you use the pointer interface and you wish interactive
signal generation via the SIGUTIL program then use a command of the form
 ERT HOT_RES(chr$(236),sigutil) : rem alt-F2
Note that if your QL has other than 50 Hz poll loop frequency, you should
run the config program on sigext_rext to adjust it, otherwise alarm() and
related calls will be pretty unprecise.
Lightning is known to upset the timing mechanism of the signal extension,
_lngOFF apparently cures the problem.
4. SENDING SIGNALS USING SIGUTIL
The SIGUTIL program is a simple interface that allows you to send signals
to any program running on the system.
Activating SIGUTIL
The SIGUTIL program is activated by whatever hot-key combination you have
chosen (the example above uses ALT-F2).

chosen (the example above uses ALT-F2).
Sending Signals

Get the active cursor or mouse pointer into a window of the job you
want to send the signal
press ALT-F2 (or whatever hotkey you assigned to it), SIGUTIL will
open a window with a primitive menu and show the jobname and some
options.

Now you can simply press ENTER to send this job SIGINT, this is what you
will do most of the time, or press some of the other keys for other signals
or options.
SIGUTIL will now try to send this signal, if there was an error it will
show the error message for a couple of seconds.
Setting uval
'uval' is an extra parameter that can be delivered to the signaled job,
SIGUTIL zeroes it by default.
To change this hit ' u ' in the main menu and edit the value.
Setting piority
SIGUTIL uses the highest possible priority for sending signals by default.
To change it hit ' p ' in the main menu and adjust with the arrow keys.
 WFJ applies if the job is waiting for another job
 SYSC ... I/0
 SUSP suspended
The defer flags should always be enabled for c68 programs.
If you do not want to use the programming interface to signals, then you
can probably skip the remainder of this document.
5. DIFFERENCES TO UNIX SIGNALS
There are still some, but using standard C library calls you may never
notice the difference. While some of the differences are considered usefull
features, other may disappear sometime.
Some of the differences :

Default actions are very different from unix, for example signals
can't cause coredumps.
Some unix flavors allow an additional parameter to be passed with
certain signals, I have generalized this behaviour, so that some
routines can take an extra 'uval' parameter. This can be used for
example to pass extra information about the cause of an exception.
Receiving signals is controlled by a set of priorities and various
flags in addition to the unix control schemes. A job that does not
explicitly establish a handler will simply ignore all signals. (ERR_NF
being returned to the signaling job)
Because Unix system calls are often emulated by larger chunks of code
in QDOS I have created an 'emulated system call' feature to allow
better control of such code.
Unlike unix, many signal numbers do not yet have any special meaning
to QDOS.
SIGKILL and signal number#0 get special handling in QDOS - 0 can be
used to test whether a job exists and has established an
signalhandler. (err_bj, err_nf)
SIGKILL can't be blocked or caught using the '%CSG' handler. (But the
default action may still be defined by the job in same cases)
Sending and receiving signals works through channels, this is only an
implementation detail. Sending signals should also work over networks.
In UNIX pending signals are checked whenever the process exits the
kernel. This is not yet done by QDOS, so obviously checksig() must be
called explicitly or through sigcleanup() in some situations -
currently only when a signal handler is exited through longjmp().

6. USING SIGNALS FROM C
The easiest way to use the SIGNAL extension from within C programs is to
use the routines supplied within the standard C library. This library
provides routines that emulate the functionality of all the signal handling
routines defined by both POSIX and UNIX.
If you use the library routines anywhere in your program, then you do not
have to do anything additional to get the signal handling support included
into your C program. It will automatically be included from the C library
simply because you have used one of the relevant signal handling library

simply because you have used one of the relevant signal handling library
routines.
If you use no signal handling routines anywhere in your program, then by
default no signal handling code will be included. In this case the handling
of any signals for such a program will be determined by the default
handling of signals that is built into the signal extension. If you want to
include default signal handling explicitly into your program, despite the
fact that you may have used no signal handling related library calls then
you can do this by including a call of the form:
 _Signals_Init = &_SigStart;
at the start of your main() function in your program.
Signal Extension not loaded
Another possibility is that your program is set up to support signals, but
that at runtime the signal extension is not present. The default is that
nothing happens, and your program runs as normal, but simply returns an
error code to any signal handling functions. What happens here is
determined by the behaviour of the routine _SigNoImp that is called any
time the any attempt is made to access the signal handling sub-system
(including initialising it). The protoype for this function if you want to
return your own is
 int _SigNoImp (int signal_number, ...);
The library provides a default implementation that will output the message
pointed to by the global variable __SigNoMsg (unless this is NULL) every
time the signal handling sub-system is called (including the initial
initialisation) until the message has been output the number of times
defined by the __SigNoCnt global variable. The routine then returns the
QDOS/SMS error code for "not implemented". The default definitions for
__SigNoMsg and __SigNoCnt are
 short __SigNoCnt = 1;
 char * __SigNoMsg = "*** SIGNAL extension not loaded ***\n";
Initialisation of Signal sub-system
If you use the default C start-up code, then you do not need to do anything
to get the signal sub-system initialised if you have used . If, however,
you have suppressed the C start-up code, then you can still use the signal
sub-system if you initialise it explicitly. To do so you need the following
line in your program:
 _Signals_Init();
All signal handling functions will then work as normal.
Cautions
There are some restrictions that one needs to be aware of when using
signals within your program:

QDOS/SMS signals can interrupt trap #3 routines, waitfor() and suspend
calls. Such calls return ERR_NC as the return code. The C68 calls that
mimic UNIX system calls should finally handle this correctly. STDIO
level calls such as fread() and fwrite() will normally retry the I/O
operation and continue without error.
Programs that call trap#3 routines, mt_susjb or mt_cjob directly
should be aware that these operations can return prematurely.
If this is a problem you can either set priority for such calls or do
a retry by the signal handler. However it is better to write programs
so that they do not depend on this.
There are restrictions on what library routines can be called from
within a signal handler. In particular signal handlers should not call
any c68 memory management routines (unless you know very well what you
are doing) or STDIO routines. Caution should be used when calling
other library functions or modifying global variables used by library
routines.

Compatibility
I hope this interface does emulate some unix flavors fairly well, but
certainly programs that rely on coredumps or any default actions will have
problems.
Signal related Library functions
The following POSIX style functions are supported. They are described in
more detail in the LIBUNIX_DOC file:
 alarm()
 kill()
 raise()
 signal()
 sigaction()

 sigaction()
 sigaddset()
 sigdelset()
 sigemptyset()
 sigfillset()
 sigismember()
 siglongjmp()
 sigpending()
 sigprocmask()
 sigsetjmp()
 sigsuspend()
The following additional variants on Unix functions are supported. They are
also described in more detail in the LIBUNIX_DOC file under the more
standard variant:
 fraise()
 raiseu()
 killu()
The following functions that are specific to the C68 implementation of
signals are supported. They are described in the LIBC68_doc file
 sendsig()
 set_timer_event()
 sigcleanup()
Some global variables that can be used to alter default behaviour of the
handler and some library calls
 struct SIG_PRIOR_R _defsigrp default receiving priority
 struct SIG_PRIOR_S _defsigsp .. sending ...
 struct SIG_PRIOR_S _defsigskp .. for sending SIGKILL
_defsigrp is only looked up during program startup and (notyet) after every
sigsuspend() call.
7. TECHNICAL DESCRIPTION
This section covers low level details of the implementation of the signal
extension. It would not be necessary for the average user to be aware of
any of the details in this section.
QDOS signal interface
The signal extension is implemented as the SIGNAL device driver Opening a
channel to this device establishes a signal handler for the job and/or
enables sending signals.
Sending signals and controlling timer events is done by sending messages
through trap#3 I/O calls. io_fstrg can be used to enquire the version of
the installed signal extension and some additional information.
C programs (and other that use %CSG type handlers) get access to a vectored
set of calls to control their handlers and raise signals - see %CSG handler
interface. C programs can also use the standard Posix defined set of
library routines for handling signals.
QDOS signal handlers:
This section describes the differences between %SIG and %CSG handlers.
However it is recommended to use the automatic handler initialization, goto
next chapter.
When initially opening a channel to the SIGNAL device, one can ask for two
different modes of operation. The mode required is defined by the type of
structure that is passed as a parameter to the open.

%SIG

 is a very simple, stateless handler intended for use in assembler
programs. There is only one handler routine getting signal number and
some other parameters passed in registers.

%CSG

 is a complex handler structure intended to emulate UNIX signals as
close as desirable for C68 programs, uses C style parameter passing
and provides a vector for some functions

Both structures are defined and partly initialized by the job in its
private memory, where they must remain allocated for the lifetime of the
handler. A major difference between them is that %SIG handlers don't allow
you to block signals, while the %CSG handlers can do this. Also %CSG allow
to ignore certain signals so that the job is not at all disrupted when they
occur.
C programs would normally use the standard library routines for
manipulating signals, and these are mapped onto the %CSG handler. There is
no technical reason, however, why C programs cannot use any of the handlers
directly using trap#3 style calls if they need to implement functionality
that would not otherwise be available. If you wish to access the signal
structures from within a C program, this can be done by using
 #include <sys/signal.h>
The QDOS_SIGH structure corresponds to the %SIG structure, while the
QDOS_CSIGH structure corresponds to the pretty complex %CSG handler.

Assembler programs should probably use the simpler %SIG type handler. The
layout of the %SIG handler is
 Offset.size Value Description
 0.w $4afc magic
 2.l '%SIG' type
 6.l sighnd pointer to sighandler or SIG_IGN
 10.l stackbot don't signal if a7 < stackbot
 14.l priority priority
Here the layout of the %CSG handler as defined in sys/signal.h . All arrays
have to be (nsig+1) ellements. Some features are not yet fully tested or
implemented, they are not described here. See the c68 library sources for
an example how to initialise this structure.
 struct QDOS_CSIGH {
 unsigned short m1; /* magic, init to 0x4afc */
 unsigned long m2; /* type = '%CSG' */
 unsigned nsig; /* # of signals to be handled */

 void (*** curr) (int) ; /* current table * */
 void (*** def) (int) ; /* default table * */
 /* def=NULL is legal since signal extension v0.27 */
 /* thus using default table builtin siegxt instead */
 sigset_t **samask;

 unsigned short prot_id; /* VOID, init to 0 */
 union {unsigned short levl;
 unsigned short **plevl;} hprotlevel; /* VOID, init to0*/

 unsigned short stack_id; /* currently must be 0 */
 char * stackmin; /* lowstacklimit */

 unsigned short pri_id; /* 0= signle value, 1=array */
 union {struct SIG_PRIOR_R prio;
 struct SIG_PRIOR_R **pprio; } priority;

 struct *statinf; /* pointer to syscall control */
 /* struct, see system call control*/
 int (*sigvec)(int, ...); /* vector for sigaction() etc. */

 /* some status info */
 unsigned short cprotlevel; /* void */
 unsigned short defer; /* never touch !!! */
 unsigned short activ; /* never touch !!! */

 long **uval; /* pointer to array or NULL */

 sigset_t block; /* don't use these */
 sigset_t pending;
 sigset_t resethandler;
 };
Initializing a signal handler for sending/receiving Signals
For receiving signals a job should open a '*SIGNAL_R' channel. The code in
d3.l can be the addres of one of the structures defined in the last
chapter, the prefered method is to use D3.L=0 and setup the handler as
described in the next chapter.
To send signals a job can use any channel it or any other job has opened
for sending or receiving signals. It may open a send only channel with the
name '*SIGNAL_S'
The following io.open errors can occur:
 err.nf not found. Forgotten to lrespr sigext_rext?
 err.iu trying to establish more than one handler for this job
 err.bp *signal_' instead of '*signal_r', invalid address in D3
Automatic handler setup
Just send a SIG_HIMSG to the channel opened for receiving channels (see
also chapter about messages).
 /* message struct for initialising handler */
 struct SIG_HIMSG {
 unsigned long magic; /* '%MSG' */
 unsigned long len; /* sizeof(struct SIG_HIMSG) */
 unsigned short type; /* M_HINIT */
 unsigned short txi; /* flags, see below */
 unsigned long jobid; /* must match owner id */
 unsigned long hi_nsigs; /* _NSIG */

 unsigned long hi_nsigs; /* _NSIG */
 unsigned long hi_stack; /* stack bounds */
 };
Currently this flags are implemented:
 #define HI_UVAL 0x1 /* alloc array for storing uval */
 #define HI_APRIO 0x2 /* allow individual priority for each signal */
After this initialization it is usefull to get the address of the sigvec
interface routine, see chapter about trap#3 calls
Signal handler routine(s)/ receiving signals
Sending a signal to a job causes this job to interrupt its normal work and
jump to the signal handler (sub-)routine, comparable to a hardware
interrupt.
 '%CSG' handler(the default case):
handler routine receives its parameters on stack, the complete declaration
of the handler routine is
 void handler(int signo,int pri,int uval, struct ESVB ctxt);
 '%SIG' handler:
handler routine gets these parameters:
 D4.L = signal number ; upper word reserved, 0
 D5.L = priority of signal ; any use for this?
 A4.L = usval ; extra parameter
 A7.L = points at (struct SIGSVB) ; this may be used to examine the statein which the job was interrupted
only D4,D5,D6,A4,A5,A7,SR are saved by the system (into struct SIGSVB), the
signal handler routine must save all other registers it uses.
In both cases the handler routine is called in user mode.
Exiting from signal handling
The signal handler can be exited locally (RTS, return()) or nonlocally
(longjmp()). C programs should use sigcleanup() call if exiting nonlocally,
otherwise pending signals might not be processed.
Signals that interrupted a QDOS call
A job should allow such signals (see priority) only if it can handle the
resulting conditions. Only system calls with timeout greater 1 or infinite
can be interrupted.
If an I/O (trap#3) call is interrupted, it will return AFTER the signal
handling (if ever) with D0=err.nc and all other registers as if a normal
timeout had occurred.
The signal handling routine may examine the state in which the job was
interrupted - but note that struct SIGSVB describes the state as it was
when the signal was sent not when it was received. This means eg if
SIGSVB.signature indicates an IO call may have been interrupted, this is
only true if D0=-1
This is because interrupting the suspended state is done by setting
jobheader.stat (acting as timeout) to a small positive value, giving QDOS
some chance to complete its task.
System call control
Because many Unix calls have no exact equivalent call in QDOS, they are
often translated to one or more QDOS calls by the library. Unfortunately it
turned out that without special treatment of such calls it is very
difficult or even impossible in some cases to emulate the correct behaviour
of such calls with respect to signals.
The best way to get the desired efect would be to make them real system
calls, this is not practical in the current implementation for a variety of
reasons.
A mix of strategies is used to achieve a good emulation without too much
incovenience:

a special sigvec function is used to enter system calls, this is a
'call through' mechanism. This function also establishes a context to
where program control returns in case of a fatal signal.
in SYSCALL mode all but fatal signals are blocked, the system call
itself can check for pending signals.
a special mode is provided to unblock QDOS calls with infinite or very
long timeout

Fatal signals (in this context) are SIGBUS, SIGILL or SIGSEGV, not SIGKILL!
If one of these is received, program control returns per longjmp out of the
system call function.
Other signals (unless blocked or ignored by user code) are blocked. If the
SCTL_EXP mode is used, any pending signal(s) will cause interruptible QDOS
calls that are currently executed or called later while in SCTL_EXP mode to

calls that are currently executed or called later while in SCTL_EXP mode to
timeout.
As in most situations it makes litle difference whether the signal
originated from a raise() or some other cause
This macros are defined for system call management:
 err=SYSCALL0(flags,&sctl,syscall)
 err=SYSCALL1(flags,&sctl,syscall,arg1)

 err=SYSCALL3(flags,&sctl,syscall,arg1,arg2,arg3)
currently no flags, syscall() is the function to be called in system call
mode with args.
err<0 : system call could not be initiated for some reason, try calling
syscall(...) direclty.
The return value of the system call is always stored in sctl.rval, see
below.
struct SYSTL sctl;
includes following members:
 sigset_t
pending;

 stores pending signals, can be used for checking and must be
checked for FATAL signals after return from SYSCALLn

 long
rval; return value of syscall() or uval in case of a FATAL signal
After return from SYSCALLn a test on fatal signals should be performed,
something like:
if (sctl.pending | _SIG_FTX)
Inside syscall mode following things are defined:
sigset_t *pf=SYSCTL(flags);
flags 0 or SCTL_EXP, used to obtain addr of pending flag and to change to
or from SCTL_EXP mode if needed
 SYS_ISPENDING(pf) returns true if any signal pending
 SYS_PENDING(pf) returns set of pending signals (not its address!)
Here is a small example merely to demonstrate the calling sequence. As it
is a toy program it doesn't seriously test for fatal signals as it should.
 /* here is the actual "system call" */
 int sys_test(a,b,c)
 int a,b,c;
 {
 int err,tmout;
 sigset_t *pf;
 printf("entering sys_test(%d,%d,%d)\n",a,b,c);
 if (a<2) printf("sysctl(0) returns %d \n",pf=SYSCTL(0));
 else printf("sysctl(1) returns %d \n",pf=SYSCTL(SCTL_EXP));
 tmout=a<2 ? 100 : -1;
 if (a==4) {testsyscall(); return a;} /* nested syscalls */
 while(0==(SYS_PENDING(pf)&sigmask(SIGQUIT)))
 {
 printf("signals pending: %s\n",psigset(*pf));
 mt_susjb(-1,tmout,NULL);
 }
 if (a==3)
 {
 printf("\nnow test longjmp exit\n");
 raiseu(SIGSEGV,144);
 }
 printf("do normal exit\n");
 return a;
 }
 /* and here comes the stub functions */
 void testsyscall()
 {
 int err;
 struct SYSCTL sctl;
 printf("\n&sctl = %d\n",&sctl);
 printf("\ntest plain syscall\n");
 err=SYSCALL3(0,&sctl,sys_test,1,-5,0x100000);
 printf("returns %d, rval %d\n pending :
 %s\n",err,sctl.rval,psigset(sctl.pending));
 }
As seen in this example, it is possible to do nested 'system calls', but
special care is needed to avoid deadlocks; especially this simple example

special care is needed to avoid deadlocks; especially this simple example
will hang easily.
Control of signal receiving
For ' %SIG ' handler receiving signals may be disabled by

setting QDOS_SIGH.sighandler to 0. This will cause the sending job to
retry or err.nc
closing the channel opened for receiving signals.

' %CSG ' handlers may block signals by the use of sigprocmask(), this will
delay the signal after it has been unblocked again or simply ignore them.
The sending job can not distinguish whether the signal was processed or
blocked or ignored.
For both handlers signal delivery is also controlled by the priority, see
below. If the signal is not delivered due to a too small priority, the
sending job is returned an ERR_RO.
Priority
is a longword that consists of the actual priorities for each possible
state of a job and some flags to control additional features. Thus the
definition of receiving priority
 struct SIG_PRIOR_R
is slightly different from the sending priority,
 struct SIG_PRIOR_S
the common part for both are these bit fields:
 p.norm ; applied if job is in normal state
 p.susp ; suspended
 p.wfio ; waiting for io
 p.wfjob ; waiting for another job
any of them [0-7].
According to the state of the signal receiving job one of these priorites
is applied. The job receives the signal only if the priority given by the
sending job is GREATER than that of the receiving job. Thus by setting
required priority to 0777(octal) a job may inhibit any signals.
Inside an emulated system call p.norm is always applied.
furthermore the sending job may use bits (flags)
 p.df_susp;
 p.df_wfio;
 p.df_wfjob;
if the receiving job is in one of the suspended states and the priority of
the sent signal is not big enough to break the suspended state but enough
to interrupt the job in the normal state, the according flag is examined
and if set, the signal is effectively delivered after the job returns from
the suspended state or the I/O call. This does not block the sending job.
In assembler this is a long word with this bit masks:
 xyzjjjiiisssnnn ;xyz only for use by the sigsending job
where
 n = norm field,
 s = suspend,
 i = wfio,
 j = wfjob,
 x = df_wfjob,
 y = df_wfio,
 z = df_susp
The df_* bits should be on when sending signals to C68 programs.
All other bits of priority are reserved and should be cleared, otherwise
they could cause ERR_NI or some ugly errors if these bits are assigned in
the future.
The following table shows some suggested receiving priority values. For
example if your job is doing some work, expecting some signals for
communication but can not handle interrupted trap #3 calls a priority like
01611(oct) or 01711(oct) may be appropriate.
 0 job isn't doing any useful work, it definitely waits for some signal

to proceed
 1-
3

 job is working and expects some signals, use for job communication,
asynchronous IO or sockets

 4 default value for c68 progs; there is good chance signals will be
handled gratefully, ie not terminate the process

 5 signals will probably have serious impact on this job
 6 signals will probably terminate this job

 7 block every signal, report ERR_RO to signaler
Signal TRAP #3 calls
Sending signals and setting/examinig timer events is implemented as
standard trap#3 io_sstrg, io_edlin calls that are used to send or send and
receive message structures.
io_fstrg reads the struct SIG_INFO as defined in sys/signal.h into the
buffer. This is the easiest way to obtain the address of the sigvec routine
and the version number of the signal extension.
Messages
the signal extension currently understands three message formats:
 struct SIG_MSG, msg.type=M_SIG to send a simple signal
 struct TMR_MSG, msg.type=M_TIMER to set/change/cancel a timer event
 struct HINIT_MSG, msg.type=M_HINIT
Sending Signals
To send the signal do a TRAP#3 io_sstrg with this parameters:
 D0 = #7
 D2.L = #buflen ; sizeof(struct SIG_MSG)
 D3.W = #timeout ; should be >0 if signaling
 ; job==-1 is to work
 A0 = chanid ; signal channel
 A1 = buffer
A1 should point at a struct SIG_MSG:
 dc.l '%MSG' msg.magic
 dc.l 28 msg.len length of struct
 dc.w 0 msg.type type and
 dc.w 0 msg.txi extra info
 dc.l jobid msg.jobid
 dc.l signr msg.signr
 dc.l priority msg.prio
 dc.l uval msg.uval extra parameter that gets passed to the jobs
Errors:
 err.nc:
 err.bp: bad message, bad buffer len?
 err.bj: bad job, or signaling to job #0 or exotic error condition
 err.om: job supposed to receive signal doesn't have enough stack
 err.nf: no signal handler established for job
 err.bl: signal handler found but has bad format or MAGIC id or someinconsistent data
 err.ni: failed due to some unimplemented feature, probably bad settingof priority
 err.ro: priority too small
Signal #0 is special, it can be used to test whether a job exists and has
established an signal handler.
Getting no error message is no guarantee the signal will get processed.
Also the sequence in which incoming signals will be processed is
implementation dependent in some cases.
A primitive example how to send signals from basic, setup of timer events
works similarly:
 100 signr=3: uval=3
 110 jobid=2*65536+2
 120 OPEN#4,'*signal_s'
 130 msg$='%MSG'&lw$(28)&lw$(0)&lw$(jobid)
 140 msg$=msg$&lw$(signr)&lw$(HEX("7fff"))&lw$(uval)
 150 PRINT#4,msg$; : rem : send it !!
 160 DEFine FuNction lw$(x)
 170 LOCal r$,rx
 180 r$=' '
 190 r$(4)=CHR$(FMOD(x,256)) : rx=INT(x/256)
 200 r$(3)=CHR$(FMOD(rx,256)) : rx=INT(rx/256)
 210 r$(2)=CHR$(FMOD(rx,256)) : rx=INT(rx/256)
 220 r$(1)=CHR$(FMOD(rx,256))
 240 RETurn r$
 250 END DEFine
 260 DEFine FuNction FMOD(a,b) : RETurn a-b*INT(a/b)
Timer Events
Timer events are identified by their event-id (msg.t_evid) which is unique
per job.
EventId #1 is reserved for alarm(), also Id's <=10 should be reserved for

EventId #1 is reserved for alarm(), also Id's <=10 should be reserved for
future use by c68 or other libraries.

setup/cancel timer event : use io_sstrg
parameters as above, message struct see below
setup/cancel and return pending timer event: use io_edlin
a1 should point at the end of the message,
d1=message length,
returns empty buffer or previous event message with t_ticks indicating
time units remaining till event that was cancelled/rescheduled

Message structure for timer events is: struct TMR_MSG
 dc.l '%MSG' msg.magic
 dc.l 40 msg.len
 dc.w 1 msg.type type is timer
 dc.w unit msg.txi 0 = 50/60Hz ticks,

1 = seconds
 dc.l jobid msg.jobid
 dc.l signr msg.signr
 dc.l priority msg.prio
 dc.l uval msg.uval extra parameter that gets passed to the job
 dc.l event_id msg.t_evid
 dc.l ticks msg.t_ticks #units till interrupt
 dc.l int msg.t_int interval timer if >0
Errors:
Same as above, obviously only those that are detected at timer setup time
can be reported.
Currently the same primitive time measurement is used for all units. A poll
routine is used to count 50/60 Hz ticks, this usually works but gets very
inacurate if many disk operations are performed.
Obviously signr can be any legal signr not just SIGALRM.
If msg.signr=0, no event will be generated but any with the given
msg.t_evid will be cancelled and (only io.edlin) returned.
Sigvec handler interface
If the handler was setup by the normal procedure, the sigvec routine can be
used for handler maintenance and some other things. In c68 programs the
address of the sigvec routine can be normaly found in the _sigvec variable.
The parameters are same as in equivalent POSIX calls, currently implemented
calls are:
 sgv(chid,0): sigcleanup()
 sgv(chid,1,signr,oadr,nadr): sigaction(signr,oadr,nadr)
 sgv(chid,2,how,&omask,&mask): sigprocmask(how,oset,nset), c/e block mask
 sgv(chid,3,&mask): sigpending() examine pending
 sgv(chid,4,signr,uval): raise() signr,uval
 sgv(chid,5,signr,uval) : fraise()
 sgv(chid,6): checksig(), raise pending signals
 sgv(chid,7,signr,&oprio,&prio): c/e priority
 sgv(chid,8,flags,&sctl,&sycfunc,argc,..)
 low level func to implement SYSCALLn macros,
 run syscfunc as emulated system call,
 sgv(chid,9,flags):
 low level func to implement SYSCTL macro
Here is the actual implementation of sigaction() as an example:
 int sigaction (signo, act, oact)
 int signo;
 struct sigaction *act;
 struct sigaction *oact;
 {
 _oserr=(*(_sigvec))(_sigch,1,signo,act,oact);
 if (_oserr==0) return 0;
 errno=(_oserr==ERR_OR ? ERANGE : EOSERR);
 return (int)SIG_ERR;
 }

QED Manual
Version 1.01 - September 1988
Program and documentation copyright (C) 1988
 by Jan Bredenbeek

 by Jan Bredenbeek
 Hilversum, Holland.
AUTHOR'S NOTE: The QED program and its documentation are copyrighted.
However, you may distribute QED freely on a non-commercial basis provided
that you do not alter the QED code or any of the files supplied with it.
1. INTRODUCTION
QED is a QL text editor intended for line-based text files, such as
assembler or C source files and the like. Its design is largely based on
existing QL text editors, although the main design consideration of QED was
to be faster and more compact. For this reason the whole of it was written
in assembly language, and this resulted in a program that, despite its
power, only occupies about 8K bytes of code. This means that on an
unexpanded QL you have more room for your text files. If you have expansion
RAM and floppydisks, you will be able to edit files of hundreds of K's with
QED while loading and saving still takes only a few seconds to complete.
It must be stressed that QED is only a text editor and not a full-blown
word processor! Although you can use QED very well to edit "human readable"
text, you will not find facilities such as paragraph reformat,
justification or footers and the like in QED. So don't throw away QUILL
yet...
2. GETTING STARTED
Before using QED, I recommend you to make a backup copy of QED and its
complementary files (QED_DOC, QED_HELP and QEDCONFIG_BAS). This can be done
with the SuperBASIC (W)COPY command or an automatic copier program.
2.1. Loading
QED can be started in two possible ways:

in the normal way, using EXEC(_W) <device>QED
with a command line, using EXEC(_W) <device>QED;'<file name>' (Toolkit
II only).

(where <device> stands for the name of the drive containing QED, e.g. mdv1_
or flp1_ depending on your system).
In the first case, QED will ask for the name of the file to be edited, and
the size of the workspace to be used. In the latter case, QED will take the
filename specified in the command line as the current workfile, and use the
default value for the workspace size.
Note that, in both cases, the specified filename must be a full QDOS file
name, e.g. FLP2_FRED_ASM.
e.g.:
 EXEC flp1_QED;'flp2_myfile_c'
will load and run QED with flp2_myfile_c as the current workfile.
If the specified workfile exists, it will be loaded into QED's workspace
and the first lines of it will be displayed on QED's text window. If you
have a very long workfile (say 100K or more) there may be a few seconds
pause after the drive has stopped while QED is building an internal table.
If you have specified a non-existent file, QED assumes that you want to
create a new file so it displays the message "Creating new file" on the
bottom of its window. If you have made a mistake when typing in the
workfile name, you may use the "R" command to enter a new name.
The default workspace size is calculated as follows: If the specified
workfile is an existing one, QED will read the size of the file and
allocate a workspace large enough to hold the file plus an additional 4K
bytes overhead. This means you can usually add a few hundred lines to the
file before the workspace becomes full and you have to save and reload the
file.
If the workfile does not exist, QED uses the initial workspace size, which
is 12K bytes (but can be re-configured).
If you start QED without a command line, you can override this default and
specify the workspace size you like. This can be entered as a decimal
number, optionally terminated by a "K". In the first case the number is
taken to be the size in bytes, else in Kbytes. Replying with just ENTER
will use the default workspace size.
As you already may know, EXEC_W (or EW in Toolkit II) will halt SuperBASIC
until you quit QED, and EXEC (or EX in Toolkit II) will leave SuperBASIC
running so you can continue with it (possibly starting up a second copy of
QED!).
If you have SPEEDSCREEN, please use it because QED will greatly benefit
from it! QED and SPEEDSCREEN work the fastest if they are loaded in ROM or
expansion RAM. Note that QED is a well-written program that can be put into
ROM (using suitable software) or a HOTKEY-file without problems. QED will
work well with QRAM, although it will also work well without it!
3. USING QED
3.1. General appearance

3.1. General appearance
The QED window is divided into two areas: the upper region (all except the
bottom line of the window) is the "text area" where your editing takes
place, and the bottom line of the window is used to show the command line,
messages and status information. The status information includes the
current line and column position (both starting at 1), the number of lines
currently in the textfile and the mode (Insert or Overwrite).
QED always displays a physical line of text on one screen line. If the
length of the line is longer than the display width, only part of it is
displayed. Moving the cursor outside the window will cause the display to
be panned horizontally, so that the other part of a line becomes visible.
The maximum physical length of a line is 254 characters.
3.2. Entering text
QED can operate in two modes: Insert and Overwrite. In Insert mode, any
character you type on a line will be inserted at the current position, and
any characters further on the line will be moved to the right. Pressing
ENTER will split the current line, moving any characters righthand of the
cursor to a newly inserted line below the current line.
In Overwrite mode, the character at the cursor position will just be
overwritten by the new character you type. Pressing ENTER will only move
the cursor to the start of the next line. However, if you type beyond the
end of the line the characters you type will just be appended to the line,
and pressing ENTER on the last line of the file will generate a new line,
just as with Insert mode.
To change the mode, press the F4 key.
QED supports automatic wordwrap at the end of a line. If you reach the
right margin of the text (which does not necessarily have to be the same as
the rightmost column of the display!), QED performs an automatic newline
and places the whole of the partly completed word onto a new line. Also, it
is possible to specify a left margin, to which the cursor will move when
you reach a new line (either due to an ENTER keypress or a wordwrap).
When you edit a line, QED firstly copies it into an internal buffer. Any
changes you make to the line take place in that buffer, not in the text
file itself. You can restore the line to its pre-edited state by pressing
the ESC key. However, if you move the cursor to another line the newly
edited line will be placed back into the text file, thus replacing the
original line.
3.3. Cursor control
The cursor can be moved one position by the cursor control keys LEFT,
RIGHT, UP or DOWN. The display will be scrolled horizontally or vertically
if necessary. However it is not possible to move the cursor beyond the
start of the line, the 254th column, or the start or end of the text file.
The SHIFT LEFT and SHIFT RIGHT combination of keys will move the cursor to
the start of the previous or next word respectively, while the ALT LEFT and
ALT RIGHT keys will move the cursor to the start or the end of the line
respectively.
The TAB key generates a number of spaces until the next tab position on the
line is reached (which is a multiple of the tab distance). These spaces
will be inserted or overwritten depending on the mode.
Note that you can move the cursor beyond the last character of the line,
but this will not generate extra spaces at the end of the line. However, if
you type a character at this position, spaces will be inserted
automatically between the previous end-of-line and the new character.
The ALT UP and ALT DOWN keys scroll the text one line up or down, while the
cursor position on the screen will not move. The SHIFT UP and SHIFT DOWN
keys move the cursor one page up or down, which is useful for quickly
moving through the text.
3.4. Deleting text
The CTRL LEFT and CTRL RIGHT keys delete one character to the left or right
of the cursor. The SHIFT CTRL LEFT and SHIFT CTRL RIGHT keys delete one
word to the left or right respectively.
The CTRL ALT LEFT key deletes the whole of the current line, while the CTRL
ALT RIGHT key erases the current line from the cursor to the end.
A CTRL LEFT or SHIFT CTRL LEFT keystroke at the first column of the line
will actually delete the "newline" at the end of the previous line: the
current line will be appended to the previous line. Note that this will not
work on the first line of the text, or if it would generate a line longer
than 254 characters.
3.5. Function keys
The function keys F1 to F5 have the following function:

 F1:
 Display HELP information. This is read from a HELP file, so
this has to be present on the appropriate medium. For example,
if QED uses flp1_QED_HELP as the help file, then the disk
containing QED_HELP must be in drive 1. If QED cannot find the
HELP file, it will display an error message.

 F2: Re-execute last command line.

 F2: Re-execute last command line.
 F3: Allows you to enter and execute a command line.

SHIFT F3: Allows you to edit the last command line.
 F4: Change Insert/Overwrite mode.

 F5: Redraw the QED display. This is useful if you are multitasking
QED without a screen-saving front end program (such as QRAM).

3.6. Commands
Pressing F3 allows you to enter a command line. This consists of one or
more commands, terminated by an ENTER keypress. While entering the command
line the normal QDOS line editor keys (LEFT, RIGHT, CTRL LEFT and CTRL
RIGHT) may be used. The length of a command line may be up to 255
characters, although the display will not allow you to see this number of
characters at one time.
You may recall the last command line by pressing SHIFT F3. This allows you
to edit the command line again; pressing ENTER will execute it.
Pressing F2 will immediately re-execute the last command line entered;
useful if you want to repeat a set of commands after looking at the text.
A command consists of the command name (one or two letters), possibly
followed by a numeric or string parameter. A numeric parameter must be a
decimal number in the range 1 to 65535 inclusive (there are currently no
commands which accept a zero parameter). A string parameter is a sequence
of characters starting and ending with a delimiter character. A delimiter
character must be non-alphanumeric and may not be a space, semicolon ";" or
bracket.
Examples of valid strings are:
 /fred/
 '1/2'
 !wombat!
 "Hello!"
Multiple commands on a single command line must be separated from each
other by a semicolon ";". E.g. SA/flp1_myfile_asm/;Q will save the current
file to floppydisk 1 under the name "myfile_asm" and then quit QED.
A command may be executed repeatedly by specifying a repeat count before
the command name. E.g. the command 4N will move the cursor four lines down
in the text file. The repeat count must be in the range 1 to 65535.
A special case of this is the RP specifier: this will repeat the following
command indefinitely. E.g. RP E/mdv/flp/ will change all occurrences of
"mdv" subsequently found to "flp".
Note that, regardless of the repeat count, a command will always be
terminated when an error condition occurs or the ESC key is pressed. This
will always return you to the editing mode.
Finally it is possible to combine groups of commands with brackets. A
repeat count before the opening bracket will then repeat the group of
commands rather than a single command. The commands within a command group
may contain their own repeat count, and a command group may also contain
further nested command groups. The following (quite silly) example
demonstrates this:
RP(4N;12(20P;19N)) will move the cursor position back and forth within the
text until it reaches the top or end of the file or you press ESC.
3.7. Description of Commands
3.7.1. Cursor control
There is a set of commands for moving the cursor. Some of these commands
are only useful if used in conjunction with other commands and/or repeat
sequences, as their effect can also be achieved by using the normal cursor
control keys.
The CL command moves the cursor one position to the left, while the CR
command moves it one position to the right.
The NW command moves the cursor to the start of the next word, the PW
command moves it to the start of the previous word.
The CS command moves the cursor to the start of the line, the CE command
moves it to the end of the line.
The N command moves the cursor to the next line in the text, the P command
moves it to the previous line.
The T command moves the cursor to the top of the file (first line), the B
command moves it to the bottom (last line).
The M command, which must be followed by a line number (starting at 1 for
the first line), moves the cursor to a particular line in the text.
The RT command can be used to Return to a particular line. When you issue
any command that moves the cursor away from the current line (except N or
P), QED stores the current position automatically so that you can return to
it later. This is useful if you temporarily want to look at some text
elsewhere in the file (for example to check procedure parameters) but want

elsewhere in the file (for example to check procedure parameters) but want
to return to the current position afterwards.
Notes:

1. QED only remembers the last three positions in the file stored. This
means you can, for example, use the M command three times, whereafter
three subsequent RT commands will take you back to the former
position. But if you do another RT, QED will move to the start of the
file as it can no longer remember the "Return line number" which was
in use at the time the M commands were issued.

2. In the present version of QED, the stored line numbers will not be
updated whenever one or more lines are inserted or deleted before the
stored position. This means that RT will not take you to the correct
line in this case. However, if only a few lines are inserted or
deleted, the position returned to by RT will not be far away from the
original position.

3.7.2. Altering text
The TY command enters the characters of its string parameter into the text
as if they were TYped from the keyboard. E.g. TY/fred/ will enter the
characters "fred" into the text at the cursor position, using insert or
overwrite mode as appropriate.
The DC command deletes the character under the cursor, in the same way as
the CTRL RIGHT key does. The DW command deletes the word right from the
cursor, as the SHIFT CTRL RIGHT key does.
The I command, which may be followed by a string parameter, inserts a new
line containing the text of the string into the text between the current
line and the previous line. If no string parameter is given, an empty line
will be generated.
The A command is identical to the I command, except that the new line will
be inserted between the current line and the line after it.
The D command deletes the current line, moving up all lines below it.
The J command joins the current line with the next, appending the text of
the next line to that of the current. This will not work on the last line
of the text, or if it would generate a line longer than 254 characters.
The S command splits the current line at the cursor position, moving the
text from the cursor onward onto a new line.
3.7.3. Setting margins and tab distance
The SL command sets the left margin equal to the value of the numeric
parameter (which must be from 1 upwards). The left margin is the column
position to which the cursor will be set after an ENTER keypress or an A, I
or S command. In Overwrite mode, the characters left from the left margin
will not be erased. It is still possible to move the cursor to the left by
using the cursor control keys.
Please avoid setting the left margin to daft values; it should certainly
not be set beyond column 254.
The SR command sets the right margin equal to the value of the numeric
parameter. When you reach the right margin during typing in of the text,
QED will automatically perform a newline and move any partially completed
word to the next line. Note that this will not happen if your typing starts
already beyond the right margin, or if the character you type is not the
last on the line.
The automatic line wrap can be disabled by setting the right margin to a
value greater than 254.
The ST command sets the tab distance equal to the value of the numeric
parameter. When a TAB keystroke is received, QED will insert or overwrite
one or more spaces until it reaches the next multiple of the tab distance.
The distance specified must be in the range 1 to (at most) 253.
The left and right margin and tab distance are initially set to default
values. These default values can be configured with the QEDCONFIG_BAS
program.
3.7.4. Searching and replacing text
The F command searches the text from the cursor position onwards for a
target string. If a string parameter is given, this will be taken as the
target string, if no parameter is given the target string specified in the
last F or BF command will be used. E.g. F/wombat/ will search the text for
the string "wombat". Note that the case (upper of lower) of the string is
ignored and the surrounding characters are of no importance.
The BF command is the same as the F command except that the search will be
made from the cursor position backwards into the text.
The F and BF commands have two immediate versions: the CTRL DOWN and CTRL
UP keys respectively. CTRL DOWN will search forwards for the string given

UP keys respectively. CTRL DOWN will search forwards for the string given
in the last F or BF command, CTRL UP will search backwards for it.
It should be noted that the F command moves the cursor one position
forwards before the search, and BF moves the cursor one position backwards
before the search. Hence, if the cursor is already positioned at the start
of the target string, the F or BF command will skip to the next or previous
occurrence respectively. This is useful if you want to search quickly for a
particular occurrence; simply press the F2 or CTRL UP/DOWN key if the
occurrence found is not the one you want.
The E and EQ commands exchange (replace) a particular string by another.
The E command exchanges immediately, the EQ command queries first on
finding an occurrence (press Y if you really want to exchange).
Two strings must follow, separated by a single delimiter character. E.g.
E/cat/mouse/ will replace the next occurrence of "cat" by "mouse". If you
want all occurrences to be replaced, use the commands T;RP E/cat/mouse/.
If you do not respond with "Y" on an EQ query, the command will be
terminated but the command line will not be aborted unless you pressed ESC.
Thus if RP is specified EQ will skip to the next occurrence.
The E and EQ commands follow the same rules for searching as the F command.
The first string specified will become the new target string.
3.7.5. Block commands
A block of text consists of one or more complete lines. The start of a
block is defined by moving the cursor to the desired line, and then issuing
the BS command. The end of a block is defined in the same way using the BE
command. The block is then defined to be the text from the start of the
"BS" line up to and including the text on the "BE" line.
If any line is inserted into or deleted from the text (except by a IB
command), the block start and end become undefined once more.
Note that the start and end of the block do not have to be specified in
strict order, so it is possible to specify first the end and then the start
of the block. The BS and BE commands do not check whether the block end is
after the block start, the validity of the block is only checked when the
next block command is issued.
The IB command inserts a copy of the block between the current line and the
previous line. It is not possible to insert a block within itself (use IB
within copies if necessary).
The DB command deletes the block from the text file. The cursor is set at
the position where the block has been deleted.
The WB command writes the contents of the block to a file, the name of
which must be specified in the string parameter.
The SB command sets the cursor at the first line of the block and at the
top of the display. Note that the RT command may be used to return to the
old position.
3.7.6. File commands
In all file commands, any filename specified must be a full QDOS file name
(e.g. flp2_fred_asm).
All commands which write text to a file (X, SA and WB) automatically
overwrite the file if it already exists, without asking permission.
The SA command writes the text to a file. If no parameter is given, SA will
use the current workfile name. If a string parameter is specified, this
will be taken as the file name, but the current workfile name will not be
altered.
E.g. SA/flp2_myfile_asm/ writes the text to file "myfile_asm" on floppydisk
2.
The R command allows you to re-enter QED with a new file name, discarding
the old text. The new file name must be specified in the string parameter.
If any changes have been made to the current text file, QED first asks
permission to continue. Press Y if you want to re-enter, losing the old
text, or any other key to abort the command.
The R command will reclaim the existing workspace and allocate a new one
using the default workspace size. If there is insufficient memory for the
new workspace, QED will abort with an error message.
The IF command inserts the contents of the file specified in the string
parameter at the current position. The file will be inserted between the
current line and the previous line. If there is not enough room in the
workspace, an error message will be generated. In that case, you will have
to re-start QED with a larger workspace size.
After the file has been loaded, there may be a few seconds delay during
which QED is rebuilding an internal table.
3.7.7. Miscellaneous commands
The Q command quits QED without saving the text. If any changes have been
made to the text, QED will ask confirmation. Press Y if you want to leave
QED, losing the changes.
The X command writes the text back to the file (using the current workfile
name) and then quits QED. It is in fact the same as the commands SA;Q. If

name) and then quits QED. It is in fact the same as the commands SA;Q. If
any file error occurs (not found, drive full etc.), QED remains running.
The U command cancels any changes made on the current line. It does in fact
the same as the ESC keypress. It has been included for compatibility with
other QL text editors.
The SH command displays the current status of QED. This includes the name
of the workfile, the current string used for the F and BF commands, the tab
distance, left and right margin, block start and end line, and the
workspace size and usage.
3.8. Error messages
If during editing or command execution an error occurs, QED will display an
appropriate error message. In most cases this is self-explaining, but two
cases might need further explanation:
"No room for text"
There is not enough room in the editing workspace left for what you are
trying to do. You must save the text first (using SA) and then reload it
using the R command (which allocates a new workspace large enough for the
file plus 4K overhead).
"No room for line table"
QED maintains an internal table to keep track of the length of each line.
When this table becomes full, QED rebuilts it using a larger table size.
This is normally transparent to the user, but if there is insufficient
memory in the QL to do it then QED will display this message and inhibit
any further editing. You should save the text using the SA or X command,
then do something to get more free memory, and then reload the file.
4. CONFIGURING QED
QED allows you to re-configure many of its startup parameters, such as
window size and position, display colours, default margins etc. This can be
done using the QEDCONFIG_BAS configuration program.
The configuration program is started by entering the SuperBASIC command:
 LRUN <device>QEDCONFIG_BAS
(where <device> is mdv1_, flp1_ etc. as appropriate).
Once the program has been loaded, it will ask for the name of the medium
containing the copy of QED to be configured. E.g. if you have a copy of QED
in microdrive 1, you must enter mdv1_, and so on.
The configuration program will then read and display the currently
installed values. You can then select the parameter to be altered with the
UP and DOWN keys, and modify its value with the LEFT and RIGHT keys. The
LEFT key will decrease the value by one, the RIGHT key will increase it. An
exception to this is the name of the HELP file: pressing LEFT or RIGHT
allows you to enter the new HELP file name, which must be terminated by an
ENTER keypress.
The following parameters can be configured:

The left and right margin and the tab distance to be used on startup,
or after a R command.
The initial workspace size in Kilobytes. This is the workspace size
used whenever the default is specified on startup or the R command is
used, and the workfile does not exist.
The colour and width of the border of the QED display.
The PAPER and INK colour of the initial display (the display used on
startup).
The PAPER and INK colour of the text window.
The PAPER and INK colour of the status and report line.
The PAPER and INK colour of the command line.
The horizontal character size. This corresponds to the first parameter
of the SuperBASIC CSIZE command: 0 for 6 pixels, 1 for 8 pixels, 2 for
12 pixels and 3 for 16 pixels. Note that the command and status line
must at least contain 55 characters, so the horizontal character size
of this line will never be greater than 8 pixels, even if you specify
12 or 16 for the text window. Also, QED always uses MODE 4 for its
display, switching the MODE on startup if necessary.
The name of the HELP file. This is the file displayed when F1 is
pressed. Note that this is just a normal text file that can be edited
with QED, so you can easily create your own HELP file and install it
using this configuration program. Is is best however to avoid lines
longer than 55 characters, as QED might not be able to display them
fully (the HELP display has no end-of-line wrap).

For the PAPER and INK parameters, consult the QL User Guide if necessary.
For the PAPER (background) colour a range of 0 to 255 is valid, for the INK

For the PAPER (background) colour a range of 0 to 255 is valid, for the INK
(foreground) colour only 0 to 7 as "stippled INK" text is somewhat
difficult to read! The configuration program relies on your own confidence
on the choice of colours, so don't use silly combinations like green INK on
white PAPER and the like. Remember that QED always uses 4-colour MODE!
When you have finished, press ENTER to continue with the window size and
position configuration. A window is then displayed with colours, border,
size and position equal to those of the window to be configured.
The window can be re-positioned with the LEFT, RIGHT, UP and DOWN keys. One
keypress will move it two pixels in horizontal direction or one in vertical
direction. The window can be re-sized with the ALT LEFT, ALT RIGHT, ALT UP
and ALT DOWN keys. One keypress reduces or enlarges the window by one
character column or line as appropriate. The minimum size is 55 columns and
5 lines.
Any change you make will be displayed; also the current window width and
height in characters (not pixels) will be displayed, with the pixel
coordinates of the top left-hand side below it.
When you are satisfied with the window size and position, press ENTER. The
program then finally asks whether you want to install the new parameters or
not. Press Y to install them or N if you want to quit without installing.
APPENDIX 1: COMMAND SUMMARY
A1.1. Immediate commands
 TAB Tabulate (i.e. insert/overwrite a number of spaces)
 ENTER Split and generate new line (insert mode)

Move cursor to new line (overwrite mode)
 LEFT Move cursor left one character
 RIGHT Move cursor right one character
 SHIFT LEFT Move cursor left one word
 SHIFT RIGHT Move cursor right one word
 CTRL LEFT Delete left one character
 CTRL RIGHT Delete right one character
 SHIFT CTRL LEFT Delete left one word
 SHIFT CTRL RIGHT Delete right one word
 ALT LEFT Move cursor to start of line
 ALT RIGHT Move cursor to end of line
 CTRL ALT LEFT Delete line
 CTRL ALT RIGHT Erase to end of line
 UP Move one line up
 DOWN Move one line down
 ALT UP Scroll one line up
 ALT DOWN Scroll one line down
 SHIFT UP Move up one page
 SHIFT DOWN Move down one page
 CTRL UP Search backwards (see "BF" command)
 CTRL DOWN Search forwards (see "F" command)
 ESC Restore line to its pre-edited state
 F1 Display HELP information
 F2 Re-execute last command line
 F3 Enter and execute command line
 SHIFT F3 Re-edit and enter last command line
 F4 Toggle Insert/Overwrite mode
 F5 Redraw display
A1.2. Extended commands
In the following:
n indicates a number in the range 1 to 65535;
/s/ indicates a string starting and ending with a delimiter character;
/s/t/ indicates two strings separated from each other by a single delimiter
character (which must be the same as the character which introduces s and
terminates t).
The characters [] indicate an optional parameter.
 A[/s/] Insert line containing s after current line
 B Move to bottom of file
 BE Mark block end
 BF[/s/] Backwards find
 BS Mark block start
 CE Move cursor to end of line
 CL Move cursor one position left
 CR Move cursor one position right
 CS Move cursor to start of line

 CS Move cursor to start of line
 D Delete current line
 DB Delete block
 DC Delete character under cursor
 DW Delete word right from cursor
 E/s/t/ Exchange s into t
 EQ/s/t/ Exchange but query first
 F[/s/] Forwards find
 I[/s/] Insert line containing s before current
 IB Insert copy of block
 IF/s/ Insert file s
 J Join current line with next
 M n Move to line n
 N Move to next line
 NW Move to next word
 P Move to previous line
 PW Move to previous word
 Q Quit without saving text
 R/s/ Re-enter editor with file s
 RP Repeat until error
 RT Return to previous line
 S Split line at cursor
 SA[/s/] Save text to file
 SB Show block on display
 SH Show status
 SL n Set left margin
 SR n Set right margin
 ST n Set tab distance
 T Move to top of file
 TY/s/ Type string s
 U Undo changes on current line
 WB/s/ Write block to file s
 X Exit, writing text back
APPENDIX 2: FILE FORMAT AND MEMORY USAGE
QED is designed to handle line-based QDOS textfiles, which are files
containing lines of printable characters terminated by a LF character.
QED restricts the maximum length of a line to 254 characters; if you load a
file containing longer lines these will be truncated to 254 characters. QED
will give a warning message if it has done so.
The maximum size of the file you can edit depends on the amount of RAM in
your QL (QED loads the whole file into RAM), but you must also ensure that
your file does not contain more than 32768 lines (which is more than enough
for most purposes). QED will however read files containing more than 32768
lines, but will ignore the extra lines. Again a warning message is
displayed if this has happened.
Apart from the QED job code and data space (which are 8K and 1.5K
respectively in the current version), QED uses two areas of RAM, both of
which are allocated in the QDOS Common Heap area.
The first area is the textfile's workspace. This holds the text file in its
original form, without any additional data. This has the advantage that
LOADing and SAVing of the text file can be done very quickly using QDOS
string I/O calls. However the disadvantage is that changing the length of a
line near the beginning of a long textfile involves moving a large block of
memory, which may slow down editing. (Note that editing the line itself
does not take place in the text file but in a buffer, so this will not be
slowed).
The QED code is optimised to speed this up as much as possible, but on an
internal RAM machine it may take a second to enter a line near the start of
a 160K textfile. If you find this too slow, remember that it is better to
code a large program in parts which can be linked together by a linker (if
possible), rather than in one very large source file. This will also save
compiling/assembling time.
When a text file is loaded, QED will also allocate a line length table.
This holds the length (one byte) of each line, enabling a particular line
to be found quickly. In fact, if you want the cursor to be positioned at a
particular line, QED will first determine the shortest path to take (which
can be down from the top of the file, up or down from the current position,
or up from the bottom of the file) and then search backwards or forwards
for the line you want.
When the file is loaded, QED will allocate a line length table large enough
for the text file itself plus an additional 256 lines. If during expansion
of the file the table becomes full, it is reclaimed and a larger table

of the file the table becomes full, it is reclaimed and a larger table
built using the contents of the text file (this may take a few seconds). If
the attempt to re-allocate the table fails due to shortage of memory, an
error message "No room for line table" is displayed and any further editing
will be prevented. However it is still possible to SAVE the file as the
line length information is not required for SAVing.
APPENDIX 3: REVISION HISTORY
This appendix describes the revisions carried out on QED since its first
release.

V1.00 (August 1988)
First release version.
V1.01 (September 1988)
SHIFT F3 command added to re-edit last command line.
PW, NW and DW commands added (move to previous word, move to next word
and delete word right from cursor respectively).
Bug in DB command fixed (caused display to be scrambled on certain
occasions).
Bug which caused garbage to be displayed at end of text when too-long
lines were read fixed.
F5 key now also redraws border of display.

END OF MANUAL

SROFF File Format
INTRODUCTION
This document will not be of interest or relevance to the average C
programmer. It is included as part of the C68 package as the information is
of interest to System Programmers, and has not been made widely available
within the QDOS or SS programming communities.
It is also intended to provide extensions to the originally defined
standard to support interactive debuggers. This will be accompanied by
upgrading the LD linker to recognise these extensions. The LD linker will
also be upgraded so that i can be used with other programming languages,
and not just C68 as at present.
RELOCATABLE BINARY FORMAT
The Sinclair Relocatable File Format (or SROFF) was defined as the format
of files that are suitable for linking to produce binary code. In the C68
system the _o files produced by AS68 and all the libraries are in this
format.
A relocatable object file consists of a sequence of modules, each of which
is a sequence of bytes terminated by an END directive (see below). It
should have a QDOS file type of 2 though this will not be enforced by the
linker. Interspersed with the sequence of bytes can be directives from the
list below. A directive is a sequence of bytes beginning with the hex value
FB.
When otherwise unmodified by a directive, a byte indicates that it should
be inserted at the current address and the address should be stepped by 1.
The special directive FB FB inserts the value FB in this way.
Note that bytes are overwritten on (not added into) the byte stream, so
that if several sections are located at the same address, it is possible to
overlap (or even interleave) their contents. This is useful for Fortran
block data.
In the following syntax definition, <word> s and <longword> s need not be
word aligned: they just follow on from the preceding data with no padding
bytes.
A <string> consists of a length byte (value range 0-255), followed by the
bytes in the string. A <symbol> is a <string> of up to 32 chars. A symbol
should start with a letter (A-Z), a dot or an underline (N.B. the original
SROFF definition did not allow an underscore at the start of a symbol but
this has now become commonly accepted) and the other characters may be
letters, digits, dollar, underline or dot.
DEFINITION OF A SECTION
A SECTION is a contiguous block of code output by the linker. Each section
has a name, and any source file can add to one or more of the sections. A
module's contribution to a section is called a subsection.
The linker will arrange that each section or subsection will start on an
even address, by inserting one padding byte if necessary. The value of this
byte will be undefined.
Note that if a module returns to a section, this is part of the same
subsection and the linker will not re-align on a word address.
When a section name is used in an XREF command the address of the start of
the subsection is used.

the subsection is used.
Note that section names are maintained separately from symbol names (and
module names), so there can be a section, a symbol and a module all with
the same name without any danger of confusion.
DIRECTIVES
The following lists the possible directives in ascending value. See later
for rules governing permissible orders of directives.

SOURCE syntax: FB 01 <string>
The <string> in this directive indicates information about the source
code file from which the following bytes were generated. This directive
should only appear at the start of a module (ie at the start of a file
or immediately after an END directive).
The string will start with the module name which may be followed by a
space followed by a field of further information about such things as
the version number or the date of creation or compilation. The string
should contain only printable characters and be no longer than 80
characters.
This module name should conform to the syntax of a <symbol> defined
above, and may be used by the linker to identify individual modules
within a library (see later). The module name can be generated from a
QDOS or SMS filename, but it is recommended that the device name is
first stripped off.
COMMENT syntax: FB 02 <string>
The <string> in this directive is a line of comment. It will have no
effect on the binary file, but should be included at some suitable
point in a link map. The string should contain only printable
characters and be no longer than 80 characters.
ORG syntax: FB 03 <longword>
This indicates that the bytes following the directive are to start at
the absolute address given in the parameter. This applies until the
next ORG , SECTION or COMMON directive.
SECTION syntax: FB 04 <id>
This indicates that the bytes following the directive are to be placed
in the relocatable section whose name was defined in a DEFINE command
with the <id> value specified.
This applies until the next ORG , SECTION or COMMON directive.
OFFSET syntax: FB 05 <longword>
This directive updates the output address: the longword specifies the
address relative to the start of the current subsection or the latest
ORG directive.
The parameter is unsigned, so the offset may not be negative.
XDEF syntax: FB 06 <symbol> <longword> <id>
This indicates that the symbol whose name is the <symbol> is defined to
be the value given in <longword> , relative to the start of the
subsection referred to by the <id> . Note that an <id> of zero defines
the symbol to be absolute.
See the description of DEFINE for the definition of <id> .
XREF syntax: FB 07 <longword><truncation-rule> { <op><id> } FB
This indicates that the result of an expression involving user symbols
or other relocatable elements is to be written into the byte stream.
Note that this command does not overwrite existing bytes, but appends
new bytes to the output.
The <longword> parameter defines an absolute term for inclusion in the
expression to be evaluated by the linker.
The <truncation-rule> parameter is a byte which defines the size of the
final result and the circumstances in which the linker might give a
truncation error, or the mode in which truncation should occur
(undefined bits must be set to zero). These are the effects of setting
each bit:

 a) If bit 0 is set, the result is one byte.
 If bit 1 is set, the result is a word.
 If bit 2 is set, the result is a longword
 Only one of these three bits may be set.
 b) If bit 3 is set, then the number is signed.
 If bit 4 is set, the number is unsigned.
 Only one of these two bits may be set.
 See notes below

 c)
 If bit 5 is set, the reference is PC relative, and the relocated
current address (ie the address to be updated by this directive) is to
be subtracted before the truncation process.

 d)
 If bit 6 is set, runtime relocation is requested (for longwords
only). The address of the longword is included in a table generated by
the linker which can be used by a runtime loader. See later for the

the linker which can be used by a runtime loader. See later for the
format(s) of this table.
After the <truncation-rule> is a sequence of terms for the expression.
<op> is a one-byte operator code and can be 2B for "+" or 2D for "-".
<id> is a symbol or section name id as defined in the DEFINE directive.
The special <id> code of zero refers to the current location counter
(ie the address updated by this directive).
The final FB byte terminates the sequence of terms in the expression.
As an example of the use of the signed/unsigned bits, consider a value
which must be written out as a word value; the signed/unsigned bits are
interpreted as follows:
 resulting value

 < FFFF8000 always out of range
 FFFF8000 to FFFFFFFF illegal if 'unsigned' bit is set
 00000000 to 00007FFF always allowed
 00008000 to 0000FFFF illegal if 'signed' bit set
 > 0000FFFF out of range

DEFINE syntax: FB 10 <id> <symbol>
 FB 10 <id> <section name>
This directive is used in conjunction with XDEF , XREF , SECTION and
COMMON directives. The directive defines that the <symbol> or <section
name> may be referenced by the 2-byte <id> . A <section name> has the
same syntax as a <symbol> .
Note that positive nonzero <id> values refer to symbols and negative
<id> values refer to section names. This directive must appear before
the <id> value is used in any other directive.
If within a signle SROFF module two <id> values are used to refer to
the same symbol, or if one <id> value is reassigned to another then the
effects are undefined.
COMMON syntax: FB 12 <id>
This directive is identical to the SECTION directive except that it
informs the linker that the section is to be a common section so that
references to this section id in different object modules refer to the
same memory location.
Within the same object module multiple additions to the same section
will be appended together as for an ordinary section.
When different modules create common sections of differing size, the
linker should create a section equal in size to the largest one.
END syntax: FB 13
This directive marks the end of the current object module. If the file
contains only one module, then this will appear at the end of file.

DIRECTIVE ORDERING
Mandatory Rules
Within a relocatable object file the following rules should be applied to
the ordering of directives within an object module.

1. A SECTION directive (or ORG or COMMON) must appear before any data
bytes in the module.

2. A symbol or section's <id> must be defined in a DEFINE directive
before it is used in any other directive.

The ordering of other directives is at the discretion of authors of
compilers or relocatable assemblers, though it will normally be dictated by
the source code.
BNF DEFINITION OF A SROFF FILE
This BNF uses { } to mean 0 or more repetitions of an item.
<relocatable object file> = <module> { <module> }
<module> = SOURCE { <chunk> } END
<chunk> = <header> <body>
<header = { <header command> } <section command>
<header command> = COMMAND | XDEF | DEFINE
<section command> = SECTION | ORG | COMMON
<body> = { <data byte> | <body command> }
<body command> = OFFSET | XDEF | XREF | DEFINE | COMMENT
LIBRARY FORMAT
The traditional format for a library has simply been a relocatable object
file as described above, that contains more than one module. Such a library
can be created by appending smaller libraries or object files. The SLB
librarian provided with C68 provides an easy tool for manipulating modules
in such libraries.

in such libraries.
When a linker searches a library it checks each module to see if it
resolves any external references. If so that module will be included in the
link.
The SLB librarian (v2.10 onwards) and LD linker (v2.00 onwards) also
support an enhanced library format that allows much faster linking. This
enhanced format basically consists of a header section that details what
symbols are externally visible within each module, and the location of that
module in the library. The remainder of the library is then in the
traditional format. The format of this header table is:
 8 bytes Preset to "<<XDEF>>"
This is then followed by repeating entries for each symbol that is globally
visible. These entries will be in the order that they occur within the
SROFF part of the library file. The format of these entries is:

 long
 File offset within the library to the start of the module that
contains this symbol.
A value of zero is used to indicate the end of the XDEF area.

 string

 The symbol name (as a zero terminated C style string). An
additional zero byte will be added if necessary to ensure that
this symbol ends on an even boundary. The symbol is in principle
case significant although both SLB and LD have runtime parameter
options to ignore the case of external symbols.

This format is very similar to that of the XDEF area used within RLL
libraries and binary program files. The difference is that the offset is to
the start of the module containing the symbol.
It is also possible for a symbol to be defined more than once in different
modules. The linker always searches this table forwards from the point at
which the last module was included.
RELOCATION TABLE
The relocation table is generated by the linker as described earlier. The
exact format depends on the linker used. QDOS does not include any standard
facility to handle such relocation tables so the relevant code needs to be
included in the user program.
In the case of C programs this is handled by the start-up module that is
always automatically linked in right at the beginning. It is important that
the start-up module corresponds to the relocation table format. In the case
of C68 this is the crt_o library module if you use the LD linker supplied
with C68, and the qlstart_o library module if you use the GST linker.
The GST Linker (LINK)
The table consists of a series of longwords giving the address relative to
the start of the program. The table is terminated by a longword containing
a negative value.
C68 programs that are linked with the GST linker should always include the
QLSTART_O module as the first one in their program. This module will assume
that the relocation table is in the GST linker format.
The C68 Linker (LD)
The C68 linker LD v1.xx introduced a new format that is the same as the one
used on the Atari ST (for the format used by LD v2.00 onwards refer to the
RLL_DOC file). The new format is slightly more complicated, but it results
in the final table being much smaller in size (typically 25-30% of the size
produced by the GST linker). This can make the size of the fil holding the
final object program to be 10-15% smaller than the same file linked with
the GST linker.
The table starts with a longword giving the address relative to the start
of the program of the first address to be relocated.
The remainder of the table consists of one byte entries giving the
displacement of the next address to be relocated relative to the previous
one. The special value of 1 is used to mean advance the location pointer by
254 without actually doing a relocation. The table is terminated by a byte
of value 0.
As an optimisation, the LD linker assumes that after program
initialisation, the space used by the relocation table will be reclaimed
for use as "Unitialised Variables" space. This reduces the runtime memory
requirements of C68 programs.
C68 programs that are linked with the LD linker should always include the
CRT_O module (or the CRESPR_O one if they are writing resident procedures)
as the first one in their program. This module will assume that the
relocation table is in the LD linker format.
In practise, the LD linker wll add the CRT_O module by default, so it is
normally unecessary for the programmer to take any special action to get
the CRT_O module incuded in their program.
CHANGE HISTORY
This is a short summary of the changes that have been made to this
document. The intention is to make it easy for users who are upgrading to
find any new information.

find any new information.
 25 Apr 94 DJW Minor changes and corrections for the 4.13 release.
 30 Dec 94 DJW Updated the description of library files to include thenew format supported by SLB v3.00 and LD v2.00.

Technical Reference
INTRODUCTION
This document is intended for those who wish to write programs and/or
libraries that need to work with the C68 compilation system. It therefore
documents some of the system interfaces that are internal to the C68
system.
It also covers any topic details for which are not thought to be
appropriate to any other document.
The topics covered include:

Data Formats
Assembler Language Interface
Namespace Pollution and Name Hiding
Program Start-up parameters
Memory Allocation
Unix I/O emulation
Run Time libraries
Hardware Floating Point Support

1. DATA FORMATS
This section covers the detail of the formats of the different data types
within C68.
It is important to note that in the case of all multi-byte data types, the
address in memory will always be aligned on an even memory address. For
fields within complex data items this means that (invisible) padding fields
may be added to achieve this.

int
In the QDOS C68 implementation, the int keyword has the characteristics
of a long as described below.
char
This is a 8 bit value held in a single byte. If not specified, then
char is treated as signed. It can hold values in the range:
-128 to 127 if signed
0 to 255 if unsigned.
short
This is a 16 bit value held in two bytes. It can hold values in the
range:
-32768 to 32767 if signed
0 to 65535 if unsigned
long
This is a 32 bit value held in 4 bytes. The data type int is also of
this size and characteristics. It can hold values in the range:
-2147483648 to 2147483647 if signed
0 to 4294967295 if unsigned
pointers
Pointers of all types are held as 32 bit values held in 4 bytes. They
can therefore be stored in types of int or long without loss of
accuracy.
float
The internal representation of float in C68 uses the IEEE 32 bit format
(but see below, however, for the format prior to C68 Release 3). The
IEEE 32 bit representation of a floating point number is equivalent to
the C structure:
 struct IEEE_FLOAT {
 int sign-bit : 1;
 int exponent : 8;
 int mantissa : 23;
 };
The exponent is biased by a value of 127. The most significant bit of
the mantissa is implicit (i.e. not actually present) and is always set.
It can hold values to 6 or 7 significant digits in the range:
 +/- 10E-37 to +/- 10E38
C68 Releases 1 and 2

C68 Releases 1 and 2
The implementation of C68 before version 3 held floats as 32 bit values
in Motorola Fast Floating Point format. This represents a float as if
it were the following C structure.
 struct MFFP_FLOAT {
 int mantissa : 24;
 int sign-bit : 1;
 int exponent : 7;
 };
The exponent is biased by a value of 63.
The mantissa is organised as a number that when multiplied by 2 to the
power of the exponent becomes the required value. The value of the
exponent is chosen so that the most significant bit of the mantissa is
always set.
double
The internal representation of double in C68 uses the IEEE 64 bit
format (but see below, however, for the format prior to C68 Release 3).
The IEEE 64 bit representation of a floating point number is equivalent
to the C structure:
 struct IEEE_DOUBLE {
 int sign-bit : 1;
 int exponent : 11;
 int mantissa : 52;
 };
The exponent is biased by a value of 1023. The most significant bit of
the mantissa is implicit (i.e. not actually present) and is always set.
It can hold values to 15 or 16 significant digits the range:
 +/- 10E-307 to +/- 10E308
C68 Release 1 and 2
In releases of C68 before Release 3, the double keyword was equivalent
to the float one, and numbers were held in the same 32 bit Motorola
Fast Floating Point Format as mentioned above under float.
long double
This is a new floating point data type defined in ANSI C to allow for
even greater precision that given by the double data type. The current
inmplementation of C68 recognises this data type, but treats it with
the same accuracy as the double data type.
It is intended that a future implementation will support this data type
with more accuracy by using the IEEE 80 bit representation of floating
point numbers. The IEEE 64 bit representation of a floating point
number is equivalent to the C structure:
 struct IEEE_LONG_DOUBLE {
 int sign-bit : 1;
 int exponent : 15;
 int mantissa : 64;
 };
The exponent is biased by a value of 16383.

2. ASSEMBLER LANGUAGE INTERFACE
Programmers may write assembly language modules for inclusion in C programs
provided that these modules adhere to the object code linkage and function
calling conventions described below:
The C68 compilation system contains its own assembler AS68 . It is not
necessary, however, to use this assembler if you you would prefer to use an
alternative one. The output from the AS68 assembler conforms to standard
Sinclair SROFF format, so any assembler that produces this format can be
used. The problem, however, with many existing assemblers is that they
commonly suffer from one or both of the following:

1. They do not treat labels as case dependant.
2. They truncate external references to less than the 31 characters

supported by C68/AS68.
3. External symbols are all converted to upper case.

This does make them unuseable with C68, but one needs to be aware of they
way the assembler handles each of the above cases.
External names
It is necessary that the name of the subroutine be made visible outside the
assembler module. Also, any variables to be used by the C program must
similarily be made visible. The C68 compiler adds an underscore character
to any externally visible C name to ensure that there is no possible clash
with reserved words in the AS68 assembler. This character must be added
explicitly at the assembler level for names to be correctly visible at the

explicitly at the assembler level for names to be correctly visible at the
C level.
NOTE See also the section on "Name Hiding" later in this document.
The current QL linkers, including the one supplied with C68, ignore the
case of external references. It is intended that in a future release of
C68, the linker will be case sensitive, so it is highly advisable to keep
the case of externally visible names consistent.
It is worth noting that ANSI has reserved any name starting with the
underscore character for use by the implementors. Application programmers
use them at their peril unless explicitly instructed to do so by the
library writers! As the compiler always adds one underscore anyway, an
underscore at the C level translates to two underscores at the assembler
level. If you have any names that are not meant to be visible to the
application programmer, then either do not start them with an underscore
character, or use at least two underscore characters.
Parameter Passing
Parameters are passed following the standard C convention of pushing them
onto the stack in right to left order. The calling module is also
responsible for removing these parameters from the stack when the call
returns.
C68 also follows the standard C definition whereby certain parameter types
are 'widened' when they are passed on the stack. They thus take up more
room than one might guess at first sight. The exact widening depends on
whether there is an ANSI prototype in scope or not (if there is no ANSI
prototype in scope then K&R rules are used). The parameter types that are
affected by this widening action are as follows:
 Parameter Type Passed as

ANSI Prototype
 Passed as
K&R Protoype

 char short int
 short short int
 float float double
Register Usage
The C user does not need to be aware of register usage. However, the
assembler programmer has to know what registers are used by C68 generated
code. The normal usage of registers by C68 generated code is as follows:
 D0-D2 Scratch registers for temporary results
 A0-A1
 D3-D7 Used for holding register variables
 A2-A5
 A6 Used as stack frame pointer.
 A7 Stack pointer
The user can also specify a lower number address register to be used as the
frame register by using the -frame= n runtime option with C68. If this is
done, then any address registers between the one specified as the stack
frame pointer and the stack pointer (A7) are not used by C68 generated
code.
Return Values
Results are returned from functions in registers. They are returned as
follows:
 D0.B A character value (8 bits)
 D0.W A short value (16 bits)
 D0.L A long value (32 bits)
 or a pointer
 or a float (32 bit)
 D0.L and
D1.L A double (64 bits)
 D0.L,
D1.L and
D2.L

 A long double (96 bits).

 Note however, that as delivered, C68 currently does not utilise
this option as it treats long double as being equivalent to
double .

NOTES.
1. In C68 an int can be either 16 bit or 32 bit. The default in the QDOS
implementation is 32 bit, but this can be overridden by a runtime option to
C68. This should be done with care as the issued libraries assume 32 bit
int.
Section Names
The C68 Compilation System allocates section names as follows:
 TEXT code
 DATA initialised data area
 UDATA uninitialised data areas

 UDATA uninitialised data areas
It is not mandatory that you follow these conventions in your own assembler
routines, but it is recommended unless you have a good reason to do
otherwise.
In addition the following two additional areas can be set up automatically
by the linker:
 BSS Relocation information.
 RLSI Run-Time library symbol information.
The linker always places the UDATA section at the end of those specified by
the user, and then the BSS and RLSI sections. It then assumes that after
any relocation is done, the information in the BSS and RLSI sections will
no longer be required, and the space can be added to that in the UDATA
section. The size of UDATA is calculated on this basis.
Relocation Information
This is a table generated automatically by the linker to hold relocation
information. Its format is:

 long
 First address needing relocation relative to start of the program.
Relocations are always applied to long words. If zero, then no
relocation is required.

 byte
 Next address that needs relocating relative to previous address. A
value of 1 means add 254 to the previous address, but do not do any
relocation at this new address.

A byte of 0 terminates the table.
This is different to the format that was traditionally generated by the GST
Linker.
Run-Time Library Symbol Information
This is a table that is only generated if the Linker has been told that
Run-Time libraries are to be used. Its format is described later in the
section on Run-Time Libraries.
Differences from Lattice C
The assembler level interface used by C68 is very close to that used by QL
lattice C. In most cases libraries can be written to be compatible with
both compilers. There are however a few differences:

C68 demands more registers be preserved than Lattice C. Routines that
preserve enough registers for C68 will always have saved enough for
Lattice C.
The method of passing structures is different. Lattice C passes a
pointer to a structure, while C68 passes a copy of the structure.
Lattice C always follows the K&R rules for widening parameters. It is
important therefore that you do not use any of the data types 'char',
'short' or 'float' as parameter types if you are trying to write
libraries that are portable between Lattice C and C68.

3. NAMESPACE POLLUTION AND NAME HIDING
The ANSI C standard states that the C namespace should not be polluted by
names that are defined in header files that the programmer has NOT
included. This is necessary so that the C application programmer does not
have to worry about whether any externally visible names in his program
conflict (probably without his knowledge) with any names in the library
unless he has specifically included a header file that adds these names to
the programs namespace.
To illustrate what this means, take the case where a C application
programmer decides to include a routine called read() within his program.
There is also a routine called read() defined within the unistd.h header
file tht emulates the Unix read() system call. This latter version of
read() is called internally within the library from many other library
routines. What ANSI C states is that the version of read() in the library
and the version of read() in the user program are to be treated as
different functions if the programmer has not explicitly included the
unistd.h header file.
To implement this capability, it is necessary therefore for library
routines that are called internally within the library have a "hidden" name
which is different to the name seen by the C application programmer. This
means that it does not matter if the programmer inadvertantly includes in
his program a routine that has the same name as the public name of a
library routine.
The way that this is implemented in C68 is that any routine which is called
internally within the libraries has a #define statement in the appropriate
header file to add an underscore to the public name. This new name with the
underscore added is now a private name that is only visible if the
appropriate header file is included. The C programmers call to the public
name is therefore changed without his knowledge to a call to the hidden

name is therefore changed without his knowledge to a call to the hidden
name. All library routines are written so that they always include all
appropriate header files so that calls between libray routines always go
via this hidden name. If you are calling such routines from assembler it is
necessary to add this extra underscore explicitly.
While this is fine in practise, it is quite common in C programs that are
ported from other machines that the programmer has not included all the
header files he should have in his program, and has instead relied on C's
"implicit declaration" facility. This "implicit declaration" occurs when
the C compiler encounters a function call, and there is not already a
definition of declaration of that function in scope, then the function has
an implicit return type of 'int', and all parameters are passed using K&R
parameter promotion rules. In this case as the appropriate header file has
not been included, the compiler does not know that it should convert the
public name to a hidden name.
As this practise is so common, this is got around by including dummy
routines in the library that simply map the public name to the private
name. An example might be
 .text
 .globl strcpy
 strcpy:
 jmp _strcpy
This simply means that the routine with the private name '_strcpy' will
still be found if it is called by the public name 'strcpy' even if the
relevant header (string.h in this case) is omitted. If the header IS used,
then the reulting code would make a direct call via the private name which
is more effecient, both in terms of speed and code size.
4. PROGRAM START-UP PARAMETERS
When a C68 program starts up then before control is passed to the users
main() process, a number of standard actions are taken:
Redirection of stdin, stdout and stderr
The command line is examined to see if any of the standard files have been
re-directed. If so this is acted on.
Channels passed as parameters
The stack is examined to see if any channels were passed as parameters. If
they were, then they are allocated to stdin, then to channels 3 onwards,
and finally to stdout.
Normally, if channels are passed on the stack, then a close() call in C
only closes the file at the C level, and does not really close the
underlying channel. This is to stop child jobs messing up the screen
channels of the parent job. If the top bit is set for any channel passed on
the stack, however, the QDOS close will be performed. This facility is
currently intended for the "child" end of pipes.
Default Directories
A number of routines in the C68 libraries will allow directory names to be
defaulted. If a number of c68 compiled jobs are chained together then the
default directories of each slave job are inherited from the master. The
master job will obtain its values from the settings in SuperBasic.
This inheritance factor is important as it means that if a library call is
used to change one of the default directory settings, then this is
remembered and passed on without changing the setting that is current at
the SuperBasic level.
For releases of C68 prior to Release 2.01, the program determined on start-
up if it had inherited default program directories by examining the stack.
If it had inherited directories, then it will find the following sequence
(following any program parameters):
 2 byte flag $4A $FB
 C string Default Data Directory
 C string Default Program Directory
 C string Default Destination (Spool) directory
 1 byte $00
From Release 2.01 onwards, the mechanism changed to share that used for
Environment variables. The Default Directories were instead stored as the
Environment variables PROG_USE, DATA_USE and SPL_USE. These are passed to
daughter jobs just like any other Environment Variables.
If on start-up it is found that default directories have not been inherited
from the parent job, then the values are obtained from SuperBasic.
Environment Variables
A number of routines in the C68 libraries will allow environment variables
to be examined and/or altered. If a number of c68 compiled jobs are chained
together then the environment variables of each slave job are inherited
from the master. The master job will obtain its values from the settings in
SuperBasic.
This inheritance factor is important as it means that if a library call is

This inheritance factor is important as it means that if a library call is
used to change one of the environment variables, then this is remembered
and passed on without changing the setting that is current at the
SuperBasic level.
A C68 program will determine on start-up if it has inherited environment
variables by examining the program stack. If it has inherited environment
variables, then it will find the following sequence (following any program
parameters):
 2 byte flag $4A $FC

 long
 Pointer to Environment Variables area. This consists of a
sequence of C strings of the form "NAME=value". They are
terminated by a NULL byte.

If on program start-up it is found that no Environment Variables have been
inherited from the parent job, then the values are obtained from
SuperBasic.
5. MEMORY ALLOCATION
The C68 system maintains a private heap for each C68 program. QDOS system
calls are used both to maintain the private heap, and to obtain/release
memory from QDOS. The space for this heap is allocated dynamically from the
QDOS Common heap as described below.
Initial Allocation
This is allocated by the crt_o start-up module. An area is allocated that
is large enough to contain both the initial memory requested, and also the
program stack.
The amount of memory allocated at this stage is controlled by the
combination of the _mneed and _stack global variables.
The value for the stack required is first obtained from the _stack global
variable. The command line is then examined to see if the runtime = option
is used in the program parameters then. This value, if present, overrides
the value stated in the _stack global variable (only increases allowed). A
minimum of 1Kb is allocated even if the programmer and user both specified
less than this.
The value for the initial allocation of data space is obtained from the
_mneed global variable. The command line is then examined to see if the
runtime % option is used in the program parameters. This value if present
over-rides the value stated in the _mneed global variable. It also has the
side effect of setting the _memmax global variables to the same value. This
means that the initial program allocation is equal to the value specified,
and the program cannot allocate any additional memory.
Placement of the Program stack
The program stack is placed at the top end of the initial memory
allocation. This means that the stack grows down towards the users data
area. If the stack overflows then the user program's data areas are
corrupted before any other areas on the Common Heap. This should mean that
in the event of stack overflow the User Program will often fail before
corrupting the system. Because of the dire consequences of stack overflow,
some library routines (stackcheck() and stackreport()) are provided to
allow user Programs to anticipate and check for possible problems in this
area.
Additional Allocations
Additional memory allocations are made when there is no free memory in the
current private heap. To avoid excessive fragmentation of the QDOS Common
heap space is added to the private heap of the C68 program in chunks of at
least the size specified in the _memincr global variable.
If the C68 program finds that a call to release memory frees all of one of
the areas allocated from the QDOS Common Heap, then this area is returned
to QDOS.
6. UNIX I/O EMULATION
One of the features of the C68 emulation is its extensive emulation of Unix
system calls. The Level 1 I/O under C68 corresponds to the normal Unix I/O
interface. C68 provides library routines which mimic the Unix system call
interface.
Under the Level 1 I/O interface C communicates to the outside world via
file descriptors. These are positive integers (starting at zero) that
specify output channels. The file descriptors are mimicked under QDOS by
having an array of UFB structures (these are defined in the libc_h file
supplied with the source to the library). These structures contain the
underlying QDOS information (such as the QDOS channel) corresponding to any
given file descriptor. They also contain flags that describe the mode in
which this file should be handled.
The UFB structures are pointed to by the global variable
 struct UFB *_ufbs;
It should not be necessary for the average user to ever access these
structures directly. However if you do, you need to be aware that certain
system calls such as open() , dup , and dup2() can cause them to be moved

in memory. It is recommended therefore that you access the information they
contain using supplied libray calls such as getchid() and fcntl() .
When a file descriptor is passed to a read call for example, it indexes by
file descriptor into the _UFB array, reads the QDOS channel id from it,
then does a QDOS read call on this channel. This approach allows C programs
to be very UNIX compatible (many UNIX programs will recompile and run
without any problems), but also allows the programmer who wants to get the
QDOS channel id to do specific QDOS calls to get at the channel easily. It
also makes possible library calls such as fcntl, dup, and dup2. 7. RUN TIME
LIBRARIES
This facility is still under development, and details are subject to
change. This section will be completed when the RLL facility is ready for
use.
8. HARDWARE FLOATING POINT SUPPORT
8.1 Overview
The original QDOS and SMS systems did not have hardware floating point
units (FPU) and so the QDOS and SMS systems have no built in support for
hardware FPU. There are, however, an increasing number of systems that run
compatible operating systems that do have hardware FPU.
It has therefore been decided to define how hardware FPU would be supported
on such systems and provide an implementation of this definition. The
design is such that the definition should be generic enough in nature so
that anyone who wants to implement hardware FPU support will be able to do
so. The implementation is not limited to C68 in any way.
Thanks must go to George Gwilt who has been the one who has developed and
implemented the core code. This code is distributed as part of the C68
release with his permission. It is also available separately independently
of C68. Other key particpants were Dave Walker working on the C68 related
aspects and Simon Goodwin working at providing SuperBasic extensions that
exploited the FPU.
8.2 Save/Restore FPU context
Possibly the most important omission in the QDOS and SMS operating systems
as as FPU support is concerned is that they have no built in facilities for
saving and restoring the FPU context on task switches. This therefore has
to be done using additional software. The code to implement this has been
been developed by George Gwilt and is included as part of the standard C68
release (from release 4.22 onwards).
8.3 Floating Point Support Package
The other part of the George Gwilt implementation is a generalised version
of the Motorola FPSP (Floating Point Support Package). There is a core FP
instruction set that is implemented across all the Motorola processors.
There is then additional FP instructions that are implemented in some
Motorola processors but not others. The FPSP packages are software
implementations for each processor of the missing instructions.
As each processor has different missing instructions, Motorola provide
different FLP Support Packages. What George Gwilt has done is provide a
common interface to all of them. Where a particular processor implements
the instruction in hardware then that is called directly and where it
implements it in software then that is called. The interface code
automatically detects which Motorola processor you have and automatically
sets up the correct FP Support package. This means that on QDOS the
programmer can call the FP Support routines always without the need to do
anything different according to processor type.
8.4 C68 FPU Support
The C68 system supports the use of hardware floating point. There are two
implementations available:

The first is implemented completely within the C68 libraries in such a
manner that the user does not have to take any special considerations
to get hardware floating point support. If you use floating point
within your program, then the C68 system code will automatically look
at runtime to see if hardware floating point is present (i.e. the
SP_FPSAVE_BIN file has been loaded), and if so it will use it. If
there is no hardware support for floating point then the previous
software implementation will be used instead.
The implementation described above is not as fast as would be the case
if hardware floating point instructions were generated inline by the
compiler (due to the overheads of making library calls). However it
does have the advantage of generating portable object programs while
still giving a useful performance boost to floating point operations
when the hardware is present.
The second implementation allows for inline generation of floating
point instructions. This implementation provides maximum speed at the

point instructions. This implementation provides maximum speed at the
expense of producing programs that are not capable of being run on
systems that do not have hardware floating point support.

Both of these implementations are supported by the C68 system.
The support was actually implemented incrementally across a few different
C68 releases as follows:

 C68 Release 4.20
 C68 libraries enhanced to look for FPU hardware and to
attempt to use it if present. This was an interim
implementation that did not depend on proper FPU support
being added to QDOS.

 C68 Release 4.21

 C68 compiler enhanced to provide an option to generate
FPU instructions in-line, and the GWASS assembler added
to the release to assemble such code (the default ACK
asembler cannot handle FPU instructions). This was
limited by the fact that there was no support in QDOS
for saving/restoring the FPU context on task switching
or correctly handling FPU exceptions.

 C68 Release 4.22
 The George Gwilt support code for correctly adding FPU
support to QDOS added to the C68 release. The C68 FP
support routines in the LIBC_A library upgraded to
exploit this.

8.5 System Variables for FPU support
The following new System Variables are associated with the support of
hardware floating point. They have been formally registered with Tony Tebby
(as the author of QDOS and SMSQ) so that they do not get used for any other
purpose.

 Name Offset Size Description

 sys_fpu $d0 byte

 Set to indicate the presence of hardware floating
point support. Values used are:
-ve No hardware Floating Point (or use of hardware
floating point is suppressed).
0 Unknown if FPU hardware present. This value would
be the default value on current systems.
1 68881 or equivalent
2 68882 or equivalent
4 68040
6 68060
In addition, if the Floating Point Support Package
is loaded (Library version) then bit 3 is also set
(i.e. 8 is added to the above values).

 sys_mmu $d1 byte

 Set to indicate the type of MMU present in the
system. Values used are:
1 68851
3 68030
4 68040 or 68LC040
6 68060 or 68LC060

 sys_fpzs $d2 word Maximum length of FSAVE area.
 sys_fpsl $d4 long Address of save area list.
 sys_clfp $d8 long Address to access the FPSP (F loating P oint S

upport P ackage). Set to 0 if not present.
 sys_fpxx $dc long Currently unused.
If you are using George Gwilt's code for adding FPU support to QDOS then
the sys_fpsl is set up when you first use the FPU or any of the FPSP
routines. The other variables are set up when the SP_FPSAVE_BIN file is
loaded.
8.6 Thor FPU support
The Thor 20 machine apparently included FPU support and used some system
variables in the $d0-$df range, but in a slightly different way. However
the Thor always seems to set the variable at $d4, so if this is already set
then the FP support package supplied with QDOS will refuse to load, and C68
will therefore revert to software FP implementation.
If anyone has more information on how the Thor supported FPU then I would
welcome it so that we can:

1. Document the usage for future reference.
2. Ensure that we can correctly distinguish between the Thor FPU system

and the new one defined above.

8.7 Further FPU Information
For more detailed definitions of the low level interfaces to the FPU
support please refer to George Gwilt's documentation. A copy of this will
be included on the C68 Documentation disks. Please note that in the case of

any discrepancy between what is defined here and George's documentation it
is likely that George's is correct.
8.8 Assemblers that support FPU instructions
If you want to program the FPU in assembler you will need as assembler that
supports the additional op-codes required for FPU support. George Gwilt has
developed the GWASS assembler that has this capability and allowed it to be
freely distributed. A copy of the GWASS assembler is included with the C68
release. It is run by the C68 CC front-end automatically instead of the
AS68 assembler whenever you ask C68 to generate inline FPU code. You can
off course also use it independently of the C68 system.
AMENDMENT HISTORY
The following is a checklist of any important changes that have taken place
to this document. It is intended to help users who are upgrading from one
release of C68 to another to rapidly identify changed information.
 21 Oct 93 Changed the description of parameter widening to conform tothe new ANSI compatible mode introduced with C68 Release 4.04.
 10 Nov 93 Added fact that external C symbols have underscore prependedby compiler.
 25 Apr 94 Minor cosmetic changes for the 4.13 release of the C68 system.
 14 Aug 94 Added a new section on Namespace hiding within the various C68libraries.
 20 Sep 95 Added the beginning of a section on hardware floating pointsupport.

 03 Jan 97
 Updated definition of FPU support to bring it inline with the
George Gwilt implementation now that it all appears to be
working.

TOS Emulator for QDOS
A short note on the TOS emulator for QDOS. This product which was mentioned
in the history of PDQ C. For those who are not aware of it, TOS is the
native operating system of the Atari ST.
It seems ironic that there should be a product that allows QDOS to emulate
the Atari ST operating system (at least in part). The QL emulator for the
Atari ST is currently one of the best ways forward for those who want to
keep running QDOS, but want more powerful hardware. In fact the QDOS
emulator on the Atari ST is quite happy to run this TOS emulator (if you
can see what I mean)!
The aim of the TOS emulator is to allow TOS binary programs to be run
without alteration under the QDOS operating system. This makes a number of
programs developed for TOS available in the QDOS environment. The TOS
emulator restricts itself to trying to run those programs that are "well-
behaved", and do not try to use the graphic capabilities specific to the
Atari ST (so unfortunately it cannot run ST games).
The TOS emulator works by intercepting system calls that a TOS program
would make on the TOS operating system. As on the QL, TOS programs access
operating system facilities by using the TRAP instruction. Under TOS, the
traps used are:
 #1 GEMDOS calls
 #13 BIOS calls
 #14 XBIOS calls
QDOS uses the TRAP values of #0 to #4. This means that the only place there
is a conflict is on TRAP #1. To get around this, when it first loads a TOS
program, the TOS emulator patches all TRAP #1 instructions to be TRAP #5
instructions instead. It then invokes the QDOS facility that allows TRAP
calls from #5 upwards to be re-directed to user supplied routines. The
effect of this is that all TOS operating calls made by the TOS program are
re-directed to the TOS emulator with virtually zero run-time overhead.
The TOS emulator program then tries to map these TOS system calls onto the
appropriate QDOS system calls. This approach does has some limitations
however:

The most obvious one is that if the subject program ever tries to by-
pass TOS then it will fail to work as it is not really running under
the operating system that it thinks it is.
A linked problem will be if it tries to access TOS system variables as
they will not be there.
A problem occurs if the TOS program tries to make a TOS system call
that the TOS emulator does not support. The Atari ST has facilities
that cannot be emulated under a QDOS environment (in particular the
GEM graphics interface).
The ST has the eqivalent to the QL vector calls, and these routines
(the LINE A and LINE F routines) are not supported.

(the LINE A and LINE F routines) are not supported.

However, despite these limitations the TOS emulator does succeed in running
a significant proportion of Atari ST programs that do not attempt to use
GEM. The most significant of these is the Atari ST version of LATTICE C
(version 3.04) which was going to form the basis of PDQ C.
Jeremy Allison (who wrote the TOS emulator) has agreed to put the code for
this TOS emulator into the public domain. If anyone is interested in
playing with it they should contact Dave Walker (NOT Jeremy Allison as he
is busy on other work). You will have to be competent in assembler
programming to be able to make use of this TOS emulator, so it is not for
the faint-hearted. The source is in a format suitable for input to the GST
Macro Assembler.
The current version was specifically aimed at supporting those system calls
used by the Atari ST Lattice C compiler v3.04, and succeeds in this
admirably. More work may well be required to get other programs to work
reliably. For instance it does not (yet) successfully run the new version
of Lattice C (version 5) that has recently been released for the Atari ST.

Issue Notes for Release 4.22
INTRODUCTION
This document contains the Release Notes for this release of C68. It gives
you some guidance as to the parts making up the system and any last minute
thoughts.
If you must get started as quickly as possible (and do not intend to use
the tutorial) then it it is still recommended that you read the
STARTING_DOC file as this gives you basic guidance on running the C68
environment.
Also, before you dive in it would be particularly useful to read the C68
overview (in OVERVIEW_DOC) and the description of the C68 programming
environment (in QdosC68_DOC). The rest of the documentation can then be
read as required. Eventually you are likely to want to print yourself
copies of most of the documentation for reference purposes.
NEW FEATURES OF THIS RELEASE
The key new feature of this release relative to the 4.20 release are:

Some new optimisations in the code generated that will result in
smaller and faster code.
Bug fixes to the library.

There are also some options in this compiler that are brand new, but should
still be treated as experimental in nature. They relate to the support for
inline generation of floating point instructions, and the associated GWass
assembler that can assemble such code.
NEW FEATURES OF THE 4.20 RELEASE
This release is intended primarily as a major maintenance release of the
C68 system. Its prime purpose is to clear all bugs reported to date.
However, due to the long time since the last release there is also quite a
bit of new functionality. The key major new features that are in this
release are:

Support for Unix style Signal handling. This is comprehensively
described in the file SIGNALS_DOC.
Support for hardware floating point when it is present in the machine
running C68 programs that use floating point arithmetic (and system
variable offset $d0 set non-zero).
A new alternative maths library (the Cephes library) that appears to
be faster and more accurate than the existing library. At this release
the old version of the maths library is retained in case of any
problems being encountered with the new one.
Restructuring of much of the library documentation. It is hoped that
this will make it easier to use. In particular a comprehensive cross-
reference is now supplied that covers all the main C68 libraries.

There are also a host of other small improvements. While none of them in
themselves are particularily significant, it is hoped that the sum of them
will produce significant benefits to C68 users.
If you want more details of the changes, as well as information regarding
bugs found and cleared then please refer to the document CHANGES_DOC. This
document gives a complete history of what has changed between the various
releases of C68.
FEATURES NOT IN THIS RELEASE

FEATURES NOT IN THIS RELEASE
It is also worth noting that there are many C68 related developments that
are well under way that did NOT make it into this release, and will thus be
features of future C68 releases. Examples of such developments are:

Run Time Link libraries. This has been outstanding for some time now.
It was hoped that this development would be completed for this
release, but it was not possible. The documentation for the RLL system
is provided for those who are interested in how it might work (albeit
it might still change slightly before final release).
Improved Environment Variable support. This development will provide
new capabilities for Environment Variable support. In particular it
will make this support available to languages other than C and
SuperBasic.

The intent is that many of these above capabilties may be released at a
future date. Initially this will be via Electronic Mail and Bulleting Board
systems.
ISSUE DISKS
The C68 system is issued on a number of 720Kb disks. There is the RUNTIME
set that contains all you need to use C68, the DOCUMENT set that covers all
aspects of using C68, and the SOURCE set that contains the C source of the
components of the C68 system. The contents of these disks are as follows:

 RUNTIME_1
 The main C68 system disk containing the various passes of the
compiler, the header files and the libraries. There are also a
number of useful utility programs.

 RUNTIME_2 Utility files needed at boot stage. In a future release this
will become the RLL version of the RUNTIME_1 disk.

 RUNTIME_3 Additional libraries and header files for use with C68. Also
includes all files required if BOOT'ing from C68 issue disks.

 DOCUMENT_1
 Documentation covering general aspects of the C68 system, and
the main programs making up the compilation suite. This is all
held in QUILL files as all QDOS users will have a copy of
Quill.

 DOCUMENT_2 Documentation for the libraries and extra utilities. This isheld in QUILL format.

 SOURCE_1
 The source for the main programs making up the C68 system.
These are C68MENU, CC, CPP, C68, AS68, LD, MAKE and SLB. These
are all provided in compressed ZIP format.

 SOURCE_2
 The source for the main libraries supplied with the C68
system. These are all supplied in compressed ZIP format. There
is also (space permitting) the source of a small number of the
utility programs.

 SOURCE_3
 The source for additional libraries supplied with the C68
system. These are all supplied in compressed ZIP format. There
is also (space permitting) the source of a small number of the
utility programs.

There are also a number of additional disks (with more being worked on)
that are related to the C68 system. These will not be appropriate for all
users, so they are not provided as part of the basic set. These disks all
contain the object code, the documentation and the source code for their
particular topic area. The current release number of each disk is given so
that existing users of these disks can tell which disks have been recently
upgraded.
 C_TUTOR "C Tutorial v2.0"

 An excellent C tutorial for those just starting with C. This
is annotated with notes that relate it more directly to the
QL/C68 environment. Please note, however, that it covers the
more traditional K&R C rather than all the features that are
part of ANSI C. Despite that it is well worth working through
for new users.

 GNU RCS "GNU Revision Control System 5.6"

 This is used to help keep track of changes between different
releases of source in a controlled manner. It is highly
recommended to any serious programmer whatever the programming
language they are using.

 Note that if you only have 720Kb floppy disk drives you may
find this package a bit cumbersome to run - it really requires
a hard disk or high capacity floppy drives to get the most out
of it. Note also that it requires you to have the GNU DIFF
package mentioned below.

 GNU DIFF "GNU Diff v2.4"

 This is a series of programs that handle detecting the
differences between files. This package is needed if you want
to use the GNU RCS pacakage.

to use the GNU RCS pacakage.
 GNU UTILS "GNU Text Utilities v1.9"

 This is a series of about 20 Unix style utility programs
associated with manipulating text files (e.g. cat, expand, pr,
sort, wc etc). One disk contains the programs, and the other
one the documentation and source code.

 PROGTOOLS1 "C Programming Tools 1" (v1.2)
 Some useful C programming tools:

 CPROTO: Automatically build header files containing
function prototypes for your programs.
 INDENT: Reformat C programs to your own specific standard
layout.
 UNPROTO: Convert programs written in ANSI style C to ones in
traditional K&R C.

 QPTR "QPTR Companion Disk v3.05"

 Material to help with using LIBQPTR library. Includes a
tutorial from Tony Tebby and some useful utilities from
various sources.

 The documentation supplied on this disk assumes that you
already have the QPTR documentation. Without this
documentation you will not find this disk to be of much use.

 LIBCPORT "C68 CPORT Support Library v1.36"

 This is a special library of utility programs and Support
Routines for use with the CPORT SuperBasic to C converter. It
requires the use of C68 v4.10 or later.

 The LIBCPORT_A library provides the support routines that are
called by CPORT converted programs. The CFIX utility is a
post-processor to CPORT that automates much of the additional
work that was necessary to get the output of CPORT to compile
satisfactorily with C68. Also included are guidelines on using
CPORT with C68.

 This disk is aimed primarily at those who have a copy of the
CPORT software (which is sold by Digital Precision). However
SuperBasic programmers converting to C may find it useful as
it contains a library of routines that emulate many of the
SuperBasic keywords.

 LIBCURSES "C68 Curses Library v1.24"

 This is a complete implementation under QDOS of a Unix SVR4
curses library. It will be of particular interest to those
trying to port programs from Unix that use curses.

 Please note that the documentation supplied does not document
all the standard CURSES routine - merely the QDOS specific
parts of the implementation.

 ELVIS "Elvis for C68 v1.8"

 This is a port of the Elvis editor and its associated
utilities for use with QDOS. Elvis is a clone of the Unix "Vi"
editor.

DOCUMENTATION
There is extensive documentation for all parts of the C68 system. The
DOCUMENT_1 disk contains the general documentation and that relating to the
main programs in the C68 suite. The DOCUMENT_2 disk covers the libraries
and all the utility programs. You will still find, however, that you also
need a C reference book that covers the standard C libraries.
 README_DOC This document. You should always read this first whenever

you obtain a new release of the C68 system.

 CHANGES_DOC
 A log of the changes that have occurred between the
different releases. Also covers known bugs and new
facilities under development.

 OVERVIEW_DOC An overview of the C68 system.
 STARTING_DOC A "Quick Start" guide to using C68.
 QDOSC68_DOC Details of how QDOS and the C68 programming environment

work together.

 TECHREF_DOC
 A technical reference on some of the C68 interfaces.
Particularily relevant if trying to write assembler routines
to interface to C68.

 SIGNALS_DOC A description of the Signal support sub-system for QDOS.
 SROFF_DOC A description of the SROFF file format.
The following describe the main programs supplied as part of the C68
system:

 MENU_DOC Manual for the C68_Menu graphical front-end to using the C68system.
 CC_DOC Manual for CC command that drives the main programs in the C68

Compilation System.
 CPP_DOC Manual for the CPP pre-processor.

 CPP_DOC Manual for the CPP pre-processor.
 C68_DOC Manual for the C68 compiler.
 AS68_DOC Manual for the AS68 assembler.
 LD_DOC Manual for the LD linker.
The following give details of routines in the libraries supplied with the
C68 system:

 LIBINDEX_DOC The main index and cross-reference for the rest of the C68library documentation.
 LIBANSI_DOC Short Reference for ANSI defined C library routines.
 LIBUNIX_DOC Short Reference for POSIX and UNIX compatible routines.
 LIBC68_DOC Short Reference for C68 specific routines and LATTICE

compatible routines.
 LIBQDOS_DOC Short Reference for QDOS specific routines.
 LIBSMS_DOC Short Reference for SMS specific routines
 LIBM_DOC Short Reference for Maths library.
 LIBQPTR_DOC Short Reference for the Pointer Environment Library

routines.
There will then also be a series of files containing the documentation for
each of the utility programs supplied as part of the C68 system:

 CMDINDEX_DOC

 An index to the utility programs available for use with
C68. This includes both those provided with the basic C68
set of disks plus those available on additional disks. For
each command, the disk on which it can be found will be
indicated.

 xxx_DOC manual for the xxx command. Refer to the CMDINDEX_DOC file
to get a list of the utilities provided.

If you produce additional documentation, find errors in the current
documentation, or improve the current documentation, then please submit
your efforts to the C68 issue co-ordinator for inclusion in future
distributions of the C68 Compilation System.
ZIP FORMAT FILES
You may well find a number of files on the issue disks whose filenames end
in _zip . This will apply in particular to disks that contain source code.
If present, these are archives that contain a number of files stored
together and compressed using the ZIP utility. If you want to use these
files they need to be unpacked first by using the UNZIP program. UNZIP is
supplied on the RUNTIME 3 disk.
For those not familiar with the UNZIP program there is also a little
SuperBasic program UNZIP_BAS on the same disk to simplify the process of
unpacking archived files.
EDITORS
The C68 standard distribution includes the QED Public Domain editor.
Editors are very much a personal preference, so if you already use an
editor that is capable of editing C source files, then feel free to
continue using it. Suitable editors are THE EDITOR from Digital Precision;
SPY from ARK; QD3 from Jochen Merz; or the editors for other programming
languages.
TUTORIAL
If you are new to C then it is well worth getting the additional C_TUTOR
disk. This contains an excellent tutorial for learning C together with
plenty of sample programs to illustrate the various points. As you work
through the tutorial you will compile and run these examples, so you will
also get practical experience in using the C68 environment.
ISSUE CO-ORDINATION
The issue of the QDOS C68 Compilation System is (currently) being co-
ordinated by:
 Dave Walker
 22 Kimptons Mead
 Potters Bar
 Herts
 EN6 3HZ
 United Kingdom

 Tel: +44 1707 652791 (answering machine during working hours)
 Fax: +44 1707 850937 (may not always be switched on)
 Mobile: +44 973 382248

 Email: d.j.walker@x400.icl.co.uk
 or itimpi@msn.com
 Web Site: http://www.chez.com/davewalker/
Please report any problems encountered in using the C68 system to the above

Please report any problems encountered in using the C68 system to the above
address. If the problem is merely a "how to use/do" type question then it
can probably be answered immediately. If it is a genuine fault in the
software, then it will be added to the list of "Known Problems", and
hopefully it will be cleared in the next C68 release. In the case of
genuine bugs, it is useful to have a simple method of reproducing the
fault.
KNOWN BUGS & RESTRICTIONS
Refer to the CHANGES_DOC file for details of any known bugs at this
release. This is kept up-to-date with any reported problems. It will also
list any restrictions or previously reported bugs that have been cleared in
the current release.
If you encounter any problems that you think may be due to bugs in the C68
software then please do not be afraid to report them. Bugs will only get
fixed if they are reported.
Bug reports should be sent to the issue co-ordinator with as much evidence
as you can supply. In particular it is useful to know how to reproduce the
bug on a regular basis so that it can be investigated. In addition, please
always quote which release of C68 you are using.
DISTRIBUTION CHANNELS
The main distribution channel for the latest C68 releases is now via the
World Wide Web. The site for obtinaing both news on C68 releases and copies
of the software is:
 http://www.chez.com/davewalker/
This site will always contain the last complete release of C68, plus any
patches and fixes that have been developed since that release. It will also
contain other items of software that are not part of the C68 release, but
are relevant to C68 users.
In addition to the main distribution channel via the web mentioned above,
C68 is also often distributed via various other means such as the QL BBS
network. Many QL related Public Domain libraries also hold copies of the
C68 system. However please be warned that unless the library owner is
careful to keep up to date with the material on the web site the versions
available from the PD libraries may not always be the latest one available.
The web site mentioned earlier is always the reference point for checking
what is the latest release of C68.
FURTHER DISTRIBUTION OF C68
There is no restriction to further copying of the C68 system for QDOS as
long as it is not done for commercial purposes (barring a reasonable charge
to cover copying costs). In particular Bulleting boards and Public Domain
libraries are encouraged to distribute C68.
It is convenient if you always make certain that copies of C68 are clearly
labelled as to which release they refer. It is also convenient if all the
files that make up a particular disk are distributed together. This makes
it easier to handle any enquiries regarding problems and/or updates.
With the standard distribution on 720Kb disks, if you directory each disk
you will see a version number displayed which is the number by which this
particular release is known.
ACKNOWLEDGMENTS
The components upon which the QDOS C68 Compilation System is based has come
from a number of sources - in particular users of the MINIX operating
system. Thanks must go to all those who were prepared to put their efforts
into the Public Domain.

CP: Copy Files
NAME
 cp - copy file(s)
SYNOPSIS
 cp [-i] [-k] [-m] [-v] sourcefile targetfile
 cp [-i] [-k] [-m] [-r] [-v] [-z] [-s sorttext] sourcefilelist directory
DESCRIPTION
cp copies a file to another file, or copies a series of files to another
directory.
If only two parameters are present after the flags and the second filename
is not that of a directory, then a simple file copy is done.
When the last name is a directory, then all preceeding names are assumed to
be files to be copied to that directory. If more than two parameters are
found then the last parameter must be the name of a directory.
By default, cp will only copy files, and will ignore hard directories. If
the -r flag has been used, then directories and all their contained files
will also be copied. The cp program can therefore be used with the -r flag
to copy complete directory trees.
The cp copying process will attempt to ensure that the copy of the file has

The cp copying process will attempt to ensure that the copy of the file has
the same time and date as the original. On version 2 filing systems, cp
will also attempt to preserve the version number information.
The flag options that apply to cp are:
 -i If the targetfile already exists, then query the user before

overwriting it.
 -k If a copy fails while in progress, keep the uncompleted copy of

the failed file.

 -m
 Move files rather than simply copying them. The effect is that
as long as the copy succeeds without error, then the original
file is deleted.

 -r Recursively copy any (sub)directories found.

 -v Verbose mode. Report on progress of the copying process, and
give statistics at the end.

 -z Only usable if -r also specified. This option tells cp not to
copy any completely empty directories.

 -s
sorttext

 This option only applies when copying multiple files. If
present, then files will be sorted according to the ' sorttext '
field supplied. If not present then files are copied in the order
they are found in the directory of the source device. The values
allowed for ' sorttext ' follow the standards used by QRAM and
QPAC, and are any combination of:

 N or n Sort on ASCII name
 U or u Sort on file useage
 S or s Sort on file size
 D or d Sort on file date
 T or t Sort on file time

Upper case=ascending, lower case=descending.
COPYRIGHT
(c) copyright 1991 by David J. Walker
This program and its source code may be freely distributed and used as long
as this copyright notice remains intact and no comemrcial gain is made from
the distribution.
AMENDMENT HISTORY
 30 Aug 93 DJW Added the -r options.
 14 Oct 93 DJW Added the -z, -s and -m options.

FGREP: Search Files
NAME
 fgrep - search files for a character string
SYNOPSIS
 fgrep [options] string [file..]
DESCRIPTION
fgrep (fast grep) searches a file (or list of files) for a character
string. By default it prints the lines containing that string.
If the character string contains spaces (or any characters with special
meaning to C programs) then it should be enclosed in quotes.
If no filename is supplied, then standard input is assumed.
If list of files is specified, then they will each be searched in turn.
fgrep also recognises wildcard symbols in filenames. ? represents a single
undefined character and * represent a sequence of undefined characters
(could be none). fgrep will expand any names containing wildcards to give
the approriate list of filenames. If a list of files is being searched,
then the filename will be printed before each line listed.
The options that apply to fgrep are:
 -c Print only a count of lines containing the string.
 -i Ignore upper/lower case distinction during comparisons.

 -l
 Print the names only of files with matching lines. The name
will only be repeated once regardless of the number of times
the string matches lines in the file.

 -n Precede each line by its line number in the file (line
numbers start at 1).

 -v Print all lines EXCEPT those that contain the string.
 -x Print only lines which match the string in their entirety.
 -y The same as -i option.
 -e<string> Search for a special string. This version allows strings tostart with the - symbol.
 -

 -
f<filename> Take the list of strings from the specifed file.

GREP: Search for Patterns
NAME
 grep - search file[s] for pattern[s]
SYNOPSIS
 grep [-options] ... [expression] [filelist] ...
DESCRIPTION
This program will find a string specified by a regular expression in a file
or group of files. The following options are recognized:
 -v All lines but those matching are printed.
 -c Only a count of the matching lines is printed.

 -l The names of the files with matching lines are listed (once)
separated by newlines.

 -n Each line is preceded by its line number in the file.
 -h Do not print filename headers with output lines.

 -y All characters in the file are mapped to upper case before
matching.

 -e
<expr>

 Same as a simple expression argument, but useful when the
expression begins with a "-".

 -f
<file>

 The regular expression is taken from the file. If several regular
expressions are listed (separated by newlines or |s) then a match
will be flagged if any of the regular expressions are satisfied.

-e and -f are mutually exclusive. If -f is given, any regular expression on
the command line is taken to be a filename.
Regular expressions are composed of the following:
A ^ matches the beginning of a line.
A $ matches the end of a line.
A \ followed by a single character matches that character. In this way a "
* " will match an asterisk, a " \. " matches a period, etc. The following
sequences are special:
 \b backspace (^H)
 \n linefeed (^J this is not the same as $)
 \r carriage return (^M)
 \s space
 \t tab
 \\ backslash
A . matches any character.
A single character not otherwise endowed with special meaning matches that
character.
A string enclosed in brackets [] specifies a "character class". Any single
character in the string will be matched. For example " [abc] " will match
an a, b or c. Ranges of ASCII character codes may be abbreviated as in "
[a-z0-9] ". If the first symbol following the [is a ^ then a "negative
character class" is specified. In this case, the string matches all
characters except those enclosed in the brackets (i.e., [^a-z] matches
everything except lower case letters). Note that a negative character class
must match something, even though that something cannot be any of the
characters listed. For example: " ^$ " is not the same as " ^[^z]$ ". The
first example will match an empty line (beginning of line followed by end
of line); the second example matches a beginning of line followed by any
character except a z followed by end of line. In the second example a
character must be present on the line, but that character cannot be a z .
Note that * , . , ^ and $ are not special characters when inside a
character class.
A regular expression followed by a * matches zero or more matches of the
regular expression.
Two regular expressions concatenated match a match of the first followed by
a match of the second.
Two regular expressions separated by a | or a newline match either a match
for the first or a match for the second.
The order of precedence is [] then * then concatenation then | then
newline.
EXAMPLE
The command line:
 grep -n ^[a-z][a-z]*[\s\t]*.*([^;]*)[^;]*$ <files>

creates a cross reference of a large C program. "<files>" should be
replaced with a list of the modules to be searched. Grep's output will show
all subroutine declarations in all the listed files. In addition, every
output line will be preceded by both the name of the file in which the line
was found (this is automatic if more than one file is searched) and by the
appropriate line number (the -n causes line numbers to be shown).
The regular expression is interpreted as follows: beginning of line (^)
followed by one or more occurrences on any character in the range a to z
([a-z][a-z]*), followed by either a space or a tab repeated zero or more
times ([\s\t]*), followed by any character repeated zero or more times
(.*), followed by a open parenthesis ((), followed by any character except
a semicolon repeated zero or more times ([^;]*), followed by a close
parenthesis ()), followed by any character except a semicolon repeated zero
or more times ([^;]*), followed by end of line ($).
BUGS
All features of the unix version of grep are supported except the -s, -x
and -b options and the metacharacters (,) , + and ? .
Options, if present, must be grouped together in the second position on the
command line. The first character of the group must be a -. Unless the -f
option is given, the next argument is always taken to be the expression. If
-f is present then the third argument is the name of the file containing
the expressions.
Beware of spaces or tabs in the expression, even if your compiler supports
quoted arguments. CP/M will object to ^I anywhere on the command line. Use
\s for spaces and \t for tabs to be safe.
Some of the command line switches do mutually exclusive things (like -ef
and -eh). If you try to trick grep into doing something it is not supposed
to, the output will be undefined.
Grep's execution speed varies as a function of the type of expression being
parsed. The speed will vary as follows (listed fastest to slowest):

Simple expressions anchored to beginning of line (^<expression>).
Expressions matching literal strings.
Expressions including character classes ([]).
Expressions including closure (*).

AUTHOR
Allen Holub. Code originally published in Dr. Dobb's Journal, October 1984.
QDOS port by Erling Jacobsen.
QDOS SPECIFIC COMMENTS
The expression is best put in quotes, to prevent the run-time
initialisation code from interpreting it as a wildcard, and expanding it.
You could also remove the wildcard-expansion facility from grep_c (by
removing any reference to cmdexpand()), and recompile. Of course, you then
lose the possibility of specifying a filelist using wildcards.

PR: Prepare for Printing
NAME
 pr - convert text files for printing
SYNOPSIS
 pr [+PAGE] [-COLUMN] [-abcdfFmrtv]
 [-e[in-tab-char[in-tab-width]]] [-h header]
 [-i[out-tab-char[out-tab-width]]] [-l page-length]
 [-n[number-separator[digits]]] [-o left-margin]
 [-s[column-separator]] [-w page-width] [file...]
DESCRIPTION
This manual page documents the GNU version of pr. Pr prints on the standard
output a paginated and optionally multicolumn copy of the text files given
on the command line, or of the standard input if no files are given or when
the file name '-' is encountered. Form feeds in the input cause page breaks
in the output.
OPTIONS

+PAGE Begin printing with page PAGE.

 -
COLUMN

 Produce COLUMN-column output and print columns down. The column
width is automatically decreased as COLUMN increases; unless you
use the -w option to increase the page width as well, this option
might cause some columns to be truncated.

 -a Print columns across rather than down.
 -b Balance columns on the last page.

 -b Balance columns on the last page.

 -c Print control characters using hat notation (e.g., '^G'); print
other unprintable characters in octal backslash notation.

 -d Double space the output.

 -e
 -e[in-tab-char[in-tab-width]]
Expand tabs to spaces on input. Optional argument in-tab-char is
the input tab character, default tab. Optional argument in-tab-
width is the input tab character's width, default 8.

 -F ,
-f Use a formfeed instead of newlines to separate output pages.

 -h header Replace the filename in the header with the string header.

 -i
 -i[out-tab-char[out-tab-width]]
Replace spaces with tabs on output. Optional argument out-tab-char
is the output tab character, default tab. Optional argument out-
tab-width is the output tab character's width, default 8.

 -l
 -l page-length
Set the page length to page-length lines. The default is 66. If
page-length is less than 10, the headers and footers are omitted,
as if the -t option had been given.

 -m Print all files in parallel, one in each column.

 -n

 -n[number-separator[digits]]
Precede each column with a line number; with parallel files,
precede each line with a line number. Optional argument number-
separator is the character to print after each number, default tab.
Optional argument digits is the number of digits per line number,
default 5.

 -o
 -o left-margin
Offset each line with a margin left-margin spaces wide. The total
page width is this offset plus the width set with the -w option.

 -r
 Do not print a warning message when an argument file cannot be
opened. Failure to open a file still makes the exit status nonzero,
however.

 -s
 -s[column-separator]
Separate columns by the single character column-separator, default
tab, instead of spaces.

 -t
 Do not print the 5-line header and the 5-line trailer that are
normally on each page, and do not fill out the bottoms of pages
(with blank lines or formfeeds).

 -v Print unprintable characters in octal backslash notation.

 -w page-width Set the page width to page-width columns. The default
is 72.

RM: Remove Files
NAME
 rm - remove files or directories
SYNOPSIS
 rm [-[f][i][r]] filelist
DESCRIPTION
rm removes (deletes) files or directories. filelist is a list of the files
or directories to be removed.
The options that apply to rm are:

-
f
 Force remove without prompting the user. No errors will be reported if
a file could not be found, or if it could not be removed for some
reason.

-
i
 Interactively remove files. Query the removal of each file.

-
r

 Recursively delete directories. For this option filename should be the
name of a directory. If the device does not support directories, then
specifying a device name will cause all files on that device to be
deleted. For safety's sake, it is advisable to use this option in
conjunction with the -i option.

TO DO
To allow wildcard to be used within the filenames given to the rm command.
COPYRIGHT
(c) copyright 1991 by David J. Walker
This program and its source code may be freely distributed and used as long
as this copyright notice remains intact and no commercial gain is made from
the distribution.

SED: Stream Editor

SED: Stream Editor
NAME
 sed - the stream editor
SYNOPSIS
 sed [-n] [-g] [-e script] [-f sfile] [file] ...
DESCRIPTION
SED copies the named files (standard input default) to the standard output,
edited according to a script of commands.
An -e option supplies a single edit command from the next argument; if
there are several of these they are executed in the order in which they
appear. If there is just one -e option and no -f 's, the -e flag may be
omitted.
An -f option causes commands to be taken from the file "sfile"; if there
are several of these they are executed in the order in which they appear; -
e and -f commands may be mixed.
The -g option causes sed to act as though every substitute command in the
script has a g suffix.
The -n option suppresses the default output.
A script consists of commands, one per line, of the following form:
 [address [, address]] function [arguments]
Normally sed cyclically copies a line of input into a current text buffer,
then applies all commands whose addresses select the buffer in sequence,
then copies the buffer to standard output and clears it.
The -n option suppresses normal output (so that only p and w output is
done). Also, some commands (n, N) do their own line reads, and some others
(d, D) cause all commands following in the script to be skipped (the D
command also suppresses the clearing of the current text buffer that would
normally occur before the next cycle).
It is also helpful to know that there's a second buffer (called the 'hold
space' that can be copied or appended to or from or swapped with the
current text buffer.
An address is: a decimal numeral (which matches the line it numbers where
line numbers start at 1 and run cumulatively across files), or a #$' that
addresses the last line of input, or a context address, which is a
#/regular expression/', in the style of ed (1) modified thus:

1. The escape sequence '\n' matches a newline embedded in the buffer, and
'\t' matches a tab.

2. A command line with no addresses selects every buffer.
3. A command line with one address selects every buffer that matches that

address.
4. A command line with two addresses selects the inclusive range from the

first input buffer that matches the first address through the next
input buffer that matches the second. (If the second address is a
number less than or equal to the line number first selected, only one
line is selected.) Once the second address is matched sed starts
looking for the first one again; thus, any number of these ranges will
be matched.

The negation operator '!' can prefix a command to apply it to every line
not selected by the address(es).
In the following list of functions, the maximum number of addresses
permitted for each function is indicated in parentheses.
An argument denoted "text" consists of one or more lines, with all but the
last ending with '\' to hide the newline.
Backslashes in text are treated like backslashes in the replacement string
of an `s' command and may be used to protect initial whitespace (blanks and
tabs) against the stripping that is done on every line of the script.
An argument denoted "rfile" or "wfile" must be last on the command line.
Each wfile is created before processing begins. There can be at most 10
distinct wfile arguments.

a "text" (1)
Append. Place text on output before reading the next input line.
b "label" (2)
Branch to the ':' command bearing the label. If no label is given,
branch to the end of the script.
c "text" (2)
Change. Delete the current text buffer. With 0 or 1 address, or at the
end of a 2-address range, place text on the output. Start the next

end of a 2-address range, place text on the output. Start the next
cycle.
d (2)
Delete the current text buffer. Start the next cycle.
D (2)
Delete the first line of the current text buffer (all chars up to the
first newline). Start the next cycle.
g (2)
Replace the contents of the current text buffer with the contents of
the hold space.
G (2)
Append the contents of the hold space to the current text buffer.
h (2)
Copy the current text buffer into the hold space.
H (2)
Append a copy of the current text buffer to the hold space.
i "text" (1)
Insert. Place text on the standard output.
l (2)
List. Sends the pattern space to standard output. A "w" option may
follow as in the s command below. Non-printable characters expand to:

 \b -- backspace (ASCII 08)
 \t -- tab (ASCII 09)
 \n -- newline (ASCII 10)
 \r -- return (ASCII 13)
 \e -- escape (ASCII 27)
 \xx -- the ASCII character corresponding to 2 hex digits xx.
n (2)
Copy the current text buffer to standard output. Read the next line of
input into it.
N (2)
Append the next line of input to the current text buffer, inserting an
embedded newline between the two. The current line number changes.
p (2)
Print. Copy the current text buffer to the standard output.
P (2)
Copy the first line of the current text buffer (all chars up to the
first newline) to standard output.
q (1)
Quit. Branch to the end of the script. Do not start a new cycle.
r "rfile" (1)
Read the contents of rfile. Place them on the output before reading the
next input line.
s /regular expression/replacement/flags (2)
Substitute the replacement for instances of the regular expression in
the current text buffer. Any character may be used instead of #/'.
For a fuller description see ed (1).
Flags is zero or more of the following:

 g -- Global. Substitute for all nonoverlapping instances of the stringrather than just the first one.
 p -- Print the pattern space if a replacement was made.

 w
 -- Write. Append the current text buffer to a file argument as in a w
command if a replacement is made. Standard output is used if no file
argument is given
t "label" (2)
Branch-if-test. Branch to the : command with the given label if any
substitutes have been made since the most recent read of an input line
or execution of a 't'or 'T'. If no label is given, branch to the end of
the script.
T "label" (2)
Branch-on-error. Branch to the : command with the given label if no
substitutes have succeeded since the last input line or t or T command.
Branch to the end of the script if no label is given.
w "wfile" (2)
Write. Append the current text buffer to wfile .
W "wfile" (2)
Write first line. Append first line of the current text buffer to
wfile.
x (2)
Exchange the contents of the current text buffer and hold space.

Exchange the contents of the current text buffer and hold space.
y /string1/string2/ (2)
Translate. Replace each occurrence of a character in string1 with the
corresponding character in string2. The lengths of these strings must
be equal.
! "command" (2)
All-but. Apply the function (or group, if function is '{') only to
lines not selected by the address(es).
: "label" (0)
This command does nothing but hold a label for 'b' and 't' commands to
branch to.
= (1)
Place the current line number on the standard output as a line.
{ (2)
Execute the following commands through a matching '}' only when the
current line matches the address or address range given.
An empty command is ignored.

PORTABILITY
This tool was reverse-engineered from BSD 4.1 UNIX sed, and (as far as the
author's knowledge and tests can determine) is compatible with it. All
documented features of BSD 4.1 sed are supported.
One undocumented feature (a leading 'n' in the first comment having the
same effect as an -n command-line option) has been omitted.
The following bugs and limitations have been fixed:

There is no hidden length limit (40 in BSD sed) on w file names.
There is no limit (8 in BSD sed) on the length of labels.
The exchange command now works for long pattern and hold spaces.

The following enhancements to existing commands have been made:

a, i commands don't insist on a leading backslash-\n in the text.
r, w commands don't insist on whitespace before the filename.
The g, p and P options on s commands may be given in any order.

Some enhancements to regular-expression syntax have been made:

\t is recognized in REs (and elswhere) as an escape for tab.
In an RE, + calls for 1..n repeats of the previous pattern.

The following are completely new features:

The l command (list, undocumented and weaker in BSD)
The W command (write first line of pattern space to file).
The T command (branch on last substitute failed).
Trailing comments are now allowed on command lines.

In addition, sed's error messages have been made more specific and
informative.
The implementation is also significantly smaller and faster than BSD 4.1
sed. It uses only the standard I/O library and exit.
COPYRIGHT
This is a freeware component of the GNU operating system. The user is
hereby granted permission to use, modify, reproduce and distribute it
subject to the following conditions:

1. The authorship notice appearing in each source file may not be altered
or deleted.

2. The object form may not be distributed without source.

SEE ALSO
ed(1), grep(1), awk(1), lex(1), regexp(5)

SLB: SROFF librarian
NAME
 slb - SROFF librarian

SYNOPSIS
 slb - [[c|d|r|x|] [t[table_file]]] [-e] [-f] [-k] [-n] [-o] -[v]
 [-mmodule_file] library_file [modules...]
 slb - [A|L|S|W|Y] listingfile [-U] [-v] [-mmodule_file] [modules...]
DESCRIPTION
The slb librarian is a tool for manipulating SROFF files (as commonly used
on QDOS based systems). These are the files that are input to the linker
either as individual files, or combined into a library.
The operations available in slb break down into two discrete functional
areas:

Library Maintenance
SROFF Analysis

LIBRARY MAINTENANCE
These options are used to help maintain an SROFF library, and allow
individual modules within the library to be manipulated. The actions you
can perform are:

c reate a new library;
d elete modules from a library;
r eplace (or add) modules to a library;
e x tract modules form a library;
t able the contents of a library.

ANALYSIS MODE
These options analyse the contents of SROFF files in a variety of different
ways. The actions you can perform are:

L ibrary order analysis.
A ssembler analysis of modules ** NOT YET COMPLETE
S ROFF analysis of modules.
Cross-Reference by XDEF name.
Cross-Reference by File/Module name.

OPTIONS
The following options apply in all modes of operation.

-mmodulefile
modules...
Many of the options work on a list of one
or more modules. This list of module names can be provided either on
the command line, or read from a file.
If inputting the names from a file specified by the -m module_file
option then it is a simple text file with one line per entry. In most
cases these are simple filenames. In special cases where the modulename
is not derived from the filename then the lines are in the format
filename/module.
Comments can be included in the file either by starting a line with the
symbol (in which case the whole line will be treated as a comment
line) or by placing them on the same line as the module_name with a
least one space before the start of the comment. Blank lines are not
allowed.
The special format of -m- can be used to specify that the list is to be
read from standard input.
-v
The verbose flag. If this is set then details of the progress of slb
will be displayed as it runs. The details are written to standard error
so that you can separate it from -t output using re-direction if you
want to.

The following applies in library maintenance mode:

library_file
is the name of the library that is to be created or manipulated.
-c
Create the specified library. The library must not already exist unless
the -r option is also used.
-r
Replace modules in an existing library if they already exist, and add

Replace modules in an existing library if they already exist, and add
them otherwise. This option if used in conjunction with the -c option
means create a new library if it does not exist, and update it
otherwise.
-d
Delete modules specified from an existing library.
-x
Extract modules from an existing library. If no module list is
supplied, then all modules will be extracted, and otherwise just those
given in the list.
-t table_file
Table the contents of a library. If table_file is supplied, then the
output will be written to this file, otherwise it will be written to
standard output.
-e
Extension retain. Normally any extension is removed from the module
name before it is inserted in the library. Thus debug_o and debug_rel
would both be treated as debug . This flag would force them to be
treated as different.
-f
File contents should be examined for module name rather than deriving
it from the file name as is normally done. Only relevant to the -c and
-r options. Use of this option means that you will get the correct
module names even if you have renamed the files since they were
compiled.
-k
Keep full filename. Normally SLB will search the filename backwards,
and if it finds an underscore (other than that for the extension part
of the filename) it will consider the part of the filename before the
underscore to be a directory name and will remove it.
The use of the -k flag stops SLB removing the 'directory' part of the
filename. This can be useful if you WANT to have underscores in your
filenames.
-n
Causes a sequence number to be added at the front of the names of files
containing modules. Affects the names of files output by the -x option
and the names listed via the -t option. The module names will be of the
form nnn _modulename where nnn is the sequence number in the library.
-o
*** NOT YET FULLY IMPLEMENTED ***
This option causes SLB to attempt to optimise the SROFF modules as they
are put into the library. Many assemblers (such as C68) insert fields
into the _o files that is not needed by the linker. This option tells
SLB to remove any such references.
This optimisation mode results in the library size being smaller at the
expense of taking longer to add modules to the library (because of the
extra analysis that SLB has to do).

The following apply in the SROFF analysis modes.

-U
Treat Upper case as different to lower case in symbol names. The
standard QDOS linker LINK, and the current C68 LD linker ignore the
case of symbols.
WARNING . It is intended to reverse the meaning of this flag when the
C68 LD linker is upgraded to version 2. LD version 2 will (by default)
treat symbols as case significant which is more in line with standard C
practice.

Currently you can only select one of the following modes in a single run. A
later release of SLB is intended to raise this restriction.

-A listing_file
**** NOT YET FULLY IMPLEMENTED ****
Assembler analysis option. This produces a disassembled version of the
SROFF file. The original names are used for and globally visible names,
but autmatically generated names are used for any local labels (as the
information regarding the original names is not held in the SROFF
file).
Listing file can be specified as - if you wish to use standard output.
-L listingfile
Library order analysis. The linkers available under QDOS require that
libraries have no backward references in them. This option is used to
analyse a number of SROFF files that are to be combined into a library.
It produces a file giving the dependencies amongst the various modules.
This file can then be processed by the TSORT program to produce a file

This file can then be processed by the TSORT program to produce a file
order which has only forward references amongst modules.
Listing file can be specified as - if you wish to use standard output.
-S listing_file
SROFF analysis option. This produces an analysis of the file(s) in
terms of their SROFF structure. This option is useful if you suspect
that there is something wrong with the SROFF file(s). A number of
validation checks are carried out during the anlysis, and if any errors
are found then appropriate error messages are output.
Listing file can be specified as - if you wish to use standard output.
- W listing_file
Cross-Reference listing in XDEF order . This option will produce a
listing in the order of Externally visible names (XDEF's) showing which
module it was defined in (or not defined as the case may be). If a XDEF
is defined in multiple files/modules then this will be stated as well.
Following this is a list of the other files/modules that reference this
item.
Listing file can be specified as - if you wish to use standard output.
-Y listing_file
Cross-Reference listing in File/Module order . This option will produce
a listing in File/Module order showing for each module what Externally
visible names (XDEF's) will be satisfied by this module, and also what
External References (XREF's) are made by this module.
Listing file can be specified as - if you wish to use standard output.

ENVIRONMENT VARIABLES
If you are running in library maintenace mode using either the -r or -d
flags (replace or delete modes) then SLB needs to use a workfile. SLB will
look to see if the TEMP or TMP environment variables are set (in that
order). If they are SLB will use the device named there as the location for
the workfile. If neither environment variable is set then the workfile is
created in the current default DATA_USE directory.
AUTHOR
 David J. Walker.

 22 Kimptons Mead
 Potters Bar
 Herts
 EN6 3HZ
 United Kingdom

 Telephone: 0707 652791

 Email address: d.j.walker@slh0101.wins.icl.co.uk
COPYRIGHT
This program is (c) copyright 1991 by David J. Walker.
Permission is given to freely distribute this program, its documentation
and its source code as long as the copyright notices are left intact and no
commercial gain is made from the distribution.
If you produce any enhancements, then it would be appreciated if you passed
them back to the author.

TSORT: Topological Sort
NAME
 tsort - topological sort of a directed graph
SYNOPSIS
 tsort [file]
DESCRIPTION
Tsort takes a list of pairs of node names representing directed arcs in a
graph and prints the nodes in topological order on standard output. Input
is taken from the named file, or from standard input if no file is given.
Node names in the input are separated by white space and there must be an
even number of nodes.
Presence of a node in a graph can be represented by an arc from the node to
itself. This is useful when a node is not connected to any other nodes.
If the graph contains a cycle (and therefore cannot be properly sorted),
one of the arcs in the cycle is ignored and the sort continues. Cycles are
reported on standard error.
The most likely use that will be made of this program under QDOS is to sort
the lists created by the SLB SROFF librarian utility to create valid
library orderings.

library orderings.

TOUCH: Update File Dates
NAME
 touch - update archive or modification time of file(s)
SYNOPSIS
 touch [-c] [-a] [-m] [-v] filelist
DESCRIPTION
touch is used to update the modification (update) or archive (backup) times
of a file. If a file does not exist, then a new zero length file is
created. The time used is the current system time.
The options available with touch are:

-
c
 Do not create a new file any file specified does not already exist.

-
a
 Update the archive (backup) date of a file. If this option is specified
without the -m option, then the modification time of existing files is
left alone.

-
m
 Update the modification time of a file. Needs to be used if you have
specified the -c option and want both date fields to be updated.

-
v
 Verbose flag. Causes touch to report on the actions it has taken.

NOTES.

1. The -a and -m options are only available on systems that have extended
Tony Tebby drivers. The systems that are known to have this are the
Miracle System hard disk, SMS2 systems, he QXL and the Atari ST QL
Emulator with level B (or later) Tony Tebby drivers.

TO DO
Allow wildcard filenames to be used with touch .
Allow the date/time to be set to be specified via the command line used to
invoke touch .
COPYRIGHT
(c) Copyright 1991 by David J. Walker
This program and its source code may be freely distributed and used as long
as this copyright notice remains intact and no commercial gain is made from
the distribution.

UUE/UUD Encode/Decode Binary to ASCII
NAME
 uue, uud Encode/Decode a binary file into a portable ASCII format
SYNOPSIS
 uue [source-file] file-label
 uud [encoded-file]
DESCRIPTION
The uue and uud programs are enhanced versions of the uuencode and uudecode
programs commonly found on unix systems.
The uue program is used to encode a file into a format that contains only
printable ASCII characters. It is typically used to enable binary files to
be transmitted over electronic mail networks that only support the transfer
of text. The resulting file is typically about 35% bigger than the original
due to the encoding process.
The uud program performs the reverse operation to uue . It converts the
encoded file from the ASCII representation produced by uue back to the
original binary format. If any additional lines have been added to the
front or end of the encoded file by the mailing process, then these extra
lines are automatically stripped off by the uud program.
NB. The uue / uud programs do not preserve any additional information in a
QDOS file header.

source-file
This is the name of the file to be encoded. If it is omitted, then it
is assumed that the file will be provided as standard input.
file-label
This is the name of the file into which the binary data is to be placed
when the encoded file is later decoded back into binary format.

Typically this is the same name as used for the source file, but this
is not mandatory.
encoded-file
This is the name of the file which includes the encoded data. If this
parameter is omitted then it is assumed that the file will be read from
standard input.

The common technique is to build all the files that make up a package into
an archive. In the Unix world the programs normally used for this are 'tar'
or 'cpio'. This archive is then normally compressed using the 'compress'
program. If the resulting file needs to be transmitted via electronic mail
systems then the 'uuencode' process is applied to it.
There are a number of other progams freely available which combine the
archiving/compression step. Examples of these are 'arc', 'zip', 'zoo',
'lharc'. Files produced by these programs can also use the
uuenocde/uudecode process if they need to be transmitted via links that
only support text file transfer.

C68 library: Indexes
INTRODUCTION
This document is intended to provide the main index into the documentation
of the C68 Standard C library and the Maths library.
It provides lists of the available functions in two forms. One is a list
that is organised along functional lines. The other list is an alphabetical
list of all the functions. For the convenience of those who may be porting
software from other systems, this latter list also contains entries for
functions that are often encountered on other systems, but are not yet
implemented on the QDOS/SMS C68 implementation.
COMPATIBILITY
The entries are ogranised into a number of categories as listed below.
These categories are used to give an indication of how portable code that
uses these routines is likely to be.

 ANSI

 This contains the detailed definitions for all those routines
that are specified as part of the ANSI standard. Programs that
are written to use just these routines can be expected to be
easily portable to any system that has an ANSI C compiler.
The routines that are defined as fitting into this category have
fuller documentation in the LIBANSI_DOC file.

 POSIX

 This covers those routines that are defined as mandatory by the
Posix standard Many modern operating systems (in addition to Unix
based ones) will commonly support this family of calls.
The routines that are defined as fitting into this category have
fuller documentation in the LIBUNIX_DOC file.

 XPG

 This covers those routines that are optional in the POSIX
standard. They are not commonly available outside the Unix
environment, and even there only tend to be available on the more
modern variants.
The routines that are defined as fitting into this category have
fuller documention in the LIBUNIX_DOC file.

 UNIX
 This covers routines that can be commonly found on Unix systems,
but are not part of any of the formal standards mentioned above.
The routines that are defined as fitting into this category have
fuller documention in the LIBUNIX_DOC file.

 LATTICE

 This indicates that the routine is available in the Lattice
family of C compilers. This reflects the fact thtat prior to C68,
the main QDOS compatible C compiler was QLC which is Lattice
based. Also, many of the components of C68 had their origins in
the illfated PDQC prodcut that was Lattice based. The definition
of Lattice has been extended to include routines commonly
available in the MSDOS implementation of Lattice C.
Routines that fall into this category have fuller definitions in
the LIBC68_DOC file.

 C68

 This category refers to routines that are specific to the C68
implementation on QDOS and SMS. These are routines that do not
map directly to the underlying operating system calls (which are
discussed under the QDOS and SMS categories), but that do not
normally exist on othr systems. They provide high level
functionality that a C programmer would often want in the QDOS or
SMS environments.
Routines that fall into this category have fuller definitions in
the LIBC68_DOC file.

 QPTR
 This means that the routine in question is specifically
associated with the Pointer Environment. Fuller details of
routines are contained in the LIBQPTR_DOC file.

The next two categories define the facilities for allowing the C programmer

The next two categories define the facilities for allowing the C programmer
direct access to the underlying operating system calls. All such calls are
available under two names. The QDOS category uses the original QDOS names
for all such calls. The SMS category uses the newer SMS names for the
calls. The functionality available is identical, so it is up to the
programmer to decide whether he prefers to ue the QDOS or SMS names for
such calls (or even mix them!).

 QDOS
 This means that the routines in question map directly onto a QDOS
system call interfaces. Fuller details of such routines are
contained in the LIBQDOS_DOC file.

 SMS
 This means that the routines in question map directly onto a SMS
system interface. Fuller details of such routines are contained in
the LIBSMS_DOC file.

WRITING PORTABLE PROGRAMS
The C language was designed to allow for the development of programs that
would be portable across a wide variety of systems. Thus if one is careful
it is possible to write programs that will compile and run unchanged on a
wide variety of systems.
There have been a number of bodies that have tried to define standards that
define what facilities a programmer can expect to find supported on any
target platform.
The most important off these bodies is the ANSI comittee that defines the C
language itself. As part of the ANSI standard, a series of library
functions have been defined that a programmer can expect to be present on
any system that has an ANSI C compilation system. The ANSI routines that
are supported by the C68 compiler are defined in the LIBANSI_DOC file. You
should find that all routines defined by ANSI are supported by C68.
The problem with the ANSI standard is that although it defines all the
routines that the average application programmer might need, it does not
define any lower level routines that are closer to the operating system.
These lower level interfaces are often needed by systems level programmers.
The POSIX standard attempts to define this more complete set of interfaces.
You will find that all modern Unix compatible operating systems support the
full set of POSIX calls. There are also a number of other operating systems
that conform to the POSIX standard.
If you any class of routines other than those as indicated as belonging to
one of the above classes, then code is unlikely to be fully portable.
REFERENCE MATERIAL
The reference books listed below were used in preparing material for
inclusion in the C68 standard C library and Maths Library.
If there appeared to be any conflicting definitions, then the reference
work that is nearer the top of the above list was taken as being the
authoritive reference.
" The ANSI C Standard " by the ANSI X3J11 Technical Committee
" The Standard C Library " by Plauger
" POSIX Programmers Guide " by Donald Lewine
" X/Open Portability Guide " by X/Open Company, Ltd
" SYSTEM V RELEASE 4: Programmers Reference Manual "
" C: A Reference Manual Edition 3 " by Harbison and Steele
[recommended as a good reference book for the average user]
" LATTICE C Version 3: Programmers Reference manual "
As will be seen by examination of the above list, the intention is to make
the C68 implementation on QDOS and SMS ANSI and POSIX compatible as far as
is realistic, while at the same time allowing those who wish to do so full
access to all the capabilties of the system.
For reference on the system interfaces provided for QDOS and SMS, the
following documents were used:
" QL Technical Guide " by David Karlin and Tony Tebby
" QL Advanced User Guide " by Adrian Dickens
" QDOS/SMS Reference Manual " as published by Jochen Merz
The pointer environment is as an optional feature with QDOS and SMSQ, while
it is a standard feature of SMSQ/E and SMS2. The reference material used
for the system interfaces provided to the Pointer Environment was:
" QPTR Pointer Toolkit for the Sinclair QL " by QJUMP
" QPTR Pointer Environment " as published by Jochen Merz
It is also highly recommended that you get the C68 QPTR Companion disk.
This contains a Tutorial written by Tony Tebby that will help new users of
the Pointer Interface get started. Thanks must go to Tony Tebby for
producing this invaluable aid in the use of the Pointer Environment, and
then making it freely available. Additional examples have been provided by
Bob Weeks.

JOB HANDLING
Unix compatible
 execl execlp execv execvp
 forkl forklp forkv forkvp
 getenv putenv rmvenv system
C68 compatible
QDOS compatible
 qforkl qforklp qforkv qforkvp
 mt_activ mt_cjob mt_frjob mt_jinf
 mt_reljb mt_rjob mt_susjb mt_trapv
SMS compatible
 sms_acjb sms_crjb sms_exv sms_frjb
 sms_injb sms_rmjb sms_ssjb sms_usjb
INPUT/OUTPUT
ANSI C compatible
 clearerr fclose
 feof ferror fflush fgetc
 fgetchar fgetpos fgets fflsuhall
 fopen fopene fprintf fputc
 fread freopen fscanf fseek
 fsetpos ftell fwrite getc
 getchar gets perror printf
 putc putchar puts remove
 rename rewind scanf setbuf
 setvbuf sprintf sscanf tmpfile
 tmpnam ungetc
Posix compatible
 chdir close closedir creat
 dup fcntl fdopen fileno
 fstat fsync getcwd lseek
 mkdir mkfifo open opendir
 pclose pipe popen read
 readdir rewindir rmdir seekdir
 stat telldir tempnam unlink
 write
Unix compatible
 bgets dup2 fdmode ftruncate
 iomode mktemp opene tell
 truncate
Lattice C Compatible
 clrerr (fcloseall) getch getche
 kbhit putch setnbf ungetch
C68 Compatible
 chddir chpdir fgetchid fnmatch
 fqstat fusechid getcdd getchid
 getcname getcpd getfnl opene
 qdir_open qdir_delete qdir_read qdir_sort
 qopen qstat usechid
QDOS compatible
 fs_check fs_date fs_flush fs_headr
 fs_heads fs_load fs_mdinf fs_mkdir
 fs_pos fs_posab fs_posre fs_rename
 fs_save fs_trunc fs_vers fs_xinf
 io_close io_delete io_edlin io_fbyte
 io_fline io_format io_fstrg io_open
 io_pend io_rename io_sbyte io_sstrg
SMS compatible
 ioa_cnam ioa_sown iob_elin iob_fbyt
 iob_flin iob_fmul iob_sbyt iob_smul
 iob_test iof_chek iof_date iof_flsh
 iof_load iof_minf iof_mkdir iof_posa
 iof_posr iof_rhdr iof_rnam iof_save
 iof_shdr iof_trnc iof_vers iof_xinf
SCREEN INPUT/OUTPUT
C68 compatible

C68 compatible
c_extop
QDOS compatible
mt_dmode
 sd_bordr sd_chenq sd_clear sd_clrbt
 sd_clrln sd_clrrt sd_clrtp sd_cure
 sd_curs sd_donl sd_extop sd_fill
 sd_fount sd_ncol sd_nl sd_nrow
 sd_pan sd_panln sd_panrt sd_pcol
 sd_pixp sd_pos sd_prow sd_pxenq
 sd_recol sd_scrbt sd_scrol sd_scrtp
 sd_setfl sd_setin sd_setmd sd_setpa
 sd_setst sd_setsz sd_setul sd_tab
 sd_wdef
 ut_con ut_err ut_err0 ut_mint
 ut_mtext ut_scr ut_window
SMS compatible
 iow_blok iow_chrq iow_clra iow_clrb
 iow_clrl iow_clrr iow_clrt iow_defb
 iow_defw iow_dcur iow_donl iow_ecur
 iow_font iow_ncol iow_newl iow_nrow
 iow_pana iow_panl iow_panr iow_pcol
 iow_pixq iow_prow iow_rclr iow_scol
 iow_scra iow_scrb iow_srt iow_scur
 iow_sfla iow_sink iow_sova iow_spap
 iow_ssiz iow_spix iow_sstr iow_sula
 iow_xtop sms_dmod
GRAPHICS INPUT/OUTPUT
QDOS compatible
 sd_arc sd_elipse sd_flood sd_gcur
 sd_iarc sd_ielipse sd_igcur sd_iline
 sd_ipoint sd_iscale sd_line sd_point
 sd_scale
SMS compatible
 iog_arc iog_arc_i iog_dot iog_dot_i
 iog_elip iog_elip_i iog_fill iog_line
 iog_line_i iog_scal iog_scal_i iog_sgcr
 iog_sgcr_i
MEMORY MANAGEMENT
ANSI compatible
 free calloc malloc realloc
UNIX compatible
 lsbrk sbrk
LATTICE compatible
 alloca (allmem) (bldmem) getmem
 getml lsbrk (rbrk) rlsmem
 rlsml (rstmem) sizmem
QDOS compatible
 mt_alchp mt_alloc mt_alres mt_free
 mt_lnkfr mt_rechp mt_reres mt_shrink
 ut_link ut_unlnk
SMS compatible
 mem_achp mem_alhp mem_list mem_rchp
 mem_rehp mem_rlst sms_achp sms_achp_acsi
 sms_alhp sms_arpa sms_frtp sms_rchp
 sms_rehp sms_rrpa sms_schp
CHARACTER HANDLING
ANSI Compatible
 isalnum isalpha isascii iscntrl
 iscsym iscsymf isdigit isgraph
 islower isprint ispunc isspace
 isupper isxdigit toascii tolower
 toupper
STRING PROCESSING
ANSI compatible
 atof atoi atol memchr

 atof atoi atol memchr
 memcmp memcpy memmove memset
 strcat strchr strcoll strcmp
 strcpy strcspn strerror strlen
 strncat strncmp strncpy strpbrk
 strrchr strspn strcpsn strstr
 strtod strtok strtol strtoul
 strxfrm
UNIX compatible
 bcmp bcpy bzero index
 memccpy rindex strpos strrpos
 strcadd strccpy streadd strecpy
 strfind strrspn strrstr strtrns
LATTICE Compatible
 movmem setmem (stccpy) (stcd_i)
 (stcd_l) (stch_i) (stch_l) (stcis)
 (stcisn) (stci_d) (stci_h) (stcl_d)
 (stcl_h) (stclo) stclen (stco_i)
 (stco_l) (stcpm) (stcpma) stpblk
 stpbrk stpchr stpchrn (stpcpy)
 (stpsym) (stptok) strbpl strcmpi
 strdup stricmp strins strlwr
 strnicmp strnset strrev strset
 strsrt strupr
C68 Compatible
 itoa qstrcat qstrchr qstrcmp
 qstrcpy qstricmp qstrlen qstrncat
 qstrncpy qstrnicmp strfnd ut_cstr
CONVERSION
C68 compatible
 cstr_to_ql d_to_qlfp i_to_qlfp l_to_qlfp
 qlfp_to_d qlfp_to_f qlstr_to_c w_to_qlfp
QDOS compatible
 cn_btoib cn_btoil cn_btoiw cn_date
 cn_day cn_dtof cn_dtoi cn_ftod
 cn_htoib cn_htoil cn_htoiw cn_itobb
 cn_itobw cn_itobl cn_itod cn_itohb
 cn_itohw cn_itohl
SMS compatible
 cv_binib cv_binil cv_biniw cv_datil
 cv_decfp cv_deciw cv_fpdec cv_hexib
 cv_hexil cv_hexiw cv_ibbin cv_ibhex
 cv_ilbin cv_ildat cv_ilday cv_ilhex
 cv_iwbin cv_iwdec cv_iwhex
LOCALE AND LANGUAGE DEPENDENT
ANSI compatible
 localeconv mblen mbtowc mbstowcs
 wcstombs wctomb setlocale
SMS compatible
 sms_fprm sms_lenq sms_lldm sms_lset
 sms_mptr sms_pset sms_trns
DATE AND TIME
 asctime ctime difftime gmtime
 localtime mktime time strftime
UNIX compatible
 stime tzset utime
LATTICE Compatible
jtime
QDOS compatible
 mt_aclck mt_rclck mt_sclck
SMS compatible
 sms_artc sms_rrtc sms_srtc
SIGNAL HANDLING
Posix Compatible
 alarm kill pause raise

 alarm kill pause raise
 signal sigaction sigaddset sigdelset
 sigemptyset sigfillset sigismember siglongjmp
 sigpending sigprocmask sigsetjmp sigsuspend
 sigset sighold sigrelse sigignore
 sigpause
Unix Compatible
 fraise killu raiseu
C68 compatible
 sendsig set_timer_event sigcleanup
QUEUE HANDLING
QDOS compatible
 io_qeof io_qin io_qout io_qset
 io_qtest io_serio io_serq
SMS compatible
 ioq_seof ioq_gbyt ioq_pbyt ioq_setq
 ioq_test iou_ssio iou_ssq
DEVICE DRIVER LISTS
QDOS compatible
 mt_ldd mt_liod mt_lpoll mt_lschd
 mt_lxint mt_rdd mt_riod mt_rpoll
 mt_rschd mt_rxint
SMS compatible
 sms_lfsd sms_liod sms_lpol sms_lshd
 sms_lexi sms_rfsd sms_riod sms_rpol
 sms_rshd sms_rexi
THING ACCESS
QDOS and SMS compatible
 sms_fthg sms_lthg sms_nthg sms_nthu
 sms_rthg sms_uthg sms_zthg
MISCELLANEOUS
 _exit abort abs access
 argopt assert atexit bsearch
 div exit labs ldiv
 longjmp onexit qsort rand
 setjmp srand wait
POSIX compatible
 fpathconf getpass getpwname getpwuid
 pathconf
Unix compatible
 basename bufsplit chmod chown
 copylist dirname endpwent getegid
 geteuid getgid getopt getpid
 getuid isatty link mknod
 setgid setpwent setuid sleep
 sync umask
LATTICE Compatible
 dqsort envunpk fqsort iabs
 lqsort sqsort tqsort
C68 compatible
 baud beep do_sound iscon
 isdevice isdirchid isdirdev isnoclose
 keyrow poserr qdos1 qdos2
 qdos3 qinstrn stackcheck stackreport
 waitfor _CacheFlush _ProcessorType
 _super _superend _user
QDOS compatible
 mt_baud mt_inf mt_ipcom mt_trans
SMS compatible
 sms_cach sms_comm sms_hdop sms_info
 sms_iopr sms_xtop
GLOBAL VARIABLES
ANSI compatible
 errno sys_errlist sys_nerr timezone
 txdtn tzstn tzname
Unix compatible

Unix compatible
 environ optarg optind optopt
C68 compatible
 os_nerr os_errlist
 _bufsize _def_prior _endmsg _endtimeout
 _memincr _memmax _memqdos _mneed
 _oserr _pipesize _prog_name _stack
 _stackmargin _sys_var
GLOBAL VECTORS
C68 compatible
 _cmdchannels _cmdparams _cmdwildcard
BUTTON FRAME ROUTINES
 bt_frame bt_free bt_prpos
WINDOW MANAGER FUNCTIONS
QPTR compatible
 wm_chwin wm_clbdr wm_cluns wm_drbdr
 wm_ename wm_erstr wm_findv wm_fsize
 wm_idraw wm_index wm_ldraw wm_mdraw
 wm_mhit wm_msect wm_pansc wm_prpos
 wm_pulld wm_rname wm_rptr wm_setup
 wm_stiob wm_stlob wm_swapp wm_swdef
 wm_swinf wm_swlit wm_swsec wm_unset
 wm_upbar wm_wdraw wm_wrset
WINDOWS MANAGER ACTION ROUTINE WRAPPERS
QPTR compatible
 wm_actli wm_actme wm_drwaw wm_hitaw
 wm_ctlaw
POINTER INTERFACE FUNCTIONS
QPTR compatible
 iop_flim iop_lblb iop_outl iop_pick
 iop_pinf iop_rptr iop_rpxl iop_rspw
 iop_slnk iop_spry iop_sptr iop_svpw
 iop_swdf iop_wblb iop_wrst iop_wsav
 iop_wspt
STANDARD SPRITES
QPTR compatible
 wm_sprite_arrow wm_sprite_cf1 wm_sprite_cf2
 wm_sprite_cf3 wm_sprite_cf4 wm_sprite_f1
 wm_sprite_f2 wm_sprite_f3 wm_sprite_f4
 wm_sprite_f5 wm_sprite_f6 wm_sprite_f7
 wm_sprite_f8 wm_sprite_f9 wm_sprite_f10
 wm_sprite_hand wm_sprite_insg wm_sprite_insl
 wm_sprite_left wm_sprite_move wm_sprite_null
 wm_sprite_sleep wm_sprite_wake wm_sprite_zero
Alphabetical List of all Library Functions
 abort ANSI stdlib.h
 abs ANSI stdlib.h
 access POSIX unistd.h
 acos ANSI math.h
 advance XPG regexp.h ** not implemented **
 alarm POSIX signal.h
 allmem
 argfree C68 sys/qlib.h
 argopt
 argpack C68 sys/qlib.h
 argunpack C68 sys/qlib.h
 asctime ANSI time.h
 asin ANSI math.h
 assert ANSI assert.h
 atan ANSI math.h
 atan2 ANSI math.h
 atexit ANSI stdlib.h
 atof ANSI stdlib.h
 atoi ANSI stdlib.h
 atol ANSI stdlib.h
 basename UNIX libgen.h

 basename UNIX libgen.h
 bcmp UNIX memory.h BSD Unix
 bcpy UNIX memory.h BSD Unix
 beep C68 sys/qlib.h
 bldmem
 bsearch ANSI stdlib.h
 bt_frame QPTR
 bt_free QPTR
 bt_prpos QPTR
 bufsplit UNIX libgen.h
 bzero UNIX memory.h BSD Unix
 c_extop C68 sys/qlib.h
 calloc ANSI stdlib.h
 ceil ANSI math.h
 cfgetispeed POSIX termios.h ** not implemented **
 cfgetospeed POSIX termios.h ** not implemented **
 cfsetispeed POSIX termios.h ** not implemented **
 cfsetopeed POSIX termios.h ** not implemented **
 chdir POSIX
 chddir C68 sys/qlib.h
 chpdir C68 sys/qlib.h
 chmod POSIX sys/stat.h
 chown POSIX unistd.h
 chroot POSIX unistd.h ** not implemented **
 clearerr ANSI stdio.h
 clock ANSI time.h
 close POSIX unistd.h
 closedir POSIX dirent.h
 clrerr
 cn_btolb QDOS qdos.h
 cn_btoil QDOS qdos.h
 cn_btolw QDOS qdos.h
 cn_date QDOS qdos.h
 cn_day QDOS qdos.h
 cn_dtof QDOS qdos.h
 cn_dtoi QDOS qdos.h
 cn_ftod QDOS qdos.h
 cn_htoib QDOS qdos.h
 cn_htoil QDOS qdos.h
 cn_htoiw QDOS qdos.h
 cn_itobb QDOS qdos.h
 cn_itobl QDOS qdos.h
 cn_itobw QDOS qdos.h
 cn_itod QDOS qdos.h
 cn_itohb QDOS qdos.h
 cn_itohl QDOS qdos.h
 cn_itojw QDOS qdos.h
 compile XPG regexp.h ** not implemented **
 copylist UNIX libgen.h
 cos ANSI math.h
 cosh ANSI math.h
 creat POSIX unistd.h
 crypt POSIX crypt.h ** not implemented **
 cstr_to_ql C68 sys/qlib.h
 ctermid POSIX stdio.h
 ctime ANSI time.h
 cuserid POSIX stdio.h
 cv_binib SMS sms.h
 cv_binil SMS sms.h
 cv_biniw SMS sms.h
 cv_datil SMS sms.h
 cv_decfp SMS sms.h
 cv_deciw SMS sms.h
 cv_fpdec SMS sms.h
 cv_hexib SMS sms.h
 cv_hexil SMS sms.h

 cv_hexil SMS sms.h
 cv_hexiw SMS sms.h
 cv_ibbin SMS sms.h
 cv_ibhex SMS sms.h
 cv_ilbin SMS sms.h
 cv_ildat SMS sms.h
 cv_ilday SMS sms.h
 cv_ilhex SMS sms.h
 cv_iwbin SMS sms.h
 cv_isdec SMS sms.h
 cv_iwhex SMS sms.h
 d_to_qlfp C68 sys/qlib.h
 difftime ANSI time.h
 dirname UNIX libgen.h
 div ANSI stdlib.h
 do_sound C68 sys/qlib.h
 dqsort LATTICE
 drand48 POSIX stdlib.h ** not implemented **
 dup POSIX unistd.h
 dup2 POSIX unistd.h
 encrypt POSIX crypt.h ** not implemented **
 endgrent UNIX grp.h
 endpwent UNIX pwd.h
 erand48 POSIX stdlib.h ** not implemented **
 erf POSIX math.h ** not implemented **
 erfc POSIX math.h ** not implemented **
 errno ANSI errno.h
 execl POSIX unistd.h
 execle POSIX unistd.h ** not implemented **
 execlp POSIX unistd.h
 execv POSIX unistd.h
 execve POSIX unistd.h ** not implemented **
 execvp POSIX unistd.h
 exit ANSI stdlib.h
 _exit POSIX unistd.h
 exp ANSI math.h
 fabs ANSI math.h
 fclose ANSI stdio.h
 fcntl POSIX fcntl.h
 fcvt
 fdmode
 fdopen POSIX stdio.h
 feof ANSI stdio.h
 ferror ANSI stdio.h
 fflush ANSI stdio.h
 fgetc ANSI stdio.h
 fgetchar
 fgetchid C68 sys/qlib.h
 fgetpos ANSI stdio.h
 fgets ANSI stdio.h
 fileno POSIX stdio.h
 floor ANSI math.h
 fmod ANSI math.h
 fnmatch C68 sys/qlib.h
 fopen ANSI stdio.h
 fopene
 fork UNIX ** Not Implemented **
 forkl
 forklp
 forkv
 forkvp
 fpathconf POSIX unistd.h
 fprintf ANSI stdio.h
 fputc ANSI stdio.h
 fputchar
 fputs ANSI stdio.h

 fputs ANSI stdio.h
 fqsort LATTICE
 fqstat C68 sys/qlib.h
 fread ANSI stdio.h
 free ANSI stdlib.h
 freopen ANSI stdio.h
 frexp ANSI math.h
 fscanf ANSI stdio.h
 fseek ANSI stdio.h
 fsetpos ANSI stdio.h
 fstat POSIX sys/stat.h
 fsync XPG unistd.h
 fs_check QDOS qdos.h
 fs_date QDOS qdos.h
 fs_flush QDOS qdos.h
 fs_headf QDOS qdos.h
 fs_geadr QDOS qdos.h
 fs_heads QDOS qdos.h
 fs_load QDOS qdos.h
 fs_mdinf QDOS qdos.h
 fs_mkdir QDOS qdos.h
 fs_pos QDOS qdos.h
 fs_posab QDOS qdos.h
 fs_posre QDOS qdos.h
 fs_rename QDOS qdos.h
 fs_save QDOS qdos.h
 fs_trunc QDOS qdos.h
 fs_vers QDOS qdos.h
 fs_xinf QDOS qdos.h
 ftell ANSI stdio.h
 ftw POSIX ftw.h ** not implemented **
 fusechid C68 sys/qlib.h
 fwrite ANSI stdio.h
 gamma XPG math.h
 getc ANSI stdio.h
 getcdd C68 sys/qlib.h
 getchar ANSI stdio.h
 getchid C68 sys/qlib.h
 getcname C68 sys/qlib.h
 getcpd C68 sys/qlib.h
 getcwd POSIX unistd.h
 getegid POSIX unistd.h
 getenv ANSI stdlib.h
 getfnl C68 sys/qlib.h
 getmem LATTICE
 getml LATTICE
 geteuid POSIX unistd.h
 getgid POSIX unistd.h
 getgrent UNIX grp.h
 getgrgid POSIX grp.h
 getgrnam POSIX grp.h
 getgroups POSIX unistd.h ** not implemented **
 getlogin POSIX unistd.h
 getopt XPG stdlib.h
 getpass XPG stdlib.h
 getpgrp POSIX unistd.h ** not implemented **
 getpid POSIX unistd.h
 getppid POSIX unistd.h ** not implemented **
 getpwent UNIX pwd.h
 getpwnam POSIX pwd.h
 getpwuid POSIX pwd.h
 gets ANSI stdio.h
 getuid POSIX unistd.h
 getw XPG stdio.h ** not implemented **
 gmatch UNIX libgen.h
 gmtime ANSI time.h

 gmtime ANSI time.h
 hcreate XPG search.h ** not implemented **
 hdestroy XPG search.h ** not implemented **
 hsearch XPG search.h ** not implemented **
 hypot XPG math.h ** not implemented **
 i_to_qlfp C68 sys/qlib.h
 io_close QDOS qdos.h
 io_delete QDOS qdos.h
 io_edlin QDOS qdos.h
 io_fbyte QDOS qdos.h
 io_fline QDOS qdos.h
 io_format QDOS qdos.h
 io_fstrg QDOS qdos.h
 io_open QDOS qdos.h
 io_pend QDOS qdos.h
 io_qeof QDOS qdos.h
 io_qin QDOS qdos.h
 io_qout QDOS qdos.h
 io_qset QDOS qdos.h
 io_qtest QDOS qdos.h
 io_rename QDOS qdos.h
 io_sbyte QDOS qdos.h
 io_serio QDOS qdos.h
 io_serq QDOS qdos.h
 io_sstrg QDOS qdos.h
 ioa_cnam QDOS sms.h Only SMSQ or SMSQ/E
 ioa_sown SMS sms.h Only SMSQ or SMSQ/E
 iob_elin SMS sms.h
 iob_fbyt SMS sms.h
 iob_flin SMS sms.h
 iob_fmul SMS sms.h
 iob_sbyt SMS sms.h
 iob_smul SMS sms.h
 iob_test SMS sms.h
 iof_check SMS sms.h
 iof_date SMS sms.h
 iof_flsh SMS sms.h
 iof_load SMS sms.h
 iof_minf SMS sms.h
 iof_mkdir SMS sms.h
 iof_posa SMS sms.h
 iof_posr SMS sms.h
 iof_rhdr SMS sms.h
 iof_rnam SMS sms.h
 iof_save SMS sms.h
 iof_shdr SMS sms.h
 iof_trnc SMS sms.h
 iof_vers SMS sms.h
 iof_xinf SMS sms.h
 iog_arc SMS sms.h
 iog_arc_i SMS sms.h
 iog_dot SMS sms.h
 iog_dot_i SMS sms.h
 iog_elip SMS sms.h
 iog_elip_i SMS sms.h
 iog_fill SMS sms.h
 iog_line SMS sms.h
 iog_line_i SMS sms.h
 iog_scal SMS sms.h
 iog_scal_i SMS sms.h
 iog_sgcr SMS sms.h
 iog_sgcr_i SMS sms.h
 iop_flim QPTR qptr.h
 iop_lblb QPTR qptr.h
 iop_outl QPTR qptr.h
 iop_pick QPTR qptr.h

 iop_pick QPTR qptr.h
 iop_pinf QPTR qptr.h
 iop_rptr QPTR qptr.h
 iop_rpxl QPTR qptr.h
 iop_rspw QPTR qptr.h
 iop_slnk QPTR qptr.h
 iop_spry QPTR qptr.h
 iop_sptr QPTR qptr.h
 iop_svpw QPTR qptr.h
 iop_swdef QPTR qptr.h
 iop_wblb QPTR qptr.h
 iop_wrst QPTR qptr.h
 iop_wsav QPTR qptr.h
 iop_wspt QPTR qptr.h
 ioq_seof SMS sms.h
 ioq_qbyt SMS sms.h
 ioq_pbyt SMS sms.h
 ioq_setq SMS sms.h
 ioq_test SMS sms.h
 iou_ssio SMS sms.h
 iou_ssq SMS sms.h
 iow_blok SMS sms.h
 iow_chrq SMS sms.h
 iow_clra SMS sms.h
 iow_clrb SMS sms.h
 iow_clrl SMS sms.h
 iow_clrr SMS sms.h
 iow_clrt SMS sms.h
 iow_defb SMS sms.h
 iow_defw SMS sms.h
 iow_dcur SMS sms.h
 iow_donl SMS sms.h
 iow_ecur SMS sms.h
 iow_font SMS sms.h
 iow_ncol SMS sms.h
 iow_newl SMS sms.h
 iow_nrow SMS sms.h
 iow_pana SMS sms.h
 iow_panl SMS sms.h
 iow_panr SMS sms.h
 iow_pcol SMS sms.h
 iow_pixq SMS sms.h
 iow_prow SMS sms.h
 iow_rclr SMS sms.h
 iow_scol SMS sms.h
 iow_scra SMS sms.h
 iow_scrb SMS sms.h
 iow_scrt SMS sms.h
 iow_scur SMS sms.h
 iow_sfla SMS sms.h
 iow_sink SMS sms.h
 iow_sova SMS sms.h
 iow_spap SMS sms.h
 iow_ssiz SMS sms.h
 iow_spix SMS sms.h
 iow_sstr SMS sms.h
 iow_sula SMS sms.h
 iow_xtop SMS sms.h
 isalnum ANSI ctype.h
 isalpha ANSI ctype.h
 isascii XPG ctype.h
 isatty POSIX unistd.h
 iscntrl ANSI ctype.h
 iscon C68 sys/qlib.h
 isdevice C68 sys/qlib.h
 isdigit ANSI ctype.h

 isdigit ANSI ctype.h
 isdirchid C68 sys/qlib.h
 isdirdev C68 sys/qlib.h
 isgraph ANSI ctype.h
 islower ANSI ctype.h
 isnan XPG math.h ** not implemented **
 isnoclose C68 sys/qlib.h
 isprint ANSI ctype.h
 ispunct ANSI ctype.h
 isspace ANSI ctype.h
 isupper ANSI ctype.h
 isxdigit ANSI ctype.h
 l_to_qlfp C68 sys/qdos.h
 j0 XPG math.h ** not implemented **
 j1 XPG math.h ** not implemented **
 jn XPG math.h ** not implemented **
 jrand48 POSIX stdlib.h ** not implemented **
 kill POSIX signal.h
 labs ANSI stdlib.h
 lcong48 POSIX stdlib.h ** not implemented **
 ldexp ANSI math.h
 ldiv ANSI stdlib.h
 lfind XPG search.h ** not implemented **
 lgamma XPG math.h ** not implemented **
 link POSIX unistd.h
 localeconv ANSI locale.h
 localtime ANSI time.h
 log ANSI math.h
 log10 ANSI math.h
 longjmp ANSI setjmp.h
 lrand48 POSIX stdlib.h ** not implemented **
 lsearch XPG search.h ** not implemented **
 lseek POSIX unistd.h
 malloc ANSI stdlib.h
 mblen ANSI stdlib.h
 mbstowcs ANSI stdlib.h
 mbtowc ANSI stdlib.h
 memccpy XPG string.h
 memchr ANSI string.h
 memcmp ANSI string.h
 memcpy ANSI string.h
 memmove ANSI string.h
 memset ANSI string.h
 mem_achp SMS sms.h
 mem_alhp SMS sms.h
 mem_rchp SMS sms.h
 mem_rehp SMS sms.h
 mem_rlst SMS sms.h
 mkdir POSIX sys/stat.h
 mkfifo POSIX sys/stat.h
 mknod UNIX sys/stat.h
 mktime ANSI time.h
 modf ANSI math.h
 modff UNIX math.h
 mrand48 POSIX stdlib.h ** not implemented **
 msgctl XPG sys/ipc.h ** not implemented **
 sys/msg.h
 msgget XPG sys/ipc.h ** not implemented **
 sys/msg.h
 msgrcv XPG sys/ipc.h ** not implemented **
 sys/msg.h
 msgsnd XPG sys/ipc.h ** not implemented **
 sys/msg.h
 mt_aclck QDOS qdos.h
 mt_activ QDOS qdos.h
 mt_alchp QDOS qdos.h

 mt_alchp QDOS qdos.h
 mt_alloc QDOS qdos.h
 mt_alres QDOS qdos.h
 mt_baud QDOS qdos.h
 mt_cjob QDOS qdos.h
 mt_dmode QDOS qdos.h
 mt_free QDOS qdos.h
 mt_frjob QDOS qdos.h
 mt_inf QDOS qdos.h
 mt_ipcom QDOS qdos.h
 mt_jinf QDOS qdos.h
 mt_ldd QDOS qdos.h link directory driver
 mt_liod QDOS qdos.h link I/O driver
 mt_lnkfr QDOS qdos.h
 mt_lpoll QDOS qdos.h link polled loop
 mt_lschd QDOS qdos.h link scheduler loop
 mt_lxint QDOS qdos.h
 mt_rclck QDOS qdos.h
 mt_rechp QDOS qdos.h release common heap
 mt_reljb QDOS qdos.h
 mt_reres QDOS qdos.h
 mt_riod QDOS qdos.h
 mt_rjob QDOS qdos.h
 mt_rpoll QDOS qdos.h
 mt_rschd QDOS qdos.h
 mt_rxint QDOS qdos.h
 mt_sclck QDOS qdos.h
 mt_shrink QDOS qdos.h
 mt_susjb QDOS qdos.h
 mt_trans QDOS qdos.h
 mt_trapv QDOS qdos.h
 nice.h XPG unistd.h ** not implemented **
 nl_langinfo XPG langinfo.h ** not implemented **
 nrand48 POSIX stdlib.h ** not implemented **
 open POSIX fcntl.h
 sys/stat.h
 open_qdir C68 sys/qlib.h
 opendir POSIX dirent.h
 pathconf POSIX unistd.h
 pause POSIX unistd.h
 pclose XPG stdio.h
 perror ANSI stdio.h
 pipe POSIX unistd.h
 popen XPG stdio.h
 poserr C68 sys/qlib.h
 pow ANSI math.h
 printf ANSI stdio.h
 putc ANSI stdio.h
 putchar ANSI stdio.h
 putenv XPG unistd.h
 puts ANSI stdio.h
 putw XPG stdio.h ** not implemented **
 qdir_delete C68 sys/qlib.h
 qdir_read C68 sys/qlib.h
 qdir_sort C68 sys/qlib.h
 qdos1 LATTICE sys/qlib.h
 qdos2 LATTICE sys/qlib.h
 qdos3 LATTICE sys/qlib.h
 qforkl C68 sys/qlib.h
 qforklp C68 sys/qlib.h
 qforkv C68 sys/qlib.h
 qforkvp C68 sys/qlib.h
 qinstrn C68 sys/qlib.h
 qlfp_to_d C68 sys/qlib.h
 qlfp_to_f C68 sys/qlib.h
 qopen C68 fcntl.h

 qopen C68 fcntl.h
 qsort ANSI stdlib.h
 qstat C68 sys/qlib.h
 qstrcat C68 sys/qlib.h
 qstrchr C68 sys/qlib.h
 qstrcmp C68 sys/qlib.h
 qstrcpy C68 sys/qlib.h
 qstricmp C68 sys/qlib.h
 qstrlen C68 sys/qlib.h
 qstrncat C68 sys/qlib.h
 qstrncmp C68 sys/qlib.h
 qstrncpy C68 sys/qlib.h
 qstrnicmp C68 sys/qlib.h
 raise ANSI signal.h
 rand ANSI stdlib.h
 read POSIX unistd.h
 read_qdir C68 sys/qlib.h
 readdir POSIX dirent.h
 realloc ANSI stdlib.h
 remove ANSI stdio.h
 rename ANSI stdio.h
 rewind ANSI stdio.h
 rewinddir POSIX dirent.h
 rmdir POSIX unistd.h
 scanf ANSI stdio.h
 sd_arc QDOS qdos.h
 sd_bordr QDOS qdos.h
 sd_chenq QDOS qdos.h
 sd_clear QDOS qdos.h
 sd_clrbt QDOS qdos.h
 sd_clrln QDOS qdos.h
 sd_clrrt QDOS qdos.h
 sd_clrtp QDOS qdos.h
 sd_cure QDOS qdos.h
 sd_curs QDOS qdos.h
 sd_donl QDOS qdos.h
 sd_elipse QDOS qdos.h
 sd_extop QDOS qdos.h
 sd_fill QDOS qdos.h
 sd_flood QDOS qdos.h
 sd_fount QDOS qdos.h
 sd_gcur QDOS qdos.h
 sd_iarc QDOS qdos.h
 sd_ielipse QDOS qdos.h
 sd_igcur QDOS qdos.h
 sd_iline QDOS qdos.h
 sd_ipoint QDOS qdos.h
 sd_iscale QDOS qdos.h
 sd_line QDOS qdos.h
 sd_ncol QDOS qdos.h
 sd_nl QDOS qdos.h
 sd_nrow QDOS qdos.h
 sd_pan QDOS qdos.h
 sd_panln QDOS qdos.h
 sd_panrt QDOS qdos.h
 sd_pcol QDOS qdos.h
 sd_pixp QDOS qdos.h
 sd_point QDOS qdos.h
 sd_pos QDOS qdos.h
 sd_prow QDOS qdos.h
 sd_pxenq QDOS qdos.h
 sd_recol QDOS qdos.h
 sd_scale QDOS qdos.h
 sd_scrbt QDOS qdos.h
 sd_scrol QDOS qdos.h
 sd_scrtp QDOS qdos.h

 sd_scrtp QDOS qdos.h
 sd_setfl QDOS qdos.h
 sd_setin QDOS qdos.h
 sd_setmd QDOS qdos.h
 sd_setpa QDOS qdos.h
 sd_setst QDOS qdos.h
 sd_setsz QDOS qdos.h
 sd_setul QDOS qdos.h
 sd_tab QDOS qdos.h
 sd_wdef QDOS qdos.h
 seed48 POSIX stdlib.h ** not implemented **
 seekdir XPG dirent.h
 semctl XPG sys/ipc.h ** not implemented **
 sys/sem.h
 semget XPG sys/ipc.h ** not implemented **
 sys/sem.h
 semop XPG sys/ipc.h ** not implemented **
 sys/sem.h
 sendsig C68 sys/signal.h
 setbuf ANSI stdio.h
 seteuid UNIX unistd.h
 setgid POSIX unistd.h
 setgrent UNIX grp.h
 setjmp ANSI setjmp.h
 setkey XPG crypt.h ** not implemented **
 setlocale ANSI locale.h
 setpgid POSIX unistd.h
 setpwent UNIX pwd.h
 setsid POSIX unistd.h ** not implemented **
 setuid POSIX unistd.h
 setvbuf ANSI stdio.h
 set_timer_event C68 sys/signal.h
 shmat XPG sys/ipc.h ** not implemented **
 sys/shm.h
 shmctl XPG sys/ipc.h ** not implemented **
 sys/shm.h
 shmdt XPG sys/ipc.h ** not implemented **
 sys/shm.h
 shmget XPG sys/ipc.h ** not implemented **
 sys/shm.h
 sigaction POSIX signal.h
 sigaddset POSIX signal.h
 sigcleanup C68 sys/signal.h
 sigdelset POSIX signal.h
 sigemptyset POSIX signal.h
 sigfillset POSIX signal.h
 sigismember POSIX signal.h
 siglongjmp POSIX signal.h
 signal ANSI signal.h
 sigpending POSIX signal.h
 sigprocmask POSIX signal.h
 sigsetjmp POSIX setjmp.h
 sigsuspend POSIX signal.h
 sin ANSI math.h
 sinh ANSI math.h
 sleep POSIX unstd.h
 sprintf ANSI stdio.h
 sqrt ANSI math.h
 sms_achp SMS sms.h
 sms_acjb SMS sms.h
 sms_alhp SMS sms.h
 sns_arpa SMS sms.h
 sms_artc SMS sms.h
 sms_cach SMS sms.h Not SMS/2
 sms_comm SMS sms.h
 sms_crjb SMS sms.h

 sms_fprm SMS sms.h Not SMS/2
 sms_frjb SMS sms.h
 sms_frtp SMS sms.h
 sms_fthg QDOS qdos.h
 sms_fthg SMS sms.h
 sms_hdop SMS sms.h
 sms_info SMS sms.h
 sms_injb SMS sms.h
 sms_iopr SMS sms.h Not SMS/2
 sms_lenq SMS sms.h Not SMS/2
 sms_lexi SMS sms.h
 sms_lfsd SMS sms.h
 sms_liod SMS sms.h
 sms_lldm SMS sms.h Not SMS/2
 sms_lpol SMS sms.h
 sms_lset SMS sms.h Not SMS/2
 sms_lshd SMS sms.h
 sms_lthg QDOS qdos.h
 sms_lthg SMS sms.h
 sms_mptr SMS sms.h Not SMS/2
 sms_nthg QDOS qdos.h Next thing
 sms_nthg SMS sms.h Next thing
 sms_nthu QDOS qdos.h Next thing user
 sms_nthu SMS sms.h Next thing user
 sms_pset SMS sms.h Not SMS/2
 sms_rchp SMS sms.h
 sms_rehp SMS sms.h
 sms_rexi SMS sms.h
 sms_rfsd SMS sms.h
 sms_riod SMS sms.h
 sms_rmjb SMS sms.h
 sms_rpol SMS sms.h
 sms_rrpa SMS sms.h Release res. proc. area
 sms_rrtc SMS sms.h Read real time clock
 sms_rshd SMS sms.h
 sms_rthg QDOS qdos.h
 sms_rthg SMS sms.h
 sms_schp SMS sms.h Not SMS/2
 sms_srtc SMS sms.h Set real time clock
 sms_ssjb SMS sms.h
 sms_trns SMS sms.h Set translate table(s)
 sms_usjb SMS sms.h
 sms_uthg QDOS qdos.h
 sms_uthg SMS sms.h
 sms_xtop SMS sms.h Not SMS/2
 sms_zthg QDOS qdos.h
 sms_zthg SMS sms.h
 srand ANSI stdlib.h
 srand48 POSIX stdlib.h ** not implemented **
 sscanf ANSI stdio.h
 stackcheck C68 sys/qlib.h
 stackreport C68 sys/qlib.h
 stat POSIX sys/stat.h
 step XPG regexp.h ** not implemented **
 strcat ANSI string.h
 strcadd UNIX libgen.h Part of LIBGEN library
 strccpy UNIX libgen.h
 strchr ANSI string.h
 strcmp ANSI string.h
 strcoll ANSI string.h
 strcpy ANSI string.h
 strcspn ANSI string.h
 streadd UNIX libgen.h
 strecpy UNIX libgen.h
 strerror ANSI string.h

 strfind UNIX libgen.h
 strfnd C68 string.h
 strftime ANSI time.h
 stricmp UNIX string.h
 strlen ANSI string.h
 strmfe LATTICE sys/qlib.h
 strmfn LATTICE sys/qlib.h
 strmfp LATTICE sys/qlib.h
 strncat ANSI string.h
 strncmp ANSI string.h
 strncpy ANSI string.h
 strnicmp UNIX string.h
 strpbrk ANSI string.h
 strrchr ANSI string.h
 strrspn UNIX libgen.h
 strrstr UNIX string.h
 strspn ANSI string.h
 strstr ANSI string.h
 strtod ANSI stdlib.h
 strtok ANSI string.h
 strtol ANSI stdlib.h
 strtoul ANSI stdlib.h
 strtrns UNIX libgen.h
 strxfrm ANSI string.h
 swab XPG stdlib.h ** not implemented **
 sysconf POSIX unstd.h ** not implemented **
 system ANSI stdlib.h
 tan ANSI math.h
 tanh ANSI math.h
 tcdrain POSIX termios.h ** not implemented **
 tcflow POSIX termios.h ** not implemented **
 tcflush POSIX termios.h ** not implemented **
 tcgetattr POSIX termios.h ** not implemented **
 tcgetpgrp POSIX termios.h ** not implemented **
 tcsendbreak POSIX termios.h ** not implemented **
 tcsetattr POSIX termios.h ** not implemented **
 tcsetpgrp POSIX termios.h ** not implemented **
 tdelete XPG search.h ** not implemented **
 telldir XPG dirent.h
 tempnam XPG stdio.h
 tfind XPG search.h ** not implemented **
 time ANSI time.h
 times POSIX sys/times.h
 tmpfile ANSI stdio.h
 tmpnam ANSI stdio.h
 toascii XPG ctype.h
 tolower ANSI ctype.h
 _tolower XPG ctype.h
 toupper ANSI ctype.h
 _toupper XPG ctype.h
 tsearch XPG search.h ** not implemented **
 ttyname POSIX unistd.h
 twalk XPG search.h ** not implemented **
 tzset POSIX time.h
 ulimit XPG ulimit.h ** not implemented **
 umask POSIX sys/stat.h
 uname POSIX sys/utsname ** not implemented **
 ungetc ANSI stdio.h
 unlink POSIX unsitd.h
 usechid C68 sys/qlib.h
 utime POSIX utime.h ** not implemented **
 ut_con QDOS qdos.h
 ut_err QDOS qdos.h
 ut_err0 QDOS qdos.h
 ut_link QDOS qdos.h

 ut_mint QDOS qdos.h
 ut_mtext QDOS qdos.h
 ut_scr QDOS qdos.h
 ut_unlnk QDOS qdos.h
 ut_window QDOS qdos.h
 va_arg ANSI stdarg.h
 va_end ANSI stdarg.h
 va_list ANSI stdarg.h
 va_start ANSI stdarg.h
 vfprintf ANSI stdio.h
 vprintf ANSI stdio.h
 vsprintf ANSI stdio.h
 w_to_qlfp C68 sys/qlib.h
 wait POSIX sys/wait.h
 waitfor C68 sys/qlib.h
 waitpid POSIX sys/wait.h
 wcstombs ANSI stdlib.h
 wctomb ANSI stdlib.h
 wm_chwin QPTR qptr.h change event handling
 wm_clbdr QPTR qptr.h
 wm_cluns QPTR qptr.h
 wm_drbdr QPTR qptr.h draw border arount item
 wm_ename QPTR qptr.h Edit name
 wm_erstr QPTR qptr.h Get string for error code
 wm_findv QPTR qptr.h
 wm_fsize QPTR qptr.h Find size of layout
 wm_ldraw QPTR qptr.h Draw info sub-windows
 wm_index QPTR qptr.h standard sub-window index
 wm_ldraw QPTR qptr.h loose menu item drawing
 wm_mdraw QPTR qptr.h standard menu drawing
 wm_mhit QPTR qptr.h Window hit routine
 wm_msect QPTR qptr.h Find menu section
 wm_pansc QPTR qptr.h Pan/scroll standard menu
 wm_prpos QPTR qptr.h primary window position
 wm_pulld QPTR qptr.h pull down window open
 wm_rname QPTR qptr.h Read name
 wm_rptr QPTR qptr.h Read pointer
 wm_setup QPTR qptr.h setup managed window
 wm_sprite_arrow QPTR qptr.h
 wm_sprite_cf1 QPTR qptr.h
 wm_sprite_cf2 QPTR qptr.h
 wm_sprite_cf3 QPTR qptr.h
 wm_sprite_cf4 QPTR qptr.h
 wm_sprite_f1 QPTR qptr.h
 wm_sprite_f2 QPTR qptr.h
 wm_sprite_f3 QPTR qptr.h
 wm_sprite_f4 QPTR qptr.h
 wm_sprite_f5 QPTR qptr.h
 wm_sprite_f6 QPTR qptr.h
 wm_sprite_f7 QPTR qptr.h
 wm_sprite_f8 QPTR qptr.h
 wm_sprite_f9 QPTR qptr.h
 wm_sprite_f10 QPTR qptr.h
 wm_sprite_hand QPTR qptr.h
 wm_sprite_insg QPTR qptr.h
 wm_sprite_insl QPTR qptr.h
 wm_sprite_left QPTR qptr.h
 wm_sprite_move QPTR qptr.h
 wm_sprite_null QPTR qptr.h
 wm_sprite_sleep QPTR qptr.h
 wm_sprite_wake QPTR qptr.h
 wm_sprite_zero QPTR qptr.h
 wm_stiob QPTR qptr.h Set information object
 wm_stlob QPTR qptr.h Set loose item object
 wm_swapp QPTR qptr.h Set window to app sub-wind

 wm_swdef QPTR qptr.h set sub-window definition
 wm_swinf QPTR qptr.h set window to info window
 wm_swlit QPTR qptr.h set window to loose item
 wm_swsec QPTR qptr.h set to app sub-win section
 wm_unset QPTR qptr.h window unset
 wm_upbar QPTR qptr.h update pan/scroll bars
 wm_wdraw QPTR qptr.h draw window contents
 wm_wrset QPTR qptr.h window reset
 write POSIX unistd.h
 y0 XPG math.h ** not implemented **
 y1 XPG math.h ** not implemented **
 yn XPG math.h ** not implemented **
 _chkufbs C68
 _CacheFlush C68 sys/qlib.h
 _ProcessorType C68 sys/qlib.h
 _super C68 sys/qlib.h
 _superend C68 sys/qlib.h
 _user C68 sys/qlib.h
AMENDMENT HISTORY
 29 Aug 94 New document that brings together in one place summaryinformation covering all aspects of the LIBC_A library.
 25 Mar 95 Added new traps specific to SMSQ and SMSQ-E.
 07 Dec 96 Added routines that are in the libgen.h header file (and thusthe LIBGEN_A library).
 12 Mar 98 Added strrstr() routine.
 16 May 98 Added _CacheFlush() and _ProcessorType().

Standard C library: ANSI routines
This section of the C68 library documentation covers those routines in the
C68 Standard C library that provide ANSI compatibility, except for any ANSI
routines that use the math.h header file (which are covered in the LIBM_DOC
file).

int abort(void)
Defined in stdlib.h

int abs(int value)
Compute absolute value of integer value.
Defined in stdlib.h

char *asctime(struct tm *t)
Convert time of 'struct tm' type (defined in time.h) to a time string of
the format:
 Fri Sep 13 00:00:00 1986\n\0
Time zone correction is done if required.
Defined in time.h

void assert(x)
Test if specified condition is true, and if not output a message indicating
the name and line number of the original source file of the statement that
failed, plus the text of the failed test. This is actually a macro, and
will only generate code if the NDEBUG preprocessor constant is defined.
Macro defined in assert.h

void atexit (void (*function)(void))
Register a function to be called during exit processing.
Defined in stdlib.h

double atof (const char *)
Convert an ASCII string into a floating point number.
Defined in stdlib.h

int atoi(const char *s)
Convert a string to a integer using base 10 arithmetic. If you want to use
a base other than 10, you must use strtol().

a base other than 10, you must use strtol().
Defined in stdlib.h

long atol(const char *s)
Convert a string to a long integer using base 10 arithmetic. If you want to
use a base other than 10, then use strtol().
Defined in stdlib.h

void *bsearch (void * key, void * base, size_t count,
 size_t size, int (*cmpfunction)())
Search an array of objects pointed to by base for an element that matches
key using the supplied comparison function.
Defined in stdlib.h

char *calloc(size_t nelt, size_t esize)
Allocate enough memory to hold an array of objects of the specifed size and
number. Initialise all bits to zero.
Defined in stdlib.h

void clearerr(FILE *fp)
Clear any error or EOF indicator for a file.
Defined in stdio.h

char *ctime(const time_t *t)
Convert a 'time_t' time into an ASCII string which will be of the form:
 Fri Sep 13 00:00:00 1986\n\0
Timezone corrections are made if required.
Defined in time.h

double difftime(time_t time1, time_t time2)
Calculate the difference between two times in seconds.
Defined in time.h

div_t div(int numer, int denom)
Calculate the quotient and remainder of a number. The answer is returned in
the structure div_t.
Defined in stdlib.h

void exit(int code)
Exit a program normally returning given code as exit status.
Defined in stdlib.h

int fclose(FILE *fp)
Close a file.
Defined in stdio.h

int feof(FILE *fp)
Test for end of file condition.
Defined in stdio.h

int ferror(FILE *fp)
Get the last error code of an I/O stream..
Defined in stdio.h

int fflush(FILE *fp)
Force the C level buffers associated with a stream to be flushed. If the
parameter is NULL, then this means flush all streams.
Defined in stdio.h

int fgetc(FILE *fp)
Get a character from a stream.
Defined in stdio.h

int fgetpos(FILE * fp, fpos_t * pos)

Store current file position in object pointed to by pos.
Defined in stdio.h

char * fgets(char *buf, int length, FILE *fp)
Read a string from a stream.
Defined in stdio.h

FILE * fopen (char * name, char * mode)
Open a file.
Defined in stdio.h

int fprintf(FILE *fp, char *s, ...)
Formatted output to a specified file
Defined in stdio.h

int fputc(int c, FILE *fp)
Defined in stdio.h

int fputs(char *s, FILE *fp)
Defined in stdio.h

int fread(char *buf, size_t bsize, size_t n, FILE *fp)
Read unformatted data from a specified file
Defined in stdio.h

int free(char *s)
Free memory that was previously allocated using malloc().
Defined in stdlib.h

FILE *freopen(char *name, char *mode, FILE *fp)
Defined in stdio.h

int fscanf(FILE *fp, char *s,)
Formatted input from a specified file.
Defined in stdio.h

int fseek(FILE *fp, long rpos, int mode)
Set file position. Mode defines what the position is to be relative to.
Defined in stdio.h

int fsetpos (FILE *fp, fpos_t * pos)
Set file position according to values in the object pointed to by pos.
Defined in stdio.h

long ftell(FILE *fp)
Return the current file position for the specified file.
Defined in stdio.h

int fwrite(char *buf, size_t bsize, size_t n, FILE *fp)
Output unformatted data to a specified file.
Defined in stdio.h

int getc(FILE *fp)
Read a character from the specified stream. This is normally a macro
version of fgetc().
Defined in stdio.h

int getchar(void)
Read a character from the stdin. Macro
Defined in stdio.h

char *getenv (char *name)

Search the environment for a string of the value name=value, and if it
exists return a pointer to the value part of the string. If it does not
exist, then return NULL.
Defined in stdlib.h

char *gets(char *buf)
Defined in stdio.h

struct tm *gmtime(long *t)
Convert a raw time into a tm type structure.
Defined in time.h
--
int isalnum(int c)
Check that a character is alphanumeric. Casre must be taken that a negative
value is not passed to this routine, or the results can be unpredictable.

int isalpha(int c)
Check that a character is alphabetic.
Defined in ctype.h

int iscntrl(int c)
Defined in ctype.h

int isdigit(int c)
Defined in ctype.h

int isgraph(int c)
Defined in ctype.h

int islower(int c)
Defined in ctype.h

int isprint(int c)
Defined in ctype.h

int ispunct(int c)
Defined in ctype.h

int isspace(int c)
Check if a character is a whitespace character. As well as the obvious
space character, this also includes tabas and newline.
Defined in ctype.h

int isupper(int c)
Defined in ctype.h

int isxdigit(int c)
Macros in ctype.h (or function if ctype.h not included)
Defined in ctype.h
--
long labs(long i)
Computes the absolute value of an long integer.
Defined in stdlib.h

ldiv_t ldiv(long numer, long denom)
ANSI compatible routine to calculate the quotient and remainder of a
number. The answer is returned in the structure div_t.
Defined in stdlib.h

struct tm *localtime(long *t)
Defined in time.h

void longjmp(jmp_buf *save, int val)
Defined in setjmp.h

Defined in setjmp.h

int main(int argc, char *argv[], char *envp[])
Start function in a users program.
Defined in stdlib.h

char *malloc(int size)
Allocate memory.
Defined in stdlib.h

int mblen(const char *s, size_t n)
ANSI compatible routine to determine the number of bytes in the multi-byte
character pointed to by s.
Defined in stdlib.h

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n)
ANSI compatible routine to convert a multi-byte character strings to a wide
character string.
Defined in stdlib.h

int mbtowc(wchar_t *pwc, const char *s, size_t n)
ANSI compatible routine to convert a multi-byte character to a wide
character.
Defined ins tdlib.h

char *memchr(cconst void *a, int c, size_t length)
Search memory for a character.
Defined in string.h

int memcmp(const void *a, const void *b, size_t length)
Compare two memory areas.
Defined in string.h

char *memcpy(void *to, const void *from, size_t length)
Move memory as fast as possible). Not safe if areas overlap.
Defined in string.h

void memmove(void *dest, const void *source, size_t length)
Move memory safely even if areas overlap.
Defined in string.h

char *memset(void *to, int c, size_t length)
Defined in string.h

time_t mktime(struct tm * tmptr)
ANSI compatible routine to convert a time between the struct tm' format and
the raw 'time_t' format.
Defined in time.h

int perror(char *prompt)
Print the text corresponding to the error code held in the global variable
'errno'. If the 'prompt' parameter is not NULL, then put this at the front
of the error mesage. This routine only understands the error codes defined
in errno.h (for QDOS error codes refer to the routine 'poserr' in the QDOS
specific part of the library).
Defined in errno.h

int printf(char *fmt,)
Print formatted output to stdout.
Defined in stdio.h

int putc(int c, FILE *fp)
Send character to a file.
Macro defined in stdio.h

int putchar(int c)
Send character to stdout
Macro defined in stdio.h

int putenv(char * string)
Set environment variable
Defined in stdlib.h

int puts(char *s)
Send string to stdout.
Defined in stdio.h

void qsort(char *a, int n, int size, int (*cmp_func)())
The qsort function sorts an array of n objects, the initial element of
which is pointed to by 'base'. The size of each object is specified by
'size'.
The contents of this array are sorted into ascending order according to a
supplied comparison function 'cmp_func' which is called with two arguments
that point to the objects being compared. The function must return an
integer less than, equal to, or greater than zero if the first argument is
considered to be repectively less than, equal to, or greater than the
second.
If two elements compare as equal then their order in the array is
unspecified.
Defined in stdlib.h
Note The LIBC68_doc file defines a number of variants of qsort for sorting
arrays of standard data types. These routines are:
 dqsort sort an array of doubles
 fqsort sort an array of floats
 lqsort sort an array of long integers
 sqsort sort an array of short integers
 tqsort sort an array of text pointers
These variants of qsort() are not defined by the ANSI C standard, so may
not always be found on other platforms.

int rand(void)
Generate a pseudo-random number. It will be in range 0 to RAND_MAX (defined
in stdlib.h). See also srand().
Defined in stdlib.h

char *realloc(char *old_memory, unsigned new_size)
Defined in stdlib.h

int remove(char *name);
Delete a file. 0 if ok, -1 if error.
Defined in stdio.h

int rename(char *old_name, char *new_name)
Routine to rename a file. Both old and new names must be on same device (if
no device given default directory is used). Returns 0 on success, -1 on
failure. Will not work on standard QL systems without either Toolkit 2 or a
disk interface present.
Defined in stdio.h

int rewind(FILE *fp)
Defined in stdio.h

int scanf(char *fmt,)
Defined in stdio.h

void setbuf(FILE *fp, char *buf)
Supply buffer to be used for a stream.
Defined in stdio.h

int setjmp (jmp_buf * save_area)
Defined in setjmp.h

char * setlocale (int category, const char *locale)
ANSI compatible routine to modify or query a programs locale.
Defined in locale.h

int setvbuf(FILE *fp, char *buf, int type, int size)
Set buffering strategy details for a stream.
Defined in stdio.h

int sprintf(char *str, char *fmt,)
Defined in stdio.h

void srand (unsigned int seed)
Seed the pseudo-random number generator. If this function is not called,
then the sequence of numbers returned by rand() will be equivalent to
setting the seed to 1.
Defined in stdlib.h

int sscanf(char *str, char *fmt,)
Defined in stdio.h

char *strcat(char *dest, const char *src)
Concatenate two strings. Returns pointer to the resultant string.
Defined in string.h

char *strchr(const char *s, int c)
Search a string for a specified character
Defined in string.h

int strcmp(const char *a, const char *b)
Compare two strings.
Defined in string.h

int strcoll(const char *, const char*)
Locale-specific string compare. In C68 this is a dummy and is functionally
identical to strcmp().
Defined in string.h

char *strcpy(char *to, const char *from)
Defined in string.h

int strcspn(const char *a, const char *b)
Defined in string.h

char *strerror(int)
Defined in string.h

size_t strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr)
ANSI compatible routine to convert a 'struct tm' time into an ASCII string
controlled by a format conversion string.
The list of conversion options includes extensions specified by various
Unix variants, and by POSIX. The full list of conversions supported is:
 %a ANSI abbreviated weekday name e.g. 'Mon'
 %A ANSI full weekday name e.g. 'Monday'
 %b ANSI abbreviated month name e.g. 'Feb'
 %B ANSI full month name e.g. 'February'
 %c ANSI local-specific date and time
 %d ANSI day of month as decimal integer (01-31)
 %D POSIX date in the form %m/%d/%y
 %e UNIX day of month (1-31)
 %h POSIX locale's abreviated month name

 %h POSIX locale's abreviated month name
 %H ANSI the hour (24 hour clock) (00-23)
 %I ANSI the hour (12 hour clock) (01-12)
 %j ANSI day of year as decimal number (001-366)
 %m ANSI month as decimal number (01-12)
 %M ANSI minute as decimal number (00-59)
 %n POSIX newline character
 %p ANSI locale's equivalent of AM/PM
 %r POSIX time in %I:%M:%S AM|PM format
 %R UNIX time as %H:%MM
 %S ANSI second as decimal number (00-61)
 %t POSIX tab character
 %T POSIX time in %H:%M:%S format
 %U ANSI year week number (00-53) (Sunday start)
 %w ANSI weekday as decimal number (0-6) Sunday=0
 %W ANSI year week number (00-53) (Monday start)
 %x ANSI locale-specific date
 %X ANSI locale-specific time
 %y ANSI year without century (00-99)
 %Y ANSI year with century e.g. 1952
 %z UNIX time difference to GMT +|-%H:%M
 %Z ANSI timezone name, or null string if unknown
Defined in time.h

int strlen(const char *s)
Defined in string.h

char *strncat (char * to, const char * from, size_t length)
Defined in string.h

int strncmp(const char *string1, const char *string2,
size_t length)
Defined in string.h

char *strncpy(char *target, const char *source,
size_t length)
Defined in string.h

char *strpbrk(const char *s, const char *b)
Defined in string.h

char *strrchr(const char *s, int c)
Search a string backwards for a specified character
Defined in string.h

size_t strspn(const char *string, const char *set)
Get longest initial span of string that consists of characters defined in
set.
Defined in string.h

char *strstr (const char * string, const char *substring)
Locate first occurence of substring in string.
Defined in string.h

double strtod (const char *str, char **ptr)
Convert string to double.
Defined in stdlib.h

char *strtok(char *s, const char *b)
Search a string to find the first token character.
Defined in string.h

long strtol(const char *p, char **np, int base)
Convert string to long int.

Convert string to long int.
Defined in stdlib.h

unsigned long strtoul (const char *str, char **ptr, int base)
Convert string to unsigned long int.
Defined in stdlib.h

size_t strxfrm (char *dest, const char *src, size_t length)
This is a dummy routine under C68 that performs just like the strcpy()
routine. It is included for compatibility reasons.
Defined in string.h

int system (char * command)
Execute a command. The command string should consist of the name of the
program to run followed by any parameters required separated from it by
spaces. If multiple commands are supplied on the same line, then they
should be separated by semicolons. Each command will be executed in turn
until either one fails, or all the commands have been executed. If a
command finishes with the & (ampersand) character then it will be run in
parallel with the initiating program without waiting for it to complete.
The following built-in Unix style commands are also recognised:
 cd List current data directory setting.
 cpd List current program directory setting.
 cd name Set data directory to 'name'
 cpd name Set Program directory to 'name'
 set List settings of all environment variables.
 set name Displays value of environment variable 'name'
 set name=val Set environment variable 'name'
The value returned is the exit status of 'command'. If 'command' is NULL,
then the value returned indicates whether a command processor is available
(ie 1 in this case). If a command is being run in parallel, then the return
value simply indicates whether the command was successfully started or not.
Defined in stdlib.h

time_t time(time_t * tptr)
Get the current system time. The time returned is a ANSI/Unix style time
value rather than a QDOS one.
Defined in time.h

int tolower(int c)
Convert a character to lower case.
Defined in ctype.h

int toupper(int c)
Convert a character to upper case.
Defined in ctype.h

int ungetc(char c, FILE *fp)
Defined in stdio.h

int vfprintf (FILE *fp, char *format, char *params)
Perform formatted output to a specified file.
Defined in stdio.h
--
int vfscanf (FILE *fp, char *format, char *params)
Perform formatted input from a specified file.
Defined in stdio.h
--
int vprintf (char *format, char *params)
Perform formatted output to stdout.
Defined in stdio.h
--
int vscanf (char *format, char *params)
Perform formatted input from stdin.
Defined in stdio.h

Defined in stdio.h
--
int vsprintf (char *string, char *format, char *params)
Perform formatted output to a string.
Defined in stdio.h
--
int vsscanf (char *string, char *format, char *params)
Perform formatted input from a string.
Defined in stdio.h

size_t wcstombs (char *s, const wchar_t *pwcs, size_t n)
Convert a wide characater string to a multi-byte character string.
Defined in stdlib.h

int wctomb (char *s, wchar_t wchar)
Convert a wide character to a multi byte character.
Defined in stdlib.h

GLOBAL VARIABLES

extern int errno
Holds the error code if a routine reports a failure.
Defined in errno.h

AMENDMENT HISTORY
 25
Aug
93

 The itoa() description changed to come in line with accepted usage
(parameters reversed).

 30
Aug
93

 Added new TIME routines difftime(), strftime() and tzset().
Added routines for converting between Wide Characters and Multi Byte
Characters: mblen(), mbtowc(), mbstowcs(), wcstombs() and wctomb().
Added locale handling routines setlocale() and localeconv().

 10
Oct
94

 Reworked the documentation so that the ANSI specified routines are
in their own file.

C68-specific Library Routines
INTRODUCTION
Use of the libc68 library provides extensions are specific to the
implementation of C68 on the QDOS or SMS operating systems. It will help
you to exploit QDOS or SMS facilities to the full, but will mean that the
programs you write will not be easy to transfer to other operating systems.
You should bear this fact in mind when you decide to use the routines in
the libc68 library.
The implementation of C68 for QDOS and SMS also provides routines to allow
the C programmer to access all the Operating System Call interfaces
directly. These are documented in the LIBQDOS_DOC (using the QDOS names for
such calls) or the LIBSMS_DOC (using the SMS names for the calls) files.
You do not have to make any special provison at the link stage if you want
to include routines from the libsms library. The routines defined as being
in this library are actually imbedded in the LIBC_A library which is
automatically included at the end of the link by the LD linker. You must
however include either
 #include <qdos.h>
or
 #include <sms.h>
in any program or module that use the routines defined in the libc68
library. Which of the two you include is not material (you can include
both!), and will probably be determined by whether you intend to use QDOS
or SMS names for any calls you make directly to the operating system
interface.
MIXING C and QDOS/SMS INPUT/OUTPUT
If you wish to be able to use both C and QDOS/SMS level input/output calls
to refer to the same file/device then it is imperative that you issue a '
setbuf ' call (defined in stdio_h) to disable internal buffering within the
C standard input/output routines, or use the fflush() call before switching
from C level I/O to QDOS/SMS level I/O. Failure to do this can result in
input/output reacting in unexpected ways.

REFERENCE MATERIAL
The reference books listed below were used in preparing material for
inclusion in this library:
"QL Technical Guide" by David Karlin and Tony Tebby
"QL Advanced User Guide" by Adrian Dickens
"QDOS Reference Manual" as published by Jochen Merz
LIBRARY ROUTINES
The following pages contain a list of all the routines contained in the C68
libc68_a library. These are routines that are specific to this QDOS or SMS
implementations of C68. It is organised as a short list by function, and a
longer list in alphabetical order.
FILE/DIRECTORY HANDLING
chddir chpdir fgetchid fnmatch
fqstat fusechid getcdd getchid
getcname getcpd getfnl opene
open_qdir qdir_delete qdir_read qdir_sort
qstat read_qdir usechid
SCREEN INPUT/OUTPUT
c_extop iop_outl
SOUND
beep do_sound
CONVERSION
cstr_to_ql d_to_qlfp i_to_qlfp l_to_qlfp
qlfp_to_d qlfp_to_f qlstr_to_c w_to_qlfp
STRING HANDLING
qstrcat qstrchr qstrcmp qstrcpy
qstricmp qstrlen qstrncat qstrncmp
qstrncpy qstrnicmp ut_cstr
MISCELLANEOUS
baud iscon isdevice isdirchid
isdirdev isnoclose keyrow poserr
qdos1 qdos2 qdos3 qinstrn
stackcheck stackreport waitfor _CacheFlush
_ProcessorType _super _superend _user
GLOBAL VECTORS
_bufsize _cmdchannels _cmdparams _cmdwildcard
_endmsg _memincr _memmax _memqdos
_mneed _oserr _pipesize _prog_name
_stack _stackmargin _sys_var
def_priority os_nerr os_errlist

void argfree (char ** argv[])
Routine to free all the memory that is associated with an argv[] style
vector created using the argunpack() routine. This frees the memory
associated with the argument strings as well as that associated with the
argument vecotr itself.

char * argpack (char * argv[], int flag)
Routine to create a command line from an argv[] style vector. This is the
complimentary routine to argunpack(). The command line will consist of the
arguements from the argv[] vector separated by spaces. If the 'flag'
parameter is set then it will be assumed that the command line is for a C68
program, and the arguments will be processed so that quotes are added
around them if they contain white space, and any embedded non-printable
characters are converted to C escape sequences. If the flag is not sent,
then each argument is simply added unprocessed. The memory for the command
line is allocated dynamically via malloc().
The value returned is the address of the resulting command line. If any
error occurs (typically no memory left) then NULL is returned.
It is expected that the main use of this routine will be internally within
other library routines, but it is made available for any system
programmers.

int argunpack(char * cmdline, char ** argv[], int * argc,
int (* function)(char *, char ***, int *))
Routine to create an argv[] vector from a command line. This is the
complimentary routine to argpack(). If any argument is surrounded by quotes

complimentary routine to argpack(). If any argument is surrounded by quotes
these will be removed. Also, any enbedded C escape sequences will be
converted into their internal values. The 'argc' parameter will be used to
return a count of parameters put into the array less one (i.e. 0 means one
value in the array).
The 'function' parameter is used to pass the address of a secondary routine
that can be used to process further any argument before it is put into the
array. A typical example of such a function might be the one that is used
to do wild card expansion of parameters on the command line. If this
function returns 0 then that means that it did nothing with the argument
passed, and the argunpack() routine should add the value itself to the
argv[] array. A return value of -1 inidicates an error occurred, and any
positive value means that the function has handled the argument internally.
The function' parameter can also be NULL to indicate that no additional
processing needed of arguemnts.
The value returned is the number of arguments actually put into the array.
If any error occurs (typically no memory left) then -1 is returned.
It is expected that the main use of this routine will be internally within
other library routines, but it is made available for any system
programmers. This is the routine that is used within the program startup
code to parse the command line.

void beep(duration, pitch)
QDOS routine to make a quick beep, given duration in 50 (or 60) Hz ticks,
and pitch (from 0 to 255).

int c_extop (chanid_t channel, timeout_t timeout,
int (*func), int number_of_params, ...)
This routine allows a routine to be called to do an extended operation on a
QDOS or SMS channel. The parameters are passed in a way that is compatible
with this routine being written in C (c.f. sd_extop()/iow_xtop() for
assembler only routines).
The C routine will be called in supervisor mode, with the parameters
specified by ... above passed to it on the stack. Each parameter is assumed
to be no larger than 4 bytes in size (i.e. no structures are to be passed
on the stack).
NOTE It appears that QDOS cannot correctly handle error codes being
returned in D0. Therefore the only values that should be returned are 0 or
-1 (for operation not completed). If it is desired to pass an error code
back to the application program it must be done indirectly via one of the
parameters.

int chddir(char *str)
Changes current destination directory (the one set by TK2 SPL_USE command
in SuperBasic). If passed NULL then tries to go up a level. If passed a
string starting with a device then replaces the current directory, else
appends to current directory (adding _ at end if needed). Maximum length is
31 characters. Returns 0 if ok, !0 if failed.

int chpdir(char *str)
Changes current program directory (the one set by TK2 PROG_USE command in
SuperBasic). If passed NULL then tries to go up a level. If passed a string
starting with a device then replaces the current directory, else appends to
current directory (adding _ at end if needed). Maximum length is 31
characters. Returns 0 if ok, !0 if failed.

QLSTR_t * cstr_to_ql(QLSTR_t * ql_string, char * c_string)
Routine to convert a C (zero terminated) string to a struct QLSTR (defined
in qdos.h), a QL string with length first followed by the string. This
routine is NOT safe to convert a C string in situ, eg. cstr_to_ql((QLSTR_t
*)str, str) will fail badly (the C string will become corrupt). Returns the
address of the QL string.

void do_sound(int duration, int pitch, int pitch2, int wrap,
int g_x, int g_y,int fuzz, int random)
QDOS call to make a sound. Parameters defined as for SuperBasic beep call.

QLFLOAT_t * d_to_qlfp(QLFLOAT_t * qlf, double val)
Routine to convert IEEE double precision (8 byte) floating point number to
a QL floating point number. Returns the address of the QLFLOAT passed as
the first parameter.

long fgetchid(FILE *fp)

long fgetchid(FILE *fp)
Returns QDOS channel id of FILE pointer. Returns -1L on error
Defined in stdio.h

int fnmatch(char *fname, char *wildname)
Non-recursive routine to match a QDOS wildcard. Similar to Unix style
widlcard matching to make it more useful for GREP and 'C' programmers.
Examples of match
 *_c matches names ENDING with _c only
 (eg. test_c but NOT test_c_doc)
 wom*_o matches wombat_o but NOT wombat_obj
 *tes*_vi*_obj matches flp1_wombat_test_yy_vile_obj
 but NOT flp1_wombat_testvile_obj
Returns 1 if match, 0 if no match

int fqstat(int fd, struct direct * stat)
QDOS specific variant of fstat() call. Normally it would be recommended
that you used the fstat() call instead as this is more portable. Gets the
file information from QDOS, given a level 1 file descriptor. Exactly same
information as in a QDOS directory entry (Note times are in QDOS format,
not C format). The structure 'direct' is defined in 'qdos.h'.
Returns values:
0 success
-1 Standard C error code set in errno (as defined in errno.h)
other QDOS error code (as defined in qdos.h).

FILE * fusechid (chanid_t channel)
Create a Level 2 File Pointer for a file opened at Level 0 (the QDOS level)
via the io_open() call. Also creates a level 1 file descriptor entry. Must
NOT be called more than once for a given file.
Return values:
+ve FILE pointer
NULL failed - details in errno

char *getcdd(char *str, int size)
Gets current destination directory path (as set by TK2 SPL_USE command)
into buffer str. If str == NULL then allocates a buffer of length size
using malloc and returns address of it. Returns NULL on error, else address
where name is stored.

chanid_t getchid(int fd)
Gets QDOS channel id for level 1 file descriptor.
Return values:
-1 error occurred - details in errno
+ve QDOS channel id

char *getcname (chanid_t channel, char *buffer)
Obtains the name of a device associated with a QDOS channel and places it
in the buffer.
Return values:
+ve Pointer to the name
NULL error occurred - details in errno.

char *getcpd(char *str, int size)
Gets current program directory path (as set by TK2 PROG_USE command) into
buffer str. If str == NULL then allocates a buffer of length size using
malloc and returns address of it.
Return values:
NULL error occured - details in errno.
+ve address where name is stored.

int getfnl(wcard, fna, fnasize, attr)
char *wcard; /* Wild card string to use, or NULL for all the files in the
data directory */
char *fna; /* Area to hold returned list of file names */
unsigned int fnasize; /* Size of file name area */

unsigned int fnasize; /* Size of file name area */
int attr; /* Search attributes. Can be added
together to provide criteria.
0 - all files (QDR_ALL)
1 - data only (QDR_DATA)
2 - prog only (QDR_PROG)
4 - directory only (QDR_DIR)
Symbolic names defined in qdos.h */
Lattice compatible routine to get a list of filenames, separated by '\0'
character. List terminated by an additional '\0' character.
Return values:
-1 error occurred
other number of names read.
Defined in stdlib.h. See also read_qdir().

int iop_outl (chanid_t channel, timeout_t timeout,
short, short, short, void *)
This is the call that sets the outline window for a Pointer Environment. It
is included in this library as it is the one call that need to be issued to
make a program that is not otherwise aware of the pointer environment
function correctly in that environment.
For more details refer to the LIBQPTR_DOC file provided as part of the QPTR
library.
Note that the default console initialisation routines supplied with C68
will automatically issue a call to set the window outline to the size as
defined in the '_condetails' global variable (see end of this document).

int iscon(chanid_t long channel, timeout_t timeout)
returns 1 is is con, 0 if not

int isdevice(char *str, int *extra)
Routine to check if a string starts with a device name. TRUE if it is, with
extra info in the 'extra' parameter passed as well as the name, 0 if it's
not. Actually searches system lists. *extra can be DIRDEV (device is on
directory driver lists) or DIRDEV | NETDEV (device is on a network - may
not be directory device on remote machine).
DIRDEV and NETDEV are defined in qdos.h.

QDDEV_LINK_t * isdirchid (chanid_t channel_id)
Routine to find out if a channel belongs to a directory device or not. If
not, NULL is returned. If it does, then a pointer to the Device Driver
Definition block is returned. This can then subsequently be used to find
out the device type if required by looking at the name field in this Device
Driver Definition block.

int isdirdev (char *str)
Routine to check if a string starts with a name corresponding to a
directory device. Returns 0 if not. The value returned has the same meaing
as the 'extra' parameter returned by the isdevice() routine.

int isnoclose (int file_descriptor)
Used to determine if the channel associated with a level 1 file descriptor
was passed to this job on the stack (via the command line). Return values
are:
-1 file does not exist
1 channel for this file was passed on the stack
0 channel for this file was not passed on the stack

QLFLOAT_t * i_to_qlfp(QLFLOAT_t * qlf, int i)
Fast routine (faster than inbuilt QDOS routine) to convert a integer into a
QL floating point number. Returns the address of the QLFLOAT passed as the
first parameter.

int keyrow (int row)
QDOS routine to read the QL keyboard directly. Equivalent to SuperBasic
keyrow with all attendant warnings. Does not set _oserr.

QLFLOAT_t * l_to_qlfp(QLFLOAT_t * qlf, int i)

Fast routine (faster than inbuilt QDOS routine) to convert a long integer
into a QL floating point number. Returns the address of the QLFLOAT passed
as the first parameter.

int opene(char *name, int mode, int paths)
Routine to search more than just the default directory if name does not
start with a device. If it does then that is opened, else if :-
paths == 3 search program directory, then data directory
== 2 just search program directory
== 1 search data directory first, then program directory
== 0 just search data directory (as open())
Returns -1 on error, valid fd if OK.
Defined in fcntl.h

chanid_t open_qdir(char *name)
Opens a directory on a device. Returns a negative value (the QDOS error
code) if an error occurred at the QDOS level, 0 if any other error occurred
(in which case 'errno' contains the error code) or a positive channel id on
success.

int poserr(char *s)
The QDOS specific equivalent of the standard C 'perror' routine. Prints the
error text relating to the QDOS error code in _oserr.

void qdir_delete(DIR_LIST_t * list)
Deletes all space allocated by a call to the qdir_read() routine.

DIR_LIST_t * qdir_read(devwc, stext, attr)
char *devwc; /* Device and wildcard */
char *stext; /* Sort text */
int attr; /* File types to get
0 = all,
1 = data,
2 = prog,
4 = directory */
Routine to open, read and sort a QDOS directory. Sort text is same as QRAM,
N(ame) U(se) S(ize) D(ate) T(ime) lower case reverses sense of search. The
DIR_LIST_t structure is defined in sys_qlib.h. All space for directory
entries and names is allocated via malloc() - it should be released when
you have finished with it by calling qdir_delete().
Return values:
NULL No match found (or error occured if errno set)
other Pointer to list

DIR_LIST_t * qdir_sort(DIR_LIST_t *list,
char *stext, char (*dcomp)())
DIR_LIST_t * list; /* Existing linked list */
char *stext; /* Sort parameters */
char (*dcomp)(); /* Compare routine (default routine
used if dcomp == NULL)*/
Routine to sort linked list of extended QDOS directory structure. Returns
pointer to first of list.
Sort text is string containing:
N or n sort on ascii name.
U or u sort on file usage.
S or s sort on file size.
D or d sort on file date.
T or t sort on file time.
Uppercase = ascending sort, Lowercase = descending
If strlen(stext) > 1 then each sort is done in turn.
A default compare routine is used internally by qdir_read(). This is
described below in case anyone wants to write better compare routines.
Specification of dcomp is:
int (*dcomp)(DIR_LIST_t * d1, DIR_LIST_t *d2,
char *sort_text)

Return value indicates comparison result:
+ve d1 > d2
0 d1 == d2
-ve d1 < d2

long qdos1(REGS_t *in, REGS_t *out)
long qdos2(REGS_t *in, REGS_t *out)
long qdos3(REGS_t *in, REGS_t *out)
Lattice compatible routines to call specific operating systemp traps with
registers set up as in a REGS_t structure. Not normally needed with C68 as
there are routines in the libraries to call most QDOS and/or SMS traps
directly. These routines cater for any that might be missing, and also
provide compatibility with QLC which used these routines for accessing QDOS
facilities. Returns the value of register D0.

int qfork(...)
Starts another process concurrently with the calling one. The new process
start with a default priority found in external variable _def_priority .
Returns process id of new process or error code. Sets errno (and if
relevant _oserr). The arguments (other than 'owner') have the same meaning
as in the exec() and fork() family of calls.
These are variants of the fork() family of calls (that are defined in
LIBUNIX_DOC). The difference is that the qfork() variants allow the owner
of the new process to be specified whereas with the fork() set the current
job is always the owner. This is important under QDOS or SMS if you do not
want the daughter job to be automatically terminated by the operating
system when the parent job terminates. If you specify zero as the parent
job then the daughter job is in complete control of its own destiny!
pid_t qforkv(jobid_t owner, char * name, int * file_desc,
char * argv[])
pid_t qforkvp(jobid_t owner, char * name, int * file_desc,
char * argv[])
pid_t qforkl(jobid_t owner, char * name, int * file_desc,
char * argvs, ...)
pid_t qforklp(jobid_t owner, char * name,int * file_desc,
char * argvs, ...)
The directories searched in each case are as follow:
qforkv program directory only
qforkvp program directory and then data directory
qforkl program directory only
qforklp program directory and then data directory
The qforkl() and qforklp() routines must have a NULL parameter to terminate
their parameter lists.

int qinstrn (char * string, int max)
Function to type a C style string into the current keyboard queue (c.f. the
Turbo Toolkit command TYPE_IN). On success returns the number of characters
typed in, on failure returns a QDOS error code.

double qlfp_to_d (QLFLOAT_t * qlfp)
Routine to convert the 6 byte representation of floating point numbers used
on QDOS and SMS systems to the IEEE 8 byte floating point format used
internally by C68 for doubles.

long qlfp_to_f (QLFLOAT_t * qlfp)
Routine to convert the 6 byte repreentation of floating point numbers into
the bit pattern corresponding to an IEEE floating point number as a long.
This is NOT the routine to use if you merely wish the result to be assigned
to a C 'float' variable - use qlfp_to_d() instead.

char *qlstr_to_c(char *c_string, QLSTR_t * ql_string)
Routine to convert a QDOS or SMS string (length first, followed by string)
(the QLSTR_t strucutre is defined in sys/qlib.h which is included by both
qdos.h and sms.h) to a C string (zero terminated). Note that this routine
is safe to call to convert a QDOS or SMS string in situ eg.
qlstr_to_c(q_string, (char *)q_string)
as nothing is corrupted.

int qopen (const char *, int mode, ...)
This is a variant of the open() routine that is specifically designed to
make it easy to handle filenames that originate on foreign systems. These
foreign systems often have special characters in their filenames to
indicate sub-directories or file extensions. On a QDOS or SMS system one
would typically use underscores for both these purposes. This routine
handles an automatic between these different types of name in a relatively
transparent manner.
If the filename supplied does not contain any of the special characters ' .
' (fullstop), ' / ' (forward slash) or ' \ ' (backward slash) then this
routine is functionally identical to the open() routine. If the filename
supplied does contain any of the special characters then the way it
operates depends on whether the file is being opened with a READ ONLY mode
or some variant of a WRITE mode:
READ A copy of the filename is made with the special characters replaced by
underscores and an attempt made to open the file with this revised filename
(i.e. the typical QDOS/SMS variant is tried first). If this fails, then the
original name as supplied is tried as well.
WRITE A check is made to see if a file with the name as supplied is
present, and if so this name is used (i.e. the foreign name is tried
first). If such a file is not present then a copy of the name is made and
the special characters replaced by underscores. This name is then used to
open the file.
Note.
The qopen() routine would typically be used in conjunction with the _Open
vector described later in this document.

int qstat (char *name, struct qdirect *buffer)
Routine to get file information given the filename. This is a QDOS and SMS
specific variant of the stat() call. It is recommended that you try and use
the stat() call in preference as this is more portable. The qdirect
structure is defined in sys/qdos.h which is included by both qdos.h and
sms.h.
Return values:
0 Success
-1 Standard C error code set in errno (as defined in errno.h).
other QDOS error code (as defined in qdos.h)

QLSTR_t * qstrcat (QLSTR_t * target, const QLSTR_t * source)
Concatenate two QDOS or SMS strings. Similar to the C routine strcat()
except that it operates on QDOS and SMS strings. The QLSTR_t structure is
defined in sys/qlib.h which is included by both qdos.h and sms.h. The
target string will also have a NULL byte appended to the end (although this
will not be included in the length count) so that it is possible to treat
the text part as a C string.

int qstrchr (const QLSTR_t * target, int ch)
Search a QDOS or SMS string for a specified character. Similar to the C
routine strchr() except that it operates on QDOS and SMS strings. The
QLSTR_t structure is defined in sys/qlib.h which is included by both qdos.h
and sms.h. The value returned will be the address of the character, or NULL
if the character was not found.

int qstrcmp (const QLSTR_t * string1,const QLSTR_t * string2)
Compare two QDOS or SMS strings for equality. Similar to the C routine
strcmp() except that it operates on QDOS and SMS strings. The QLSTR_t
structure is defined in sys/qlib.h which is included by both qdos.h and
sms.h. The QDOS/SMS collating order is used to determine the less
than/greater than return conditions.

QLSTR_t * qstrcpy (QLSTR_t * target, const QLSTR_t * source)
Copy a QDOS or SMS string. Similar to the C routine strcpy() except that it
operates on QDOS and SMS strings. The QLSTR_t structure is defined in
sys/qlib.h which is included by both qdos.h and sms.h. An additional NULL
byte is added to the end of the target string (although not included in the
length count) so that it is possible to treat the text part as a C string.
This extra byte must be allowed for in determining the required size of the
target area.

int qstricmp (const QLSTR_t * string1,
const QLSTR_t * string2)
Compare two QDOS or SMS strings for equality ignoring case. Similar to the

Compare two QDOS or SMS strings for equality ignoring case. Similar to the
C routine stricmp() except that it operates on QDOS and SMS strings. The
QLSTR_t structure is defined in sys/qlib.h which is included automatically
by qdos.h or sms.h. The QDOS/SMS collating order is used to determine the
less than/greater than return conditions.

int qstrlen (const QLSTR_t * target)
Get the length of a QDOS or SMS string. Similar to the C routine strlen()
except that it operates on QDOS and SMS strings. The QLSTR_t structure is
defined in sys/qlib.h which is included autoamtically by qdos.h and sms.h.

QLSTR_t * qstrncat (QLSTR_t * target, const QLSTR_t * source,
size_t maxlength)
Concatenate one QDOS or SMS string to another one up to a specified length.
Similar to the C routine strncat() except that it operates on QDOS and SMS
strings. The QLSTR_t structure is defined in sys/qlib.h which is included
autoamtically by qdos.h and sms.h. The target string will also have a NULL
byte appended to the end (although this will not be included in the length
count) so that it is possible to treat the text part as a C string.

int qstrncmp (const QLSTR_t * string1,
const QLSTR_t * string2, size_t maxlength)
Compare two QDOS or SMS strings for equality up to a maximum length.
Similar to the C routine stricmp() except that it operates on QDOS and SMS
strings. The QLSTR_t structure is defined in sys/qlib.h which is included
automatically by qdos.h and sms.h. The QDOS/SMS collating order is used to
determine the less than/greater than return conditions.

QLSTR_t * qstrncpy (QLSTR_t * target,
const QLSTR_t * source, size_t maxlength)
Copy a QDOS or SMS string up to a maximum length. Similar to the C routine
strncpy() except that it operates on QDOS and SMS strings. The QLSTR_t
structure is defined in sys/qlib.h which is included automatically by
qdos.h and sms.h. An additional NULL byte is added to the end of the target
string (although not included in the length count) so that it is possible
to treat the text part as a C string. This extra byte must be allowed for
in determining the required size of the target area.

int qstrnicmp (QLSTR_t * string1, QLSTR_t * string2,
size_t maxlength)
Compare two QDOS or SMS strings for equality ignoring case up to a
specified length. Similar to the C routine strnicmp() except that it
operates on QDOS and SMS strings. The QLSTR_t structure is defined in
sys/qlib.h which is included automatically by qdos.h ad sms.h. The QDOS/SMS
collating order is used to determine the less than/greater than return
conditions.

int read_qdir(chid, devwc, ret_name, ret_dir, attr)
chanid_t chid; /* QDOS channel id for directory */
char *devwc; /* device and wildcard */
char *ret_name; /* Name to return */
struct direct *ret_dir; /* Directory structure to read into */
int attr; /* Types to read:
0 = all,
1 = data,
2 = prog,
4 = directory */
Reads the next directory entry matching a specified wildcard
and attribute. If first part of wild matches _dir_ then only last part of
name returned.
Return values:
1 Success
0 End-of-file reached
-1 Error as indicated by errno
See also getfnl().

int sendsig(chid,jobid,signo,priority,uval)
Low level routine to send a signal to the SIGNAL device driver. Returns 0
on success, or QDOS/SMS error code on failure.
Defined in signal.h

Defined in signal.h

int set_timer_event(struct TMR_MSG *msg)
Signal related routine that returns msg.len if a previous event was
cancelled, 0, or QDOS error
Defined in signal.h

int sigcleanup()
Routine that should be called only when leaving a signal
handler through longjmp(). It inhibits reasigning of handler and
sigprocmask and calls _CheckSig(). It is normally better to call the Posix
defined routines sigsetjmp() and siglongjmp() instead of setjmp() and
longjmp() as then this routine is not required. Returns 0 on success,
QDOS/SMS error code on failure.
Defined in sys/signal.h

int stackcheck ()
This routine acts like stackreport() , except that if the margin is
breached, a 0 value is always returned (rather than a negative value). This
means you can easily test for failure using assert statements of the form
assert(stackcheck());
in your program, and an assert error message is generated if it fails.

long stackreport()
Report the current amount of stack available before the safety margin (as
specified by the global variable _stackmargin) is reached. A negative
value means that you are below the safety margin by the specified amount,
and are could well be corrupting your data areas. A program crash (or even
system crash if you are unlucky) is probably imminent!

int strfnd(char *tofind, char *tosearch)
Find the position of string 'tofind' in string 'tosearch' doing case
independent match. Returns -1 if not found, position in string if found.
Note that if you want a case dependant version you should use the Unix
compatible strfind() routine (defined in LIBUNIX_DOC).
Defined in string.h

void strmfe (char * newname,
const char * oldname, const char * extension)
Lattice compatible routine to take a filename, remove any existing
extension, and then to add the given extension.
Defined in string.h

void strmfn (char * newname, const char * drive,
const char * path, const char * basename,
const char * extension)
Lattice compatible routine to build up a filename from its components. Any
required undersocre seperator characters will be added automatically. Any
of the components can be a zero length string if not required.
Defined in string.

void strmfp (char * newname, char * path, char * name)
Lattice compatible routine to build a filename from its path and base name.
If needed an undersocre character will be added between the 'path' and
'name' components. The 'path' string can be an zero length string.
Defined in string.h

int usechid (chanid_t channel)
Create a Level 1 file descriptor for a file opened at level 0 (ie the QDOS
level using io_open()). Must not be called more than once for a given file.
Returns file descriptor if successful, -1 on failure.

QLFLOAT_t * w_to_qlfp (QLFLOAT_t * qlf, int w)
Routine to convert a short integer (word) to a QL floating point number.
This routine is included mainly for completeness as normally you would use
the i_to_qlfp() routine.

int waitfor (jobid_t jobid, int * ret_value)

int waitfor (jobid_t jobid, int * ret_value)
Wait for the specified job to terminate. If the 'ret_value' parameter is
not NULL, then it should point to the address at which the exit code of the
specified job should be put. Returns 0 on success, -1 if specified job
could not be found.

void _CacheFlush (void)
Routine to force a flush of the cache on 68030 (or higher) processors -
will do nothing on 68020 or less. Needs to be used if you ever have self-
modifying code. Ths means that it should very rarely be used in practise!

int _ProcessorType (void)
Routine to determine the type of processor you are running on. If the
system variable that specifies the processor type is set, then this value
is returned. If the system variable is not set then tests are done to
determine the processor type, the value is stored in the system variable
and also returned. The values returned will indicate the basic processor
type as follws:
$00 68000/68008
$20 68020
$30 68030
$40 68040
In addition the following bits can be 'or'ed to the above values to
indicate special features:
$01 Internal MMU
$02 68851 MMU
$04 Internal FPU
$08 68881/68882 FPU
Experience has shown however, that one cannot guarantee that the bits
inidcating extra features will always be set up - and there is quite a bit
of code around that works on the assumption they will not be set up.

void _super()
Routine to go into supervisor mode. You MUST return to user mode before
exiting the function in which you went into supervisor mode or you will
probably crash the machine.
WARNING This function should be used with great care, and only if
absolutely essential.

void _superend()
Routine to go back into user mode after having been in Supervisor mode.
Does not check if any signals have occurred. Complementary function to
_super() (see also _user() routine).

void _user()
Routine to go back into user mode after having been in Supervisor mode.
Checks if any signals have occurred while in supervisor mode, and if so
handles them. Complementary function to _super() (see also __superened()
routine).
STRUCTURES, MACROS and TYPEDEFs
These are various definitions in the sys/qlib.h header file that are used
when refering to QDOS or SMS based systems. This header file is included
automatically by the qdos.h, sms.h and qptr.h header files.

JOBHEADER and JOBHEADER_t
These are the structure name and typedef respectively that are used to
refer to a QDOS/SMS job header.

QFLOAT and QFLOAT_t
These are the structure name and typedef respectively that are used when
refering to QL/SMS format floating point numbers.

QLRECT and QLRECT_t
These are the structure name and typedef respectively that are used to
define the width, height and origin of a rectangular area on a screen.

QLSTR and QLSTR_t
These are the structure definition and typedef respectiviely used to refer
to QL/SMS string types. They are defined in the sys/qlib.h header file.

to QL/SMS string types. They are defined in the sys/qlib.h header file.

QLSTR_DEF (name, length)
Macro to define the space for a QL/SMS style string in a QLSTR style
structure. Typically used in a statement of the form:
QLSTR_DEF (string_name,20);
You can also give the string an initial value by using a statement of the
form:
QLSTR_DEF (string_name,20) = {5,"Hello");
However if the string will never be changed, you will find it easier to use
the QLSTR_INIT macro.
--
QLSTR_INIT (name, "value")
Macro to define a constant initialised QL/SMS style string. Typically used
in a statement of the form:
QLSTR_INIT (string_name,"Hello");
The space allocated will allow for the NULL byte that is used to terminate
a C style string, but the NULL byte will not be included in the count of
characters in the QL/SMS part.
If you use this macro inside a function then you need to precede it with
the static keyword.

TIME_QL_UNIX (ql_time_in_seconds)
Macro to convert a QDOS/SMS time in seconds (measured since 1st January
1961) into a Unix time in seconds (measured since 1st January 1970).

TIME_UNIX_QL (unix_time_in_seconds)
Macro to convert a Unix time in seconds (measured since 1st January 1970)
into a QDOS/SMS time in seconds (measured since 1st January 1961).

WINDOWDEF and WINDOWDEF_t
These are the structure and typedef respectively that are used to define
the details of a screen window.

GLOBAL VARIABLES
The following are glabal variables that are available to user programs.
Some of them are for information only while others can be set in user
programs to control certain default settings of elements of the C68 run-
time environment. In these cases, if the user does not provide a value,
then the specified default values will be used.

extern long _def_priority
Used to set priority of new jobs. Default is a value of 32.

extern int os_nerr
Number of QDOS error messages catered for in 'os_errlist' table.

extern char *os_errlist[]
Table giving text for all the standard QDOS error codes. Use the negation
of the QDOS error code (to convert it to a positive number) as an index
into this table to get the text for a particular error code.

extern WINDOWDEF_t _condetails
This contains the definition details for the initial console window. The
WINDOWDEF_t type refers to a structure that is defined in sys/qlib.h The
default values are equivalent to a C statement of the form:
WINDOWDEF_t _condetails =
{
2, /* border colour (red) */
1, /* border width */
0, /* paper (black) */
7, /* ink (white) */
464. /* width (pixel) */
180, /* height (pixels) */
24, /* x origin */
26 /* y origin */
};

This global variable is used by the consetup_default() and consetup_title()
routines to determine the console details.

extern char _copyright[]
This variable is used by the consetup_title() routine. It inserts this
string at the left side of the menu bar. The default value is a zero length
string, but the user can define his own text.

extern char * _endmsg
The message that will be used when a program closes down. Default is "Press
a key to exit". After displaying the message, the program waits for a
keypress. Setting this pointer to NULL will mean that the program exits
without displaying any message.

extern timeout_t _endtimeout
The timeout that will be used when displaying the closedown message and
waiting for a response. The default is -1 which means wait forever.
Positive values are the number of 1/50 second units to wait.

extern long _memincr
Sets the minimum increment in which new memory allocations will be made
from the stack. Default value is 4K bytes.

extern long _memmax
Sets the maximum memory that a program is allowed to allocate. Default is
as much as the program wants.

extern long _memfree
Sets the amount of memory that must always be left for QDOS or SMS when
trying to allocated additional memory for a program. Default is 20K bytes.

extern long _mneed
Sets program initial memory allocation. A negative value can be set which
means allocate all the memory except this amount. Default is 8K bytes.

extern long _oserr
Used to return QDOS/SMS error codes for some of the QDOS/SMS trap and/or
vector calls. It can also be set when an error return is made from a
standard C level routine with the errno global variable set to the value
EOSERR (as defined in errno.h).

extern long _pipesize
Sets default pipe size.

extern char _prog_name[]
Sets default program name. Default is a name of C-PROG.

extern char _Qopen_in[]
This is the list of special characters that are checked for by the qopen()
library routine. It should be NULL terminated. Its default value is the
string "/.\\" .

extern char _Qopen_out[]
This is the list of what each character that is found in the _Qopen_in
string should be converted to. It must be at least the same length as
_Qopen_in or the effect is undefined. Its default value is the string "___"
.

extern long _stack
Sets program stack size. Default is 2Kb bytes.

extern long _stackmargin
Sets the default value for the 'stackcheck' routine to start reporting
failures. Default is 256 bytes.

extern char *_sys_var
Base of system variables. Set when the program starts-up.

extern char _version[]
This is a string used by the consetup_title() routine. It is inserted at
the right hand end of the menu bar. Default value if this string is not
defined explicitly in the users program is a zero length string.

GLOBAL VECTORS
The following are glabal vectors that can be set in user programs to
control certain default actions of the C68 run-time environment. If the
user does not provide a value, then the specified default values will be
used.
N.B. Setting other values that are specified here can have undefined
effects and are very likely to cause a system crash.

extern long (*_cmdchannels)()
This can be set to NULL if the program cannot be passed channels directly
from SuperBasic. Default is to include code to allow channels to be
accepted from SuperBasic.

extern void (*_cmdparams)()
This can be set to NULL if the program does not take any parameters. This
will stop code for parsing the command line being included. Default is to
include code for parsing the command line.

extern void (*_cmdwildcard)()
This can be set to specify the routine to expand wild cards if they are
found in the command line. Default is NULL which means that wildcards are
not expanded. The routine cmdexpand() is provided which will simulate the
filename expansion that is done by the Unix shell.

extern void (*_consetup)()
This contains a pointer to the routine that will be called to initialise
the console window on program startup. It will only be called if the
console channel was NOT passed on the stack from another program.
The default routine consetup_default() merely clears the window and puts a
border around it. The routine consetup_title() is also provided in the
standard library. This will additionally provide a title bar at the top of
the window (c.f. the _copyright and _version global variables).
If this vector is set to NULL, then no default initialisation is done.
Alternatively, the user can provide his own alternative routine. See
QDOSC68_DOC for more details.

extern long (*_conread)(UFB_t * uptr,
void * buffer, long length)
This is a pointer to a routine that will handle any input translation for
console/screen devices of any special characters during a read. The
supplied default routine acts on the following special characters:
CTRL-D Treated as EOF
CTRL-X Treated as "Kill Job"
This vector can be set to NULL if console input translation is definitely
not required. This will cause the relevant code to be omitted from the
program.
This vector can be set to point to an alternative routine if more
comprehensive input translation is required. The value returned is the
number of characters read into the buffer.

extern long (*_conwrite)(UFB_t * uptr,
void * buffer, long length)
This is a pointer to a routine that will handle any output translation for
console/screen devices of any special characters during a write. The
supplied default routine handles the ANSI C specified escape sequences.
This vector can be set to NULL if console output translation is definitely
not required. This will cause the relevant code to be omitted from the
program.
Alternatively, if more sophisticated output translation is required then a
user routine can be substituted. The return values from this routine are
treated as follows:
0 an error occurred
+ve output the specified number of characters from the buffer without
translation.

translation.
-ve the specified number of characters from the buffer required special
translation which has been done.

extern int (*_Open)(const char * name, int mode, ...)
This is a pointer to the routine that will be used for any open(), fopen()
or stat() routines in the program. By default this points to a standard
internal library routine that implements the open() call. If the special
additional actions carried out by the qopen() routine are required then
this can be invoked by setting the _Open vector as follows:
#include <fcntl.h>
int (*_Open)(const char *, int, ...) = qopen;
If you wish to write some other variant of the open() call, then look at
the source of the qopen() module for an example of how to go about this. --

extern int (*_readkbd) (chanid_t channel, timeout_t timeout,
char *, byte_read);
This is a pointer to the routine that is used to read the keyboard.
Normally it would point to the standard operating system call for reading a
byte.
Setting this to another value allows you to write a routine that can
intercept keyboard input before it is passed back to the main C program.
For an example of such a routine and how it might be used see the
readmove() routine provided in the QPTR part of the standard C library.

CHANGE HISTORY

 16 Jun 93
 Added descriptions for the new string handling routines
qstrcat(), qstrchr(), qstrcmp(), qstrcpy(), qstrlen(),
qstricmp(), qstrncat(), qstrncmp(), qstrncpy(), qstrnicmp(),
ut_cstr()

 10 Jul 93 Description of calls amended to remove the statement that theyset the _oserr global variable (where this is no longer true).
 31 Dec 93 Documented the _copyright' and '_version' global variables.

 24 Jan 94
 Removed all references to the direct QDOS and SMS operating
system calls. These are now documented in the LIBQDOS_DOC and
LIBSMS_DOC files.

 03 Sep 94 Added descriptions of the argfree(), argpack() and argunpack()routines.
 20 Jan 95 Added descriptions of the qopen() routine and the associated'_Open' vector.
 10 Feb 95 Documented the qfork() family of routines.
 16 Apr 95 Added descriptions of the more important structures andtypedefs that are defined in the sys/qlib.h header file.

 28 Sep 95
 Added description of _endtimeout global variable.
Updated to reflect implementation of Richard Zidlicky's signal
handling extension.

 07 Dec 96 Added description of strfnd() routine, amended to be alwayscase independent.
 16 May 98 Added descriptions for the _CacheFlush() and _ProcessorType()routines.

C68 Curses library
INTRODUCTION
This is the C68 Curses library. Many thanks must go to Keith Walker for the
work that he has done in producing this library.
NOTE. If anyone produces more complete documentation for some (or all) of
these routines, then please feed them back for inclusion into later
releases of C68. Also please feed back any errors that you notice in the
documentation.
The purpose of the cursor library is to get a portable way of writing
programs that update character screens. It allows the programmer to
manipulate such screens without the need to know the details of the control
sequences recognised by any particular screen type.
ENVIRONMENT VARIABLES
Programs that are going use the Curses library require the following two
environment variables to be set:
 TERM="qdos"
 TERMINFO="flp1_terminfo"
The first gives the terminal "type", and the second one the place where the
associated "terminfo" file can be found. The disk supplied includes a
"terminfo" file for a terminal by the name of "QDOS".

"terminfo" file for a terminal by the name of "QDOS".
Also, the start-up code that is automatically linked in will set the two
environment variables LINES and COLUMNS to amtch the size of the window
allocated (default size is 80 columns by 24 lines).
LIBRARY ROUTINES
The following is an alphabetical list of all the routines contained in the
C68 libcurses_a Curses library. No detail is given on any of the routines
except those specific to the QDOS implementation. It is assumed taht you
will have more detailed documentation on curses if you are trying to write
your own program using this library.
 Curses Routine Name Curses Manual Page Name
 addch curs_addch
 addchnstr curs_addchnstr
 addchstr curs_addchstr
 addnstr curs_addstr
 addstr curs_addstr
 attroff curs_attr
 attron curs_attr
 attrset curs_attr
 baudrate curs_termattrs
 beep curs_beep
 bkgd curs_bkgd
 bkgdset curs_bkgd
 border curs_border
 box curs_border
 can_change_color curs_color
 cbreak curs_inopts
 clear curs_clear
 clearok curs_outopts
 clrtobot curs_clear
 clrtoeol curs_clear
 color_content curs_color
 copywin curs_overlay
 curs_set curs_kernel
 def_prog_mode curs_kernel
 def_shell_mode curs_kernel
 del_curterm curs_terminfo
 delay_output curs_util
 delch curs_delch
 deleteln curs_deleteln
 delscreen curs_initscr
 delwin curs_window
 derwin curs_window
 doupdate curs_refresh
 dupwin curs_window
 echo curs_inopts
 echochar curs_addch
 endwin curs_initscr
N.B. THIS LIST IS NOT YET COMPLETE
QDOS SUPPORT FUNCTIONS
The following routines are present in the C68 LIBCURSES_A library to handle
the interface between the Curses routines and the standard C library
routines.
They each replace routines of the same name in the standard C68 LIBC_A
library. These replacment versions have higher and/or slightly different
functionality to those in the LIBC_A library (and are therefore bigger).

struct WINDOWDEF _condetails
This routine describes the details of the window to be used as the basic
console window. The default values are:
 x_origin
 y_origin
 window height 244 (24 lines)
 window width 484 (80 characters)
 border width 1
 border colour 2 (red)
 paper 0 (black)
 ink 7 (white)

 ink 7 (white)
This give (in high resolution mode) a window with a useable area of 80
characters by 24 lines. This is the size that many curses based programs
assume by default. Those that do not will almost certainly use the LINES
and COLUMNS environment variables.
The WINDOWDEF structure is defined in qdos.h

struct termios _condevice
This data area is used by the other QDOS specific routines in the Curses
library to hold information relating to the state of the Console device.

int _conread (struct UFB * uptr, char * buf, int length)
This routine is used to handle reading from the console. It recognises and
actions the various input modes that curses tries to use.

int _conwrite (struct UFB * uptr, char * buf, int length)
This routine is used to handle writing to the console. It recognises and
actions the various control sequences that curses tries to use. For more
details refer to the terminfo file provided with this library.

void _initcon (void)
This routine completes the initialisation of the console device. In
particular it sets the LINES and COLUMNS environment variables to reflect
the actual size of the screen allocated.

Source Code Debugging Library
NAME
 debug - source code debugging library.
COPYRIGHT
(c) Copyright 1988, 1991 David J. Walker
This software may be freely used and distributed as long as this copyright
notice is remains intact, and no commercial gain is made from the
distribution
SYNOPSIS
 #include <debug.h>
 void dbg_init ();
 void dbg (label, detail, trace_format, ...);
 void dbg_print (.....);
 void snap1 ();
 void snap2 ();
 void snap3 ();
 char * label;
 int detail;
 char * trace_format;
DESCRIPTION
One of the problems areas when developing C programs is the process of
debugging them. This can be extremely difficult and time consuming. The
debugging system described here simplifies this task by providing a
mechanism for monitoring the execution of a C program as it is running.
This debugging system is unusual in that it is implemented completely at
the source code level, and does not need any low level machine code
debugging support to make it work. This makes it relatively easy to port
this system to other operating systems.
Features that are supported include:

Dynamic control of stop points
Dynamic control of trace frequency and detail
Watch points
Stack checking options
Support for user defined snapshots
Memory examination facilities
Logging of a complete session
Support for the MALLOC debugging library.

The debugging system (known as dbg) is invoked by including special format
function calls in the program as you develop it (if you adopt the technique
described below, it is not necessary to remove such calls when you want to

described below, it is not necessary to remove such calls when you want to
produce a version of the program with no imbedded debugging code). You will
also need to link in the library libdebug_a which includes the code to
support the debugging system. You can do this by specifying the parameter -
ldebug to the linker. If you intend to use the malloc debugging library
libmalloc_a in conjunction with libdebug_a then the order of linking is
important. The parameters to the linker MUST be in the order
 -lmalloc -ldebug
or you will get multiply defined symbols occuring.
At the start of your program, you should initialise the debugging system by
a function call of the format
 (void) dbg_init();
This will initialise the internal data structures of the dbg system, and
pass control to the user. If you omit this call, then the dbg system will
generate an automatic call to this routine when it is first entered. This
may, however, mean that not all levels of stack can be traced and checked.
At appropriate points throughout the program you can then include calls of
the form
 dbg (label,detail_index,trace_format,...)
where label is a string identifying this particular call to the debugging
system., detail_mask is an integer indicating the mask that must be
satisfied to activate this call to dbg (this number must always be greater
than zero) and trace_format is a 'printf' type format specification string.
It may be a NULL pointer if no trace information is to be generated from
this call to dbg . If a non-null pointer is provided, the string it
identifies will be used to control the printing of the arguments following
it. ,... is an optional, variable length list of variable identifiers as in
'printf' calls. These are variables that will be traced if this particulr
call to dbg is activated as a trace point.
There may well be situations in which the trace facilities offered by dbg
are either not suitable or are not comprehensive enough. A facility is
available for the user to provide a number of 'snapshot' routines. These
can then be invoked from dbg by use of the SNAP command as described later.
These snapshot routines must be of the form
 void dbg_snap? ()
 {
 user supplied code
 }
where 'dbg_snap?' is 'dbg_snap1', 'dbg_snap2', etc. For the number of such
snapshot routines allowed, see the section at the end on the system limits
built into dbg . To help in writing snapshot routines, the following
routine is defined within dbg , and made available as an external.
 void dbg_print(.....)
This is a routine that takes the same parameters as would be given to a
'printf' statement, but that will write to the dbg command stream and/or
the dbg log stream as appropriate.
A useful technique is to use the power of the C pre-processor to allow you
leave the calls to dbg in the code, but control whether they actually
generate any code. The debug.h header file contains some macro definitions
that make it easy to control whether dbg calls will be generated without
the need to modify the source code. If you write the calls to the dbg
system in the following formats:
 DBG_INIT();
 DBG((paramaters))
 DBG_PRINT((parameters))
then these statements will generate code if LIBDEBUG is defined, and will
generate no code if it is not. You can then control this by using the
parameter -dLIBDEBUG to the C68 compilation system when you want code
generated, and omitting it when you do not.
NOTE. The double brackets are necessary in this case to make the pre-
processor handle the variable number of parameters correctly.
RUN TIME INTERFACE
Programs that have had the dbg system included are started just as would
normally be the case when it is not included.
When the dbg system is first entered (normally via the dbg_init() call),
the user is first asked which channel is to be used for input/output to the
dbg system. The default is 'stdin/stdout' which is invoked if you merely
press ENTER.
It can be particularily advantageous to give a different value if you have
another QL networked to the one running the program under test (with
networking facilites between them using Toolkit 2). You can then open a
channel to the second QL by giving a response such as n2_con to this
prompt. All dbg input/output will then be directed to this second QL. This
means that you will be able to control the dbg system without the messages

means that you will be able to control the dbg system without the messages
from it corrupting the screen of the program under test.
Once you have answered this first question, you will be asked if you want
to write a logfile. The default is none. A log file can be directed either
to a disk file, or alternatively direct to a serial port. If a logfile is
provided, then all input/output to the dbg command channel will also be
written to this log file. It is also possible to get trace information
output only to a log file, and not to the command stream (see the TMODE
command).
Once the initialisation phase has been completed, then dbg is invisible to
the user until the executing program reaches either a trace point or a stop
point. Potentially all calls to dbg are both trace points and stop points.
Whether a call qualifies as either depends on the setting of the dbg global
modes (discussed with the commands that set them).
COMMAND DESCRIPTIONS
Once dbg has stopped at a stop point, the user interacts with the dbg
through a conventional command interpreter. All commands conform to the
format
 <command> [[<arg1>] <arg2>]
in which <command> identifies the command type and <arg1> and <arg2> are
either a number or a string literal. Numeric values (paticularily useful
for addresses) can be given as either absolute values, or alternatively as
C+value or D+value for addresses relative to the base of the code or data
areas respectively. If numeric values start with the $ symbol they are
assumed to be in hexadecimal, and if they start with the % symbol the
decimal is assumed. If neither is present, then hexadecimal is assumed.
The following is a list of the commands. They are in alphabetical order
except for those specific to interfacing with the MALLOC debugging library
which are covered at the end. The commands may be typed in either upper or
lower case. It is only necessary to type enough of a command to make it
unique. In the event of the amount typed not being enough to make the
command unique, then the first command encountered of that type willl be
assumed.

ADDRESS
This command will display the addresses of the data and code areas for
the program under test. The base address will always be given. There
will then be a field that varies with the address mode setting. If the
address mode is OFF, then the top address of each area is given. If the
address mode is ON, then the size of each area will be given.
This information is also displayed when the SHOW command is used to
obtain a full summary of the status of the dbg system.
AMODE
This command will toggle the display of addresses between absolute
format, and as displacements from the base of the code or data areas.
Addresses displayed in relative format will be of the form C+value and
D+value to represent addresses relative to the code and data areas
respectively. Any addresses which fall completely outside both of these
areas will always be displayed in absolute format.
CLS
This command simply clears the window associated with command input.
CONTINUE
Return control to the program under execution. You can use GO instead
if you wish.
CRC address length
Compute a cyclic redundancy check for the specified block of memory.
This command is normally used as a quick way of testing whether a block
of instructions or constant data has been changed.
CRCMD mode
Determine how frequently a CRC check will be automatically performed.
If the value for a CRC check has changed, then a stop point will be
forced. The values allowed for mode are

 O ff All automatic CRC checks off. This is the default.
 S top Do an automatic CRC check at all stop points.
 T race Do an automatic CRC check at all trace points.
 A ll Do an automatic CRC check at al dbg calls.

The values for the start address and length will be taken from the last
CRC command.
CAUTION: use this option with care as it can cause a severe performance
overhead in the program under test, particularily if the length being
checked is quite large.
DUMP address length
Print in ASCII and hexadecimal form the specified memory block.
ERRNO

ERRNO
Displays the setting of the global variable errno at the time that the
current dbg call was made.
Note that dbg takes special care to preserve the setting of errno
across dbg calls so that programs that make assumptions about when it
will change are not affected by whether a dbg call has occurred or not.
GO
This is merely an alternative to the CONTINUE command. It returns
control to the program uunder test.
GRANULARITY n
Set the trace granularity to n . Only every n th (otherwise enabled)
trace statement will be printed. The argument n must always be greater
than zero.
This option is normally used when tracing loops.
HELP (or ENTER key with no data)
This command will give a summary of the all the commands available in
the dbg system, and their syntax.
LEVEL n
Sets the trace level to n . The value specified here is used by AND'ing
it with the detail _index supplied with each dbg call. Only if all bits
in the detail index have a corresponding bits set in the LEVEL
parameter will the dbg call be activated.
This means that when designing how you are going to use the
detail_index field in the dbg calls, it is convenient to consider them
as bit fields. Thus you might use bits 0-3 to specify the level of
detail, and the remaining bits to specify the type of routine. Such an
approach makes it easy to select values for the LEVEL parameter that
will activate just the TRACE and STOP points that you are interested
in. If adopting this approach, then it is recommended that you specify
the detail_index in hex within the program (i.e. 0x101) as this is the
format in which you provide values to the LEVEL command.
It is still necessary for the LABEL field on the call to dbg to match
those given in the trace/stop point settings. The default, however, is
to set a trace point pattern of ' * ' which would match any label. The
default for the level parameter is zero, so if you want to activate
trace point displays you must increase this value.
LOCAL n
Print in ASCII and hexadecimal the local variables and parameters
associated with the last n stack frames (i.e. levels of subroutine
call).
The data displayed is in ascending memory address order. This is the
reverse to the order in which the variables are defined in the program.
LOG
This command will close the current log file, and then prompt you for
the name of a new one. Merely pressing ENTER will cause new log output
to be sent to the screen.
POKE address data_byte
This is a very simple memory modification facility that allows you to
change a single byte in memory. The 'data_byte' field is the
hexadecimal value to be put at that address.
QUIT
Terminate the program under test immediately. Any open files will be
closed.
RETRACE
This command is used to redisplay the data that was included as trace
information to the current dbg call. The data will be displayed on the
screen when this command is used even if the screen trace mode is set
to OFF.
SHOW
Generate a report that shows the current state of the dbg system.
SMODE mode
Set how frequently the stack framepointers and return addresses should
automatically be checked as being reasonable (i.e. not pointing outside
the stack area). The values for mode are

 O ff All automatic stack checks off. This is the default.
 S top Check at stop points.
 T race Check at trace points.
 A ll Check at all dbg calls.

The framepointers will be checked to ensure that they do not point
outside the data area, and also that they are in ascending address
order. The return addresses will be checked to ensure that they are
within the code area. If either of these checks fail, then an error
message will give the details.

message will give the details.
SNAP n
Invoke the n th User supplied snapshot.
This facility is intended for use when the standard TRACE options are
not sufficiently comprehensive. See the section in earlier under
'Programming Interface' for more details.
SSKIP n
The next n stop points that would otherwise be enabled are suppressed.
STACK
Give a dump of the framepointers and return addresses for each level of
subroutine call. There will be one line for each level of call, with
the most recent listed first. The same checks will be made as described
under the SMODE command.
STOP n pattern
Create the specified stop point for dbg calls that match pattern .
In the simplest case patterns are simple string literals that must
match exactly the dbg call's label (except that case is not relevant).
Wildcards can be used in the pattern. The question mark is used to
match any character, including 'no character'. As an example if you
typed in the command
 STOP 1 foo??
then this would set step point 1 to the pattern foo?? which matches
 foo
 foo1
 foo12
 fooey
but does not match the pattern f00123 . The asterisk, * , is used to
match any string of characters. Thus the command
 STOP 1 foo*
would set stop point 1 to the pattern foo* would match all of the ones
in the example above
To cancel a stop point that has already been set, you merely issue a
STOP command and leave the pattern field blank. Thus the command
 STOP 1
would cancel the current values of stop point 1.
TMODE
This command will toggle the screen trace mode OFF and ON. The default
is ON if there is no log file, and OFF is there is a log file. Trace
output is normally sent to the dbg command stream, and (if activated)
to the log file. Setting the screen trace mode to OFF stops the output
to the command stream. If a log file has been given, this will continue
to receive trace output.
This option is useful when a lot of trace output is being generated,
but you do not want to examine it immediately. By only writing it to a
log file you avoid excessive data appearing on the screen.
TRACE n pattern
Create the n th trace point to match pattern . The values allowed in
pattern are the same as for the STOP command.
A call to dbg is treated as a trace point if the pattern matches one of
those set using the TRACE command and the level is less than the value
set by the LEVEL command. A trace point merely causes the trace data
associated with the call to dbg to be displayed and does not halt the
program. It is, however, possible for the same call to also be treated
as a 'stop' call if it also matches one of the conditions for
generating a stop.
TSKIP n
The next n trace points that would otherwise be enabled are suppressed.
This is useful when you want to jump over a known number of trace
points (see also the GRANULARITY command).
WATCH n address
Set a watch point at the specified address. Watch points are examined
automatically at certain dbg calls (according to the mode set by the
WATMD command). Whenever an examination reveals that the contents of a
watch address have changed, then a stop point is forced.
To disable the n th watch point, set the address to zero
WMODE mode
Specify which dbg calls are to trigger automatic watch examinations.
The options for mode are
O ff All watches off. This is the default condition.

 S top Examine only at stop points.
 T race Examine only at trace points.
 A ll Examine at all dbg calls.

 A ll Examine at all dbg calls.

MALLOC DEBUGGING SYSTEM COMMANDS
The following commands will only have an effect if the libmalloc_a library
(see LIBMALOC_DOC for details) has been linked into your program.

MFILE filename
This sets/changes the malloc log file. If the filename is ommitted,
then the current filename will be displayed. Specifying the special
value of <DEBUG> sets it to be the same as the dbg log file (or the
command channel if there is no log file active).
MFATAL value
This sets the malloc_fatal_level. If value is ommitted, then the
current setting is displayed instead.
MWARN value
This sets the malloc_warning_level. If value is ommitted, then the
current setting is displayed instead.
MCHECK value
This sets the malloc_checking status. If value is ommitted, then the
current setting is displayed.

SYSTEM LIMITS
The following are the system limits in the current version of the dbg
system. If you have the source of this library and you wish to change these
limits you need to change the #define statements in the debug_c module and
rebuild the library.
 Stop Points 3
 Trace Points 3
 Watch Points 3
 User Snapshots 3

C68 Maths library
INTRODUCTION
This is the C68 maths library. Many thanks must go to S.E.Peterson for thw
work that he has done in improving the C68 maths library beyond all
recognition.
Please note that this library also contains the versions of printf() and
scanf() (and their various close siblings) that have floating point
support. This has been done to avoid the need to include the additional
floating point code in the vast majority of programs that do not use
floating point.
NOTE. If anyone produces more complete documentation for some (or all) of
these routines, then please feed them back for inclusion into later
releases of C68. Also please feed back any errors that you notice in the
documentation.
LIBRARY ROUTINES
The following is a list of all the routines contained in the C68 libm_a
Maths library. There is a short summary list followed by a more detailed
list organised in alphabetical order.
In a number of sections you will see the name in brackets. This means that
a routine of this name exists in that category, but it has not (yet!) been
implemented in the C68 libraries.
In some cases the summary lists are split up into a number of levels to
indicate the level of portability if you use these routines. In principle
the further you go down the following categories, the less portable the
code is likely to be.

ANSI is the general portable C level. This is the one that is defined
by the C definition, and the one that provides maximum portability of
C source code between disparate systems.
UNIX is the Unix system call interface. Calls at this level are
portable across most Unix sytems. They are also portable to systems
which provide libraries to emulate this interface.
LATTICE is extensions provide with LATTICE C compilers. These options
are portable between LATTICE compilers on the various sytems, but not
if other compilers are in use. Examples of such compilers under QDOS
are QLC and EJC.
C68 are extension specific to this implementation.

TRIGNOMETRIC FUNCTIONS
ANSI C compatible

ANSI C compatible
acos asin atan atan2
cos sin tan
Lattice C compatible
cot
HYPERBOLIC FUNCTIONS
ANSI C compatible
cosh sinh tanh
Unix compatible
acosh asinh atanh
EXPONENTIAL and LOGARITHMIC FUNCTIONS
ANSI C compatible
exp frexp ldexp log
log10 modf
Unix compatible
expf logff log10f modff
POWER FUNCTIONS
ANSI C compatible
pow sqrt
Unix compatible
hypot powf sqrtf
ROUNDING FUNCTIONS
ANSI C compatible
ceil fabs floor fmod
Unix compatible
ceilf floorf remainder fmodf
MISCELLANEOUS
Unix compatible
copysign matherr
Lattice C compatible
except ecvt fcvt gcvt
C68 compatible
_mult _poly
DATA AREAS
Lattice C compatible
_fperr ---
double acos(double x)
Returns arccos(x) for -1.0 < =x <= 1.0; the returned value is in the range
0 <= arccos(x) <= pi, otherwise returns -HUGE_VAL.
Function defined in LIBM_acos_c. In ANSI, MS6 and Unix.

double acosh (double x)
Returns arccosh(x) for x >=1.0.
Defined in LIBM_acosh_c. Not defined in ANSI; defined in MS6 and Unix.

double asin(double x)
Function returns arcsin(x) for -1.0 < =x <= 1.0; the returned value is in
the range -pi/2 <= arcsin(x) <= +pi/2, otherwise returns -HUGE_VAL.
Function defined in LIBM_asin_c. In ANSI, MS6 and Unix.

double asinh (double x)
Returns arcsinh(x) for x .
Defined in LIBM_asinh_c. Function not defined in ANSI, but defined in MS6
and Unix.

double atan2(double y, double x)
Function is a full four quadrant function returning arctan (y/x) where y
and x are any two numbers, x != 0. Returned value is in the range -pi <=
arctan(y/x) <= +pi.
Defined in LIBM_atan2_c. In ANSI, MS6 and Unix.

double atan(double x)
Function returns arctan(x). Returned value is in in the range -pi/2 <
arctan(y/x) < +pi/2.

Defined in LIBM_atan_c. In ANSI, MS6 and Unix.

double atanh(double x)
Function returns arctanh(x).
Defined in LIBM_atanh_c. Function not defined in ANSI, but defined in MS6
and Unix.
--- double ceil(
double x)
float ceilf(float x)
Returns in double format the value of the integer that is the smallest
integer greater than or equal to x. Note that ceil(-1.05) is -1.0, while
ceil(+1.05) is 2.0.
Defined in LIBM_ceil_c. In ANSI, MS6 and Unix. ceilf defined in
LIBM_ceilf_c, but not defined in ANSI or MS6.

double copysign (double x, double y)
Returns the value of x with the same algebraic sign as y.
Defined in LIBM_copysign_c. Not defined in ANSI or MS6 but defined in Unix.

double cos(double x)
Function returns double cosine of x. There is no restriction on the
magnitude of x as it works with the remainder after integral division by
2pi. This does lead, however, to some loss of accuracy with high values of
x.
Defined in LIBM_cos_c. Defined in ANSI, MS6 and Unix.

double cosh(double x)
Function returns double cosh (hyperbolic cosine) of x.
Defined in LIBM_cosh_c. Defined in ANSI, MS6 and Unix.

double cot(double x)
Function returns cotangent of x.
Defined in math.h

char *ecvt(double v, int dig, int *decx, int *sign)
Converts double floating point number to a string of characters. v is the
double number, dig is the total number of digits (before and after the
decimal point) to appear in the string, decx is a pointer to a signed
integer value giving the number of characters, left or right, from the
beginning of the string to the decimal point. Note that the decimal point
is not included in the string returned by the function. sign is a pointer
to an integer indicating the sign of the converted number. *sign = 0 if
positive, != 0 otherwise.
Defined in fcntl.h? Not defined in ANSI, but defined in MS6 and Unix.

double except(int type, char *name, double arg1,
double arg2, double retval)
A lattice facility for simplifying the matherr interface. Sets up the
exception vector and processes the action code and return value.
Not implemented in C68 yet. Not defined in ANSI or MS6.

double exp(double x)
float expf(float x)
Returns e (base of natural logarithms) raised to the power x.
Defined in LIBM_exp_c. double exp defined in ANSI, MS6 and Unix; float expf
not defined in ANSI or MS6.

double fabs(double d)
float fabsf(float d)
fabs returns the absolute value of a double floating point number. See also
abs().
Defined in LIBM_fabs_c. Defined in ANSI, MS6 and Unix. fabsf returns the
float value of a float number; it is not defined in ANSI or MS6.

char *fcvt(double v, int dec, int *decx, int *sign)
Converts double floating point number to a string of characters. v is the
double number, dig is the number of digits to be stored after the decimal

double number, dig is the number of digits to be stored after the decimal
point (all digits prior to the decimal point will be included in the
string), decx is a pointer to a signed integer value giving the number of
characters, left or right, from the beginning of the string to the decimal
point. Note that the decimal point is not included in the string returned
by the function. sign is a pointer to an integer indicating the sign of the
converted number. *sign = 0 if positive, != 0 otherwise. See also *gcvt.
Defined in fcntl_h. Not defined in ANSI, but defined in MS6 and Unix.

double floor(double x)
float floorf (float x)
Returns a double (floating point) value representing the largest integer
that is smaller than x, e.g. floor(6.5) = 6.0 and floor(-6.5) = -7.0 .
double floor defined in LIBM_floor_c.
Defined in ANSI, MS6 and Unix. float floorf defined in LIBM_floorf_c; it is
not defined in ANSI or MS6. ---

double fmod(double x, double y)
float fmodf(float x, float y)
Returns floating point remainder on divison of x by y. More precisely, the
number returned (f) has the saem sign as x, such that x=iy + f for some
integer i, and |f| < |y|. Sign of remainder is same as sign of x and abs(r)
< abs(y). Useful e.g. for reducing large angles to the range 0 to 2pi.
Defined in LIBM_fmod_c. Similar function to remainder(x,y)(see below).
Defined in ANSI, MS6 and Unix.

double frexp(double v, int *xp)
The function breaks down v into a mantissa m and exponent n such that 0.5
<= abs(m) < 1.0 and v = m * 2^n. The function returns the value of the
mantissa with the same sign as v. The integer exponent n is stored at the
location pointed to by xp.
Defined in stdlib_c. Defined in ANSI, MS6 and Unix.
NOTE. This routine is always implementation specific as it has to know the
underlying representation of floating point.

double gamma(double x)
Returns the value of gamma(x), the generalized factorial. Note that it is
very easy to exceed the numeric range of the machine with relatively small
values of x, e.g. gamma(100) = 9.3E155, hence it is common to work with the
logarithm of gamma(x), defined in lgamma(x) (see below). Implemented only
for positive values of x.
Defined in LIBM_gamma_c. Not defined in ANSI or MS6, but defined in Unix.

char *gcvt(double v, int dig, char *buf)
Converts a double f.p. v to a string stored in a buffer which has a
terminating \0. It attempts to produce dig significant figures in decimal
format, failing which it will attempt to produce dig significant figures in
exponential format. The function returns a pointer to the string of digits.
Defined in stdlib.h ? Not defined in ANSI, but defined in MS6 and Unix.

double hypot(double x, double y)
Returns the length of the hypotenuse of a right triangle with sides x and
y.
Defined in LIBM_hypot_c. Not defined in ANSI, but defined in MS6 and Unix.

double ldexp(double v, int x)
Returns the double value of v * 2^x. This is the inverse of frexp function.
Defined in math.h. In ANSI, MS6 and Unix.
NOTE. This routine is always machine specific as it has to know the
underlying representation of floating point numbers.

double lgamma(double x)
Returns the logarithm of the gamma function (generalised factorial.) for x
> 0.0 . Not defined in ANSI or MS6, but defined in Unix.

double log10(double x)
float log10f(float x)
Returns the logarithm of x to base 10. double defined in LIBM_log10_c.
Defined in ANSI, MS6 and Unix. float log10f defined in LIBM_log10f_c; it is
not defined in ANSI or MS6.

double log(double x)
float logf(float x)
Returns the natural logarithm of x. double defined in LIBM_log_c; it is
defined in ANSI, MS6 and Unix. float logf is defined in LIBM_logf_; it is
not defined in ANSI or MS6.

int matherr(struct exception *x)
Returns 0 to indicate an error and non-zero for succesful corrective
action.
Defined in math.h. ANSI has said that this is now obsolete. Defined in MS6
and Unix (if ANSI option disabled). Not yet implemented.

double modf(double y, double *p)
float modff(float x, flaot y)
Breaks down a double floating point value into integer and fractional
parts. The function returns the signed fractional portion. The pointer p
points to the address of a double floating point variable containing the
integer part.
Defined in ANSI, MS6 and Unix.
NOTE. This routine is always machine specific as it has to know the
underlying representation of floating point numbers.

double pow (double x, double y)
float powf(float x, float y)
Returns the value of x raised to the power y.
Defined in LIBM_pow_c. Defined in ANSI, MS6 and Unix.

double remainder(double x, double y)
Returns double remainder on divison of x by y. More precisely, it returns
the value r = x - yn, where n is the integer nearest the exact value x/y.
Whenever |n - xy| = o.5, then n is even. Very similar to fmod(x,y) except
for rounding under boundary conditions.
remainder is not defined in unix, but not in ANSI or MS6.

double rint (double x)
Function returns nearest integer value to its floating point argument x as
a floating point number. The returned value is rounded according to the
machines (current) rounding mode. If round-to-nearest (the default) is set
and the difference between the function argument and the rounded result is
exactly 0.5, then the result will be rounded to the nearest even integer.
Defined in math.h

double sin(double x)
Returns sin(x). Works on remainder after division by 2pi, hence there is
some loss of accuracy with large values of x.
Defined in LIBM_sin_c. Defined in ANSI, MS6 and Unix.

double sinh(double x)
Returns value of hypberbolic sine of x.
Defined in LIBM_sinh_c. Defined in ANSI, MS6 and Unix.

double sqrt(double x)
float sqrtf(float x)
Returns square root of argument.
Defined in LIBM_sqrt_c. double defined in ANSI, MS6 and Unix; float not
defined in ANSI or MS6.

double tan(double x)
Returns value of tangent of x. Operates on remainder after dividing
argument by 2pi, hence there is some loss of accuracy for large values of
the argument.
Defined in LIBM_tan_c. Defined in ANSI, MS6 and Unix.

double tanh(double x)
Returns hyperbolic tangent of x.
Defined in LIBM_tanh_c. Defined in ANSI, MS6 and Unix.

Defined in LIBM_tanh_c. Defined in ANSI, MS6 and Unix.

INTERNAL ROUTINES
The following routines are implemented as support functions for other
routines in the C68 maths library. Use of these routines is definitely non-
portable.

double _mult(double x, double y)
A "safe" multiplication routine which returns x*y if in range, otherwise
HUGE_VAL with proper sign if not. Introduced as a precaution because of the
limited numeric range of MFFPF.
Defined in LIBM__mult_c. Not defined in ANSI or MS6.

double _poly (double x, double *coeff, int ncoeff)
Returns the value of a polynomial for the argument x using Horner's method.
*coeff is the array of coefficients of the polynomial beginning with a0
(the constant term). Note that all coefficients must be supplied even when
they are zero. ncoeff is the total number of coefficients (which is one
more than the index of the highest order coefficient and equals the order
of the ploynomial).
Defined in LIBM__poly_c; Internal routine to C68 library.

VARIABLES

extern int _fperr
This is set if the underlying routines which perform floating point
arithmetic detect an error.
Defined in math.h

QDOS System Call Interface
This section of the C68 library documentation covers those routines in the
C68 standard library that provide access to the QDOS operating system
interfaces.
All of the calls in this part of the library map directly onto the QDOS
System Calls available to Assembler (machine code) programmers. It is
therefore useful to have access to documentation covering the Assembler
level interface to QDOS if you want more details on how many of these calls
work.
You do not ever need to tell the linker explicitly that you want to include
routines defined in this document. These routines are imbedded in the
LIBC_A library which is automatically included at the end of the link by
the LD linker. You must always, however have the statement
 #include <qdos.h>
in any program or module that makes use of the routines in this library.
It is worth noting that all the calls defined here also work on the SMS
family of operating systems. However in that case they traditionally have
alternative names. If you wish to find the functions listed and described
under their SMS names, then refer to the LIBSMS_DOC file.
REFERENCE MATERIAL
The reference books listed below were used in preparing material for
inclusion in this library:
"QL Technical Guide" by David Karlin and Tony Tebby
"QL Advanced User Guide" by Adrian Dickens
"QDOS Reference Manual" as published by Jochen Merz

int c_extop (chanid_t channel, timeout_t timeout,
int (*func), int number_of_params, ...)
This routine allows a routine to be called to do an extended operation on a
QDOS channel. The parameters are passed in a way that is compatible with
this routine being written in C (c.f. sd_extop()/iow_xtop() for assembler
only routines).
The C routine will be called in supervisor mode, with the parameters
specified by ... above passed to it on the stack. Each parameter is assumed
to be no larger than 4 bytes in size (i.e. no structures are to be passed
on the stack). Note also that due to a bug in QDOS, it seems to hang if the
routine does not return zero in D0. Therefore, if it is desired to pass an
error code back to the application program it must be done indirectly via
one of the parameters.

char *cn_date(char *asciidate, time_t qldate)
Converts a date from internal QL format into an ASCII string in the format
"YYYY mmm dd hh:mm:ss". The asciidate parameter must point to a buffer of
at least 25 characters in length to hold the return data. The buffer
returned is in QL string format - which is a 2 byte length field, followed
by the data (NULL terminated for convenience to C programmers). The return
value is the address of the start of the text.
Note that if you intend to access the length field of the buffer you MUST
ensure that it starts on an even address - preferably by defining it using
the QLSTR_DEF macro to define the buffer.

char *void cn_day(char *asciiday, time_t qldate)
Returns the 3 character day of the week given a date in QL internal format.
The asciidate parameter must point to a buffer of at least 7 characters in
length to hold the return data. The buffer returned is in QL string format
- which is a 2 byte length field, followed by the data (NULL terminated for
convenience to C programmers). The return value is the address of the start
of the text.
Note that if you intend to access the length field of the buffer you MUST
ensure that it starts on an even address - preferably by defining it using
the QLSTR_DEF macro to define the buffer.

void cn_ftod (char * target, char * value)
Routine to convert a QDOS floating point value into a decimal character
ASCII string.

void cn_itobb (char * target, char * value)
Routine to convert a byte into a 8 character ASCII string of binary.

void cn_itobl (char * target, long * value)
Routine to convert a long integer into a 32 character ASCII string of
binary.

void cn_itobw (char * target, short * value)
Routine to convert a short integer (word) into a 16 character ASCII string
of binary.

void cn_itod (char * target, short * value)
Routine to convert a short integer into a decimal ASCII string.

void cn_itohb (char * target, char * value)
Routine to convert a byte into a 2 character ASCII hex string.

void cn_itohl (char * target, long * value)
Routine to convert a long integer into a 8 character ASCII hex string.

void cn_itohw (char * target, short * value)
Routine to convert a short integer (word) into a 4 character ASCII hex
string.

int fs_check(chanid_t channel, timeout_t timeout)
QDOS routine to check for pending operations on a file. Returns 0 if
operations have completed, QDOS error code (typically -1 for Not complete)
if they haven't.

int fs_date(chanid_t chan, timeout_t timeout, int type,
 long * sr_date)
type = 0 Access update date of file,
 = 2 Access backup date.
*sr_date = -1 Read requested date (returned from call in *sr_date)
 = 0 Set requested date to current date.
else Set requested date to date given in *sr_date.
Read/Set update or backup dates. Available on Miracle Systems hard disk,
ST/QL sytems and SMS systems. The date set/read is returned in *sr_date.
Returns QDOS error code.
--
int fs_flush(chanid_t channel, timeout_t timeout)

int fs_flush(chanid_t channel, timeout_t timeout)
QDOS routine to flush all buffers on a file. Returns QDOS error codes.

int fs_headr(chanid_t chan, timeout_t timeout,
 void * buf, short buflen)
QDOS routine to read a file header. Returns length read on success, QDOS
error code (which is negative) on failure.

int fs_heads(chanid_t chan, timeout_t timeout,
 void * buf, short buflen)
QDOS routine to save a file header. Returns length written on success, QDOS
error code (which is negative) on failure. You must have opened the file
with a mode that allows writing for this call to be successful.

long fs_load(chanid_t channel, char * buf,
 unsigned long len)
Routine to load a complete file. Returns length loaded on success, QDOS
error code (which is negative) on error.

int fs_mdinf(chanid_t chan, timeout_t timeout,char * medname,
 short * unused_secs, short * goodsecs)
Routine to get media information. Returns 10 character name of media (N.B.
not NULL terminated), number of unused_sectors, and number of good sectors.
Returns QDOS error code.

int fs_mkdir(chanid_t channel)
Make the file specified by the QDOS channel into a directory. Requires
support for Level 2 filing system (e.g. Miracle hard Disk, ST/QL or SMS
systems). Returns QDOS error code.

long fs_pos(chanid_t chan, long pos, int mode)
QDOS equivalent to C seek() routine to seek to a point in a file (no
timeout as it's always -1). The parameter 'mode' can have the following
values:
 0 absolute
 1 relative to current position
 2 relative to EOF.
Returns new position on success, and QDOS error code (which is negative) on
failure.

long fs_posab(chanid_t chan, timeout_t timeout,
 unsigned long * pos)
Routine to seek to an absolute point in a file. The new file position is
returned via the 'pos' parameter. Returns QDOS error code.

long fs_posre(chanid_t chan, timeout_t timeout, long * pos)
Routine to seek to a point in a file relative to the current position. The
new file position is returned via the 'pos' parameter. Returns QDOS error
code.

int fs_rename(char * old, char * new)
Routine to rename a file. Uses C strings. Calls toolkit 2 routine. Returns
QDOS error code.

int fs_save(chanid_t channel, char * buf, unsigned long len)
Routine to save a complete file to a channel. Returns length saved on
success, QDOS error code (which is negative) on failure.

int fs_trunc(chanid_t channel, timeout_t timeout)
Routine to truncate a file at the current byte position. This call may not
be available on very basic QL systems (unless Toolkit 2 present) but all
other types of system can be expected to support it. Returns QDOS error
code.

int fs_vers(chanid_t channel, timeout_t timeout, long * key)
Set/Read a file version number. Only available on systems that support
version2 filing systems (such as Miracle hard disk, ST/QL and SMS systems).
The action is defined as follows:
*key = -1 Return version number in *key.

*key = -1 Return version number in *key.
 = 0 Keep old version number when file closed (return it on *key)
+ve and < 65536 Set version number to given number.
Returns QDOS error code.

int fs_xinf(chanid_t channel, timeout_t timeout,
 struct ext_mdinf * fsinf)
Get extended file system info. Only available on systems that support
version2 filing system (such as Miracle hard disk, ST/QL and SMS systems).
Requested data is returned in struct ext_mdinf (defined in qdos.h) on
success. Returns QDOS error code

int io_close (chanid_t channel)
Closes a channel. Returns QDOS error code.

int io_delete(char *name)
Routine to delete a file. Uses C strings. Returns QDOS error code.

int io_edlin(chanid_t channel, timeout_t timeout,
 char **cptr, int bufsize,
 int current_offset, int *current_linelen);
Routine to do edited line read call. Returns QDOS error code.

int io_fbyte(chanid_t channel, timeout_t timeout,
 char *char_pointer)
Routine to read 1 byte. Returns QDOS error code.

int io_fdate(lchanid_t chan, timeout_t timeout, int type,
 unsigned long *sr_date)
Obsolete form - should now use fs_date() (or even better, the SMS name
iof_date())instead.
--
int io_fline(chanid_t channel, timeout_t timeout,
 void *buf, short length)
Routine to read a linefeed terminated string of bytes. Returns length read
on success, QDOS error code (which is negative) on failure.

int io_format(char *device, short *totsecs, short *goodsecs)
Routine to format a medium, uses C string name. Returns total and good
sector count. Returns QDOS error code.

int io_fstrg(chanid_t channel, timeout_t timeout,
 void *buf, short length)
Routine to fetch a string of bytes. Returns length read on success, or QDOS
error code (which is negative) on failure. The amount read can be less than
the amount requested. This would normally caused by an end-of-file or
timeout condition occurring during the read.

int io_fvers(chanid_t channel, timeout_t timeout, long *key)
Obsolete form - should now use fs_vers() instead.

int io_fxinf(chanid_t channel, timeout_t timeout,
 struct ext_mdinf *fsinf)
Obsolete form - should now use fs_xinf() instead.

int io_mkdir(chanid_t channel)
Obsolete form - should now use fs_mkdir() instead.

chanid_t io_open(char *name, int mode)
Routine to open a file. Uses C strings. Returns channel id or QDOS error
code (which is negative).

int io_pend(chanid_t chan, timeout_t timeout)
Routine to test for any pending input on a channel, returns 0 if data is to
be read, else -1 (not complete).

int io_qeof(char * queue_pointer)
Insert and EOF (end-of-file) marker into a queue. Returns QDOS error code
(if any).

int io_qin (char * queue_pointer, int byte_to_insert)
QDOS routine to insert a byte in a queue. Returns the QDOS error code (if
any).

int io_qout (char * queue_pointer, char * next_byte)
Remove a byte from a queue. Returns the QDOS error code (if any).

void io_qset(char * queue_pointer, long queue_length)
Routine to set up a queue.

int io_qtest(char * queue_pointer, char * next_byte,
 long * free_space)
Test the status of a queue. The variables whose addresses are passed as
parameters are updated to the free space in the queue, and (if there is
data in the queue) the value of the next byte is returned (although the
byte is not removed from the queue). The QDOS error code is returned.

int io_rename(char *old, char *new)
Obsolete form - should now use fs_rename() instead.

int io_sbyte(long chan, timeout_t timeout, unsigned char ch)
Routine to output char ch to channel. Returns QDOS error code.

int io_serio(chanid_t channel_id, timeout_t timeout,
 int routine_number, long * D1, long * D2,
 char ** A1, char * routine_array[4])
General serial IO handling routine. This routine is used when the io_serq()
routine is not sufficient. The values passed as the parameters 'D1', 'D2'
and 'A1' are pointers to the values to be put into the registers D1, D2 and
A1 respectively. These values may be changed by this routine. The
'routine_array' is an array of at least 4 elements, the first three of
which contain the addresses of the routines for testing pending input,
fetching a byte and sending a byte. The fourth element will be used as
workspace, and thus corrupted by this call.

int io_serq (chanid_t channel_id, timetout_t timeout,
 int routine_number, long * D1, long * D2,
 char ** A1)
Serial IO Direct Queue handling routine. The values passed as the
parameters 'D1', 'D2' and 'A1' are pointers to the values to be put into
the registers D1, D2 and A1 respectively. These values may be changed by
this routine.

int io_sstrg(chanid_t channel, timeout_t timeout,
 void *buf, short length)
Routine to write a string of bytes. Returns length written on success, and
a QDOS error code (which is negative) on failure. The amount written can be
less than the amount requested. This would normally be caused by a timeout
condition occuring during the write.

int io_trunc (chanid_t channel, timeout_t timeout)
Obsolete form - should now use fs_trunc() instead.

int iop_outl (chanid_t channel, timeout_t timeout,
 short, short, short, void *)
This is the call that sets the outline window for a Pointer Environment. It
is included in this library as it is the one call that need to be issued to
make a program that is not otherwise aware of the pointer environment
function correctly in that environment.
For more details refer to the LIBQPTR_DOC file provided as part of the QPTR
library.
Note that the default console initialisation routines supplied with C68
will automatically issue a call to set the window outline to the size as
defined in the '_condetails' global variable (for more information see

defined in the '_condetails' global variable (for more information see
LIBC68_DOC).

char * mm_alchp(long size, long *sizegot)
Routine to allocate memory from common heap. It is passed the requested
size and returns address of area allocated (or a QDOS error code on
failure). The area will always be allocated with the current job as the
owner. If you are not interested in the true size obtained, then set
'sizegot' to NULL. Otherwise set it to the address of a variable that will
be set to contain the actual size obtained (Note that even if the call
succeeds this may not be the same as the size requested, as the amount
requested is often rounded up by QDOS. It is recommended that you use
mt_alchp() in preference to mm_alchp() unless you are sure you know what
you are doing.
WARNING
The size requested must allow for the QDOS heap header, and the address
returned is the start of the area allocated - not the useable area. This is
in contrast to the mt_alchp() call for which the user does not have to
worry about the QDOS heap header.

char *mm_alloc(char **ptr, long *len)
QDOS routine to allocate a user area from an allocated area of common heap.
'ptr' is a pointer to a pointer to free space, len is the length requested
to put in the user heap, and returns as the length actually allocated.
Returns the address of the area allocated on success, and the QDOS error
code on failure.

void mm_lnkfr(char *area, char **ptr, long len)
QDOS routine to link an area back into a user heap area. Given area to link
in, pointer to pointer to free space, and length to link in. This call is
also used to set up a user heap.

void mm_rechp(char *area)
QDOS routine to free an area of common heap previously allocated via
mm_alchp() . Returns no errors. It always succeeds unless the parameter
points to an invalid address, in which case the machine nearly always
crashes!

void mt_aclck(long ql_time)
Routine to adjust the clock by ql_time seconds.

int mt_activ(long jobid, unsigned char priority,
 timeout_t timeout)
Routine to start a activate a job with a given priority. There are two
valid values for the timeout, 0 and -1. Execution of the current job will
continue if the timeout is set to zero, and the QDOS error code for this
call returned. If the timeout is -1 then the current job is suspended until
the activated Job has finished. This call will then return the error code
from that Job.

char * mt_alchp(long size, long * sizegot, long jobid)
Routine to allocate memory from common heap. Is passed requested size, plus
job id which is to own the heap. Returns address of area allocated, or a
QDOS error code on failure.
Note that even if the call succeeds the amount of memory actually allocated
will not be the same as the size requested, as the amount requested is
rounded up to the nearest 16 bytes and then the length of the common heap
header is added on to it. If you are not interested in the true size
obtained, then set 'sizegot' to NULL. Otherwise set it to the address of a
variable that will be set to contain the actual size obtained.

void * mt_alloc(char **ptr, long *len)
Routine to allocate a user area from an allocated area of common heap.
'ptr' is a pointer to a pointer to free space, len is the length requested
to put in the user heap, and returns as the length actually allocated.
Returns the address of the area allocated on success, and the QDOS error
code on failure.

void * mt_alres(long size)
Routine to allocate memory from resident procedure area. Returns address of
area allocated, or a QDOS error code on failure. On standard QDOS systems
this call will always fail if called while any program except SuperBasic is
executing. Most later sysems and those fitted with Minerva ROMs do not

executing. Most later sysems and those fitted with Minerva ROMs do not
suffer from this limitation.

void mt_baud(int rate)
Routine to set the baud rate for both serial ports.

jobid_t mt_cjob(long codespace, long dataspace,
 char *start_address, jobid_t owner,
 char **job_address)
Routine to create another job in the transient program area, given size of
new jobs code, data the start address of the new job, and its owner.
Returns either positive job id of new job, or QDOS error code. Also returns
address of newly created job in last parameter.

void mt_dmode(short *s_mode, short *d_type)
Routine to set/read display mode.
 *s_mode = 4 for mode 4,
 = 8 for mode 8,
 = -1 for read
 *d_type = 0 for monitor mode,
 = 1 for TV mode,
 = -1 for read
Notes:

1. Other values are available for use in these parameters on Minerva
ssytems - refer to the Minerva documentation for details

2. There is a bug in some QL roms that corrupts the return d_type when it
is read.

long mt_free ()
Routine to find largest contiguous area available for loading a program.
This is normally also a good indicator of the total free memory in the
machine.

int mt_frjob(jobid_t jobid, int error_code)
Routine to force remove a job, giving an error code for it to return.
Returns QDOS error code (if we are not removing the current job).

jobid_t mt_inf(char **system_variables, long *version_code)
Routine to get the address of the system variables and the current
operating system version code. The version code is actually returned as 4
bytes in the form x.xx. Returns job id of current job.

int mt_ipcom(char *param_list)
Routine to send a command to the 8049 second processor. Uses INTEL byte
format (low byte first). Returns value returned by 8049.

int mt_jinf(jobid_t *jobid, jobid_t *topjob,
 long *job_priority, char **job_address)
Get information on a job within a job tree. Passed the jobid you want
information on and the current top of the job tree you are looking at (with
the first call set *topjob = *jobid). It is designed to be called
repeatedly without changing jobid and topjob until *jobid == 0. Returns:
 0 OK with
 'job_address' contains address of job
 'jobp' contains job priority in least significant byte, and if the job is
suspended the most significant byte is negative.
 'jobid' and 'topjob' are changed to those of the next job in the tree.
 -ve QDOS error code.

void mt_lnkfr(char *area, char **ptr, long len)
Routine to link an area back into a user heap area. Given area to link in,
pointer to pointer to free space, and length to link in. This call is also
used to set up a user heap.

void mt_lxint(QL_LINK_t * lnk)
Link in external interrupt handler

Link in external interrupt handler
void mt_rxint(QL_LINK_t * lnk)
Unlink external interrupt handler
void mt_lpoll(QL_LINK_t * lnk)
Link in polled task handler
void mt_rpoll(QL_LINK_t * lnk)
Unlink polled task handler
void mt_lschd(QL_LINK_t * lnk)
Link in scheduler list handler
void mt_rschd(QL_LINK_t * lnk)
Unlink scheduler list handler
void mt_liod(QLD_LINK_t * lnk)
Link in simple I/O device handler
void mt_riod(QLD_LINK_t * lnk)
Unlink simple I/O device handler
void mt_ldd(QLDDEV_LINK_t * lnk)
Link in directory I/O device handler
void mt_rdd(QLDDEV_LINK_t * lnk)
Unlink directory I/O device handler
The QL_LINK_t, QLD_LINK_t and QLDDEV_LINK_t structures are defined in
sys/qlib.h

int mt_prior(long jobid, int new_priority)
Routine to set the priority of a job. Sets current jobs priority if jobid =
-1. Returns old priority of this job or a QDOS error code.

long mt_rclck()
Routine to read clock. Returns time in seconds from Jan 1 1961.

void mt_rechp(char *area)
Routine to free an area of common heap previously allocated. Returns no
errors.
WARNING The way this call is implemented in QDOS and SMS is such that it
either succesds or crashes the sytem if given an invalid area address. Do
not therefore try and call it twice for the same area or call it for an
area not allocated vi mt_alchp() call.

JOBHEADER_t * mt_reljb(jobId_t jobid)
Routine to release a suspended job, sets _oserr, returns address of job
header (the JOBHEADER_t structure is defined in sys/qlib.h) or QDOS error
code.

int mt_reres(char *area)
Routine to free an area of the resident procedure area previously
allocated. Returns QDOS error code. On QDO systems, will always fail if
called when aby program except SuperBasic is running.

int mt_rjob(jobid_t jobid, int error_code)
Routine to remove a suspended job, giving an error code for it to return.
Returns QDOS error code.

void mt_sclck(long ql_time)
Routine to set the clock.

int mt_shrink(char *block, long newsize)
Routine to shrink an area of QDOS allocated common heap. This is used when
you have grabbed an area of common heap and realise you do not need all of
it. Rather than freeing all of it then re-allocating (by which time another
job may have grabbed the space) you can use this call to release the top
part of it that you do not need. newsize MUST be less than the size
originally allocated or this call can fail badly, after the call the
allocated block will be only newsize bytes long (not including common heap
header), the higher portion of it will have been given back to QDOS and
placed on the free list. Returns a QDOS error code.

int mt_susjb(jobid_t jobid, int number, char *zero)
Routine to suspend a job for a number of 50Hz (or 60Hz if an American QL)
clock ticks. char *zero is an address of a byte to set to zero on release

clock ticks. char *zero is an address of a byte to set to zero on release
of the job if required. If this is not required pass NULL in place of 'char
*zero'. If number = -1 then the job is suspended indefinitely. Returns a
QDOS error code.

int mt_trans (char * trans_table, char * msg_table)
Routine to set the translate table and message table. This routine will not
work on QL systems with ROMS that are of version JS or earlier. Returns
QDOS error code.

int mt_trapv(QLVECTABLE_t * table, long jobid)
Routine to change the exception vector table for a particular job. The
QLVECTABLE_t structure is defined in sys/qlib.h Returns QDOS error code.

int sd_arc(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end, double angle)
Routine to draw an arc using graphics coordinates. sd_arc uses C double
precision floating point coordinates (cf. sd_iarc). Returns QDOS error
code.

int sd_bordr(chanid_t channel, timeout_t timeout,
 unsigned char colour, short width)
Routine to redifine a window border with new colour and width. Returns QDOS
error codes.

int sd_chenq(chanid_t channel, timeout_t, QLRECT_t *rect)
Routine to read a window size in characters. On success 'rect' is set to
details of answer. Returns QDOS error code.

int sd_clear(chanid_t channel, timeout_t timeout)
Routine to clear entire window. Returns QDOS error code

int sd_clrbt(chanid_t channel, timeout_t timeout)
Routine to clear area of window below cursor line. Returns QDOS error code.

int sd_clrln(chanid_t channel, timeout_t timeout)
Routine to clear all of cursor line. Returns QDOS error code.

int sd_clrrt(chanid_t channel, timeout_t timeout)
Routine to clear cursor line, to right of cursor position (including
cursor). Returns QDOS error code.

int sd_clrtp(chanid_t channel, timeout_t timeout)
Routine to clear area of window above cursor line. Returns QDOS error code.

int sd_cure(chanid_t chan, timeout_t timeout)
Routine to enables cursor on screen channel. Returns QDOS error code.

int sd_curs(chanid_t chan, timeout_t timeout)
Routine to suppress cursor on screen channel. Returns QDOS error code.

int sd_donl(chanid_t channel, timeout_t timeout)
Routine to flush any pending newlines on a window channel. Returns QDOS
error code.

int sd_elipse(chanid_t channel, timeout_t timeout,
 double x_centre, double y_centre,
 double eccentricity, double radius,
 double angle_of_rotation)
Routine to draw a circle or ellipse using graphics coordinates. sd_elipse
uses C double precision floating point coordinates (cf. sd_ielipse).
Returns QDOS error code.

int sd_extop(chanid_t channel,timeout_t timeout,int (*rtn)(),
 long paramd1, long paramd2, void *parama1)
Routine to do extended operation on screen channel. Passed address of

Routine to do extended operation on screen channel. Passed address of
routine to call and parameters for d1, d2 and a1. Returns QDOS error code.
See also c_extop().
NOTE. Due to a bug in QDOS, it appears that D0 must always be zero on
exiting the rtn() function. Any error code therefore needs to be passed
back indirectly via one of the other parameters.

int sd_fill(chanid_t channel, timeout_t timeout,
 colour_t colour, QLRECT_t * rect)
Routine to plot a rectangular block of a certain colour. Can be used to
draw very fast horizontal and vertical lines. Returns QDOS error code.

int sd_flood(chanid_t channel, timeout_t timeout, int onoff)
Routine to set flood fill mode on or off. Returns QDOS error code.

int sd_fount(chanid_t channel, timeout_t timeout,
 char *font1, char *font2)
Routine to set normal and alternative character font in a window. Passed
pointers to two font definitions (format as described in QDOS manuals).
Returns QDOS error code.

int sd_gcur(chanid_t channel, timeout_t timeout,
 double vert_offset, double horiz_offset,
 double x_pos, double y_pos)
Routine to set the graphics text cursor. sd_gcur uses C double precision
floating point coordinates (cf. sd_igcur). Returns QDOS error code.

int sd_iarc(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end, double angle)
Routines to draw an arc using graphics coordinates. sd_iarc takes integer
coordinates (c.f. sd_arc) Returns QDOS error code.

int sd_ielipse(chanid_t channel, timeout_t timeout,
 int x_centre, int y_centre, int eccentricity, int radius, int
angle_of_rotation)
Routine to draw a circle or ellipse using graphics coordinates. sd_ielipse
uses integer coordinates (cf. sd_elipse). Returns QDOS error code.

int sd_igcur(chanid_t channel, timeout_t timeout,
 int vert_offset, int horiz_offset,
 int x_pos, int y_pos)
Routine to set the graphics text cursor. sd_igcur uses integer coordinates
(cf. sd_gcur). Returns QDOS error code.

int sd_iline(chanid_t channel, timeout_t timeout,
 int x_start,int y_start, int x_end, int y_end)
Routine to draw a line with graphics coordinates. sd_iline takes integer
coordinates (cf. sd_line). Returns QDOS error code.

int sd_ipoint(chanid_t channel, timeout_t timeout,
 int x, int y)
Routine to plot a point using graphics coordinates. sd_ipoint takes integer
coordinates (cf. sd_point). Returns QDOS error code.

int sd_iscale(chanid_t channel, timeout_t timeout,
 int scale, int x_origin, int y_origin)
Routine to change a windows graphics origin and scale. sd_iscale uses
integer coordinates (cf. sd_scale). Returns QDOS error code.

int sd_line(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end)
Routine to draw a line with graphics coordinates. sd_line uses C double
precision floating point coordinates (cf. sd_iline). Returns QDOS error
code. ---
int sd_ncol(chanid_t channel, timeout_t timeout)
Routine to move cursor right one column. Returns QDOS error code.

Routine to move cursor right one column. Returns QDOS error code.

int sd_nl(chanid_t channel, timeout_t timeout)
Routine to move the cursor to start of next line. Returns QDOS error code.

int sd_nrow(chanid_t channel, timeout_t timeout)
Routine to move cursor down one row. Returns QDOS error code.

int sd_pan(chanid_t channel, timeout_t timeout, int ampix)
Routine to pan window left or right. ampix < 0 means pan left, ampix > 0
means pan right. Returns QDOS error code.

int sd_panln(chanid_t channel,timeout_t timeout, int ampix)
Routine to pan cursor line left or right. ampix < 0 means pan left, ampix >
0 means pan right. Returns QDOS error code.

int sd_panrt(chanid_t channel,timeout_t timeout, int ampix)
Routine to pan right of cursor line left or right (includes character at
cursor position). ampix < 0 means pan left, ampix > 0 means pan right.
Returns QDOS errors code.

int sd_pcol(chanid_t channel, timeout_t timeout)
Routine to move cursor left one column. Returns QDOS error code.

int sd_pixp(chanid_t channel, timeout_t timeout,
 short x_pos, short y_pos)
Routine to reposition the cursor to an x, y pixel position in a window.
Returns QDOS error code.

int sd_point(chanid_t channel, timeout_t timeout,
 double x, double y)
Routine to plot a point using graphics coordinates. sd_point takes C double
precision floating point coordinates (cf. sd_ipoint). Returns QDOS error
code.

int sd_pos(chanid_t channel, timeout_t timeout,
 short x_pos, short y_pos)
Routine to reposition the cursor to an x, y character position in a window.
Returns QDOS error code.

int sd_prow(chanid_t channel, timeout_t timeout)
Routine to move cursor up one row. Returns QDOS error code.

int sd_pxenq(chanid_t channel, timeout_t timeout,
 QLRECT_t * rect)
Routine to read a window size in pixels. Returns size in the QLRECT_t
structure (defined in sys/qlib.h). Returns QDOS error code.

int sd_recol(chanid_t channel, timeout_t timeout,
 char *colourlist)
Routine to recolour a window. Done in software and very slow. colourlist
points to eight characters containing new colours for eight possible QL
colours. Returns QDOS error code.

int sd_scale(chanid_t channel, timeout_t timeout,
 double scale,double x_origin, double y_origin)
Routine to change a window's graphics origin and scale. sd_scale uses C
double precision floating point coordinates (cf. sd_iscale). Returns QDOS
error code.

int sd_scrbt(chanid_t channel,timeout_t timeout, int ampix)
Routine to scroll window below cursor line up or down. ampix < 0 means
scroll down, ampix > 0 means scroll up. Returns QDOS error code.
--
int sd_scrol(chanid_t channel,timeout_t timeout, int ampix)
Routine to scroll entire window up or down. ampix < 0 means scroll down,
ampix > 0 means scroll up. Returns QDOS error code.

ampix > 0 means scroll up. Returns QDOS error code.

int sd_scrtp(chanid_t channel,timeout_t timeout, int ampix)
Routine to scroll window above cursor line up or down.
ampix < 0 means scroll down, ampix > 0 means scroll up. Returns QDOS error
code.

int sd_setfl(long chan, timeout_t timeout, int onoff)
Routine to set flash mode on or off (only works in 8 colour mode). Returns
QDOS error code.

int sd_setin(long chan, timeout_t timeout, int colour)
Routine to set ink colour. Colour value (0-7) dependent on mode. Returns
QDOS error code.

int sd_setmd(chanid_t channel, timeout_t timeout, int mode)
Routine to set type of drawing mode (DM_XOR, DM_OVER, DM_OR). Returns QDOS
error code.

int sd_setpa(long chan, timeout_t timeout, int colour)
Routine to set paper colour. Colour value (0-7) dependent on mode. Returns
QDOS errors code. Colours defined in qdos.h

int sd_setst(long chan, timeout_t timeout, int colour)
Routine to set strip colour. Colour value (0-7) dependent on mode. Returns
QDOS error code.

int sd_setsz(chanid_t channel, timeout_t timeout,
 short c_width, short c_height)
Routine to set character width and height in a window. Possible widths are:
 0 = 6 pixels wide,
 1 = 8 pixels wide,
 2 = 12 pixels wide,
 3 = 16 pixels wide
Possible height are:
 0 = 10 pixels high,
 1 = 20 pixels high.
Returns QDOS error code.

int sd_setul(chanid_t chan, timeout_t timeout, int onoff)
Routine to set underline mode for characters on or off.
Returns QDOS error code.

int sd_tab(chanid_t channel, timeout_t timeout, int pos)
Routine to move to a column position (pos) on a line. Returns QDOS error
code.

int sd_wdef(chanid_t channel, timeout_t timeout,
 colour_t b_colour, short b_width,
 QLRECT_t *rect)
Routine to redefine the poistion and shape of a window. The old window
contents are not moved or modified, but the cursor is positioned at the top
left hand corner of the new window. The values for border colour and border
width are passed explicitly as parametsr. The new position and size for the
window are passed as a pointer to a QLRECT_t structure whose members define
the origin, height and width.
Returns QDOS error code.

int sms_fthg (char * thing_name, jobid_t jobid, long * d2,
 long d3, char * a1, char **a2)
Free the named 'thing'. Available as standard with SMS systems, and on QDOS
compatible systems with THING support code loaded. Returns the QDOS error
code. The parameters d2, d3, a1 and a2 are used to pass extra parameters as
defined in the definition of the 'thing' that is being freed. Note also
that the d2 and a2 parameters are pointers to these values as new values
can be passed back from the 'thing' being freed. The d3 and a1 parameters
are not changed, so pointers are not used for these parameters.

int sms_lthg (THING_LINKAGE * thing_linkage)
Routine to link in a new Thing. Available as standard with SMS, and on QDOS
compatible systems with THING support code loaded. The structure
THING_LINKAGE is defined if you include the qdos.h or sms.h header files.

int sms_nthg (char * thing_name, THING_LINKAGE **next_thing)
Routine to find next Thing. Available as standard with SMS, and on QDOS
compatible systems with THING support code loaded. The 'thing_name'
parameter is a C style NULL terminated string. The 'next_thing' parameter
is used to return the Thing Linkage block for the next Thing, or 0 if no
further Thing exists. The THING_LINKAGE structure is defined in the sms.h
header file. Returns SMS error code.

int sms_nthu (char *name, THING_LINKAGE ** thing_linkage,
 jobid_t * owner_job)
SMS routine to get the owner of a job, and the next linkage block. If the
pointer pointed to by thing_linkage is 0, then this the value returned in
'owner_job' is undefined, and this routine functions like the sms_nthg()
routine.
defined in sms.h

int sms_rthg (char * thing_name)
SMS routine to remove a Thing if it is not in use. The 'thing_name'
parameter is a C style (NULL terminated) string.
defined in sms.h

char * sms_uthg (char * thing_name, jobid_t job_id,
 timeout_t timeout, long *d2, char *a2,
 long *version, THING_LINKAGE **linkage)
SMS routine to use a Thing. The name is passed in C (NULL terminated)
format. The version is returned in the 'version' parameter. The additional
values passed/returned in the 'd2' and passed in the 'a2' parameters are
dependent upon the definition of the THING being used. The 'linkage'
parameter is used to get back the Thing linkage address on a successful
call. If an error occurs, then the error code (which is negative) is
returned. If successful, the address of the Thing is returned, and a
pointer to its linkage in the 'linkage' parameter. The THING_LINKAGE
structure is defined in the sms.h header file.
Defined in sms.h

int sms_zthg (char * thing_name)
Zap a thing. The name is supplied in C (NULL terminated) format. Returns
SMS Error code.
Defined in sms.h

chanid_t ut_con(WINDOWDEF_t * wdef)
Simplified routine to open a console window The WINDOWDEF_t structure is
defined in sys/qlib.h. Returns QDOS channel id on success, and QDOS error
code (which is negative) on failure.

int ut_cstr (const QLSTR_t * string1,
 const QLSTR_t * string2, int mode)
Compare two QDOS strings. The QLSTR_t strucutre is defined in sys/qlib_h.
The type of comparison is determined by mode as follows:
 0 Compare on a character by character basis. Case is significant
 1 As type 0, but ignore case
 2 Embedded numbers are converted to binary before comparison. Textcharacters are case significant.
 3 As type 2, but case is ignored.
The order of comparison uses the QDOS defined collating sequence (which is
not the same as the ASCII values of the characters). The value returned is
0 if the strings match, -1 if 'string1' is less than 'string2', and +1 if
'string1' is greater than 'string2'.

void ut_err(int qdoserror, chanid_t channel)
Write the message corresponding to the error code to the specified channel.

void ut_err0 (int qdoserror)
Write the message corresponding to the QDOS error code to channel 0.

Write the message corresponding to the QDOS error code to channel 0.

void ut_link (char *previous_item, char * nextitem)
Link an item into a linked list.

int ut_mint(chanid_t channel, int value)
Convert a value to ASCII and send it to the specified
channel. Returns QDOS error code (if any).

int ut_mtext(chanid_t, QLSTR * message)
Send a message to a specified channel. Returns QDOS error code (if any).

chanid_t ut_scr (WINDOWDEF_t * windef)
Simplified routine to open a screen window. The WINDOWDEF_t structure is
defined in sys/qlib.h. Returns channel on success, QDOS errror code (which
is negative) on failure.

void ut_unlnk (char *previous_item, char * old_item)
Unlink an item from a linked list.

chanid_t ut_window (char *name, char *details)
Simplified routine to open a window. the 'name' parameter is a C type
string that specifies the type and dimensions. The details parameter
specifies the border details and the paper/ink colours. Returns the QDOS
channel id on success and a QDOS error code (which is negative) on failure.
--
MANIFEST CONSTANTS
There following manifest constants are defined in QODS.H for the error
codes returned by QDOS.
 Constant Meaning
 ERR_OK NO error occured
 ERR_BL Bad line in BASIC
 ERR_BN Bad device name
 ERR_BO Buffer overflow
 ERR_BP Bad parameter
 ERR_DF Drive full
 ERR_EF End of file
 ERR_EX File already exists
 ERR_FE File error
 ERR_FF Format failed
 ERR_IU File or device in use
 ERR_NC Operation not complete
 ERR_NF File or device not found
 ERR_NI Not implemented
 ERR_NJ Not a valid job
 ERR_NO Channel not open
 ERR_OM Out of memory
 ERR_OR Out of range
 ERR_OV Arithmetic overflow
 ERR_RO Read only
 ERR_RW Read or Write Failed
 ERR_TE Transmission error
 ERR_XP Error in expression
CHANGE HISTORY

 20 Jun 93
 Added descriptions for the Queue Handling routines io_qeof(),
io_qin(), io_qout(), io_qset(), io_qtest(), io_serq(),
io_serio().

 10 Jul 93
 Description of the majority of the trap calls amended to
remove the statement that they set the _oserr global variable
(where this is no longer true).

 08 Sep 93 Added c_extop() call (based on a contribution by PROGS ofBelgium).
 31 Dec 93 Documented the iop_outl() call.

 24 Jan 94

 Reworked this document to only include the direct calls to
QDOS. Direct calls under SMS names are now documented in
LIBSMS_DOC, and all more generic alls on LIBC68_DOC.
Added the names of the standard QDOS error codes as manifest
constants.

constants.

 10 Jun 94
 The cross-reference list of the routines by function removed
from this document. All such lists are now consolidated into
the LIBINDEX_DOC file.

Pointer Environment Library
INTRODUCTION
The libqptr library is designed to allow you to write programs that exploit
the Pointer Environment. The Pointer Environment is built into SMS2
systems, but need to be explicitly loaded for systems running standard QDOS
or SMSQ.
You should bear in mind that the Pointer Environment is very specific to
the QDOS, SMSQ and SMS2 fmaily of operating systems. If you use these
facilities it will not be easy (or sometime not even possible) to port such
programs to other operating environments. You should bear this fact in mind
when you decide to use the routines in the libqptr library.
You do not ever need to tell the linker explicitly that you want to include
routines from the libqptr library. The routines defined as being in the
libqptr library are imbedded in the LIBC_A library which is automatically
included at the end of the link by the LD linker. You should always,
however have the statement
 #include <qptr.h>
in any program or module that makes use of the routines defined as being in
this library. If you do not you will get error messages from the linker
stating that the LIBQPTR routines are undefined.
TYPEDEF'ed STRUCTURES
To help you to produce readable code, all the structures used in the
LIBQPTR_A routines have been typedef'ed. The names of the typedef are
always constructed by adding '_t' to the structure name.
This means that instead of writing something like
 struct WM_wdef
you can use
 WM_wdef_t
which is slightly more readable, and also helps the compiler do stricter
type checking.
REFERENCE MATERIAL
The reference books listed below were used in preparing the material for
inclusion in this library:
"QPTR Pointer Environment" manual sold by Jochen Merz
LIBRARY CONTENTS
The routines in this library are split into the following sections:

Button Frame Utility Functions,
Window Manager Utility Functions (C68 compatible),
Window Manager Wrappers and Internal Routines (not callable from C68),
Pointer Interface Trap Wrappers.

BUTTON FRAME UTILITY FUNCTIONS

int bt_frame (chanid_t, WM_swdef_t *sw)
Using size and attributes from the sub-window definition sw, bt_frame
allocates a space in the button frame for the channel, sets the origin in
sw, sets border/paper/strip and, if specified, clears the window.

int bt_free (void)
Frees the button frame allocation.

int bt_prpos (WM_wwork_t *)
As wm_prpos but positions primary window in button frame. If successful,
the shadow width is set to zero. Returns QDOS/SMS error code.

POINTER INTERFACE CALLS
These routines allow C programs to call the Pointer Interface system calls.

int iop_flim (chanid_t, timeout_t, WM_wsiz_t * limits)
Find window limits. Values returned via the 'limits' parameter. Returns
standard QDOS/SMS error codes.

int iop_lblb (chanid_t, timeout_t, short xs, short ys,
 short xe, short ye, WM_blob_t *, WM_pattern_t *)
Draw a line of blobs from xs,ys to xe,ye. Returns standard QDOS/SMS error
codes.

int iop_outl (chanid_t, timeout_t, short shadx, short shady,
 short keep(0/1), WM_wsiz_t *)
Set outline. Keep = 1 to keep contents. Returns standard QDOS/SMS error
codes,

int iop_pick (chanid_t, timeout_t, jobid_t job_ID)
Pick windows for a Job to the top. Returns standard QDOS/SMS error codes.

void * iop_pinf (chanid_t, timeout_t, long *version)
Get Window Manager vector and version information. On success returns the
address of the Window Manager vector. On failure returns the QDOS/SMS error
code (which is negative).
N.B. Prior to Release 3 of the QPTR library, a value of 0 was returned on
error. This means that code that used that version might need slight
modification in its use of this call.

int iop_rptr (chanid_t, timeout_t, short *x, short *y,
 short termination_vector, WM_prec_t *)
Reads pointer and suspend until termination conditions (as specified in the
termination vector parameter) or timeout occurs. Returns QDOS/SMS error
code.
N.B. Prior to Release 3 of the QPTR library, the x and y parameters were
treated as though they pointed to 'int' rather than 'short' values as the
specification said. This means that code that used that version might need
slight modification in its use of this call.

int iop_rpxl (chanid_t, timeout_t, short *x, short *y,
 short scan, short *pixel)
Read pixel. Returns QDOS/SMS error code.
N.B. Prior to Release 3 of the QPTR library, the x and y parameters were
treated as though they pointed to 'int' rather than 'short' values as the
specification said. This means that code that used that version might need
slight modification in its use of this call.

int iop_rspw (chanid_t, timeout_t, WM_wsiz_t *save,
 short xorg, short yorg,
 int keepflag, void *save_area)
Restore partial window. Returns QDOS/SMS error code.

void * iop_slnk (chanid_t, timeout_t, void * values,
 short start, short count)
Set pointer linkage. On success returns the base address of the linkage. On
failure returns a QDOS/SMS error code (which is a negative value).

int iop_spry (chanid_t, timeout_t, short x, short y,
 WM_blob_t *, WM_pattern_t *, long num_pixels)
Spray pixels of pattern within blob. Returns QDOS/SMS error code.

int iop_sptr (chanid_t, timeout_t, short *x, short *y,
 char origin_key)
Set pointer absolute (origin=0), relative to hit area (origin=-1). Sets the
absolute pointer position in x,y.

int iop_svpw (chanid_t, timeout_t, WM_wsiz_t *,
 short xorg, short yorg, short xsize,
 short ysize, void **save_area)
Save partial window. If xsize and ysize are zero, then the area should
already exist. If they are non-zero then a new save area is set up and its
address stored at the location specified by the 'save_area' parameter.
Returns QDOS/SMS error code.

int iop_swdf (chanid_t, timeout_t, long *wdef_list)

int iop_swdf (chanid_t, timeout_t, long *wdef_list)
Sets window definition list. Returns QDOS/SMS error code.

int iop_wblb (chanid_t, timeout_t, short x, short y,
 WM_blob_t *, WM_pattern_t *)
Write blob. Returns QDOS/SMS error code.

int iop_wrst (chanid_t, timeout_t, void *save, char keep)
Restore window. If save==NULL, then do it form internal area, otherwise use
area supplied by user. If keep!=0 then keep save area. Returns QDOS/SMS
error code.

int iop_wsav (chanid_t, timeout_t, void *save, long length)
Save window area. If save==NULL and length==0, then the area is allocated
internally. If not, area supplied by user is used. Returns QDOS/SMS error
code.

int iop_wspt (chanid_t, timeout_t, short x, short y,
 WM_sprite_t *)
Write sprite. Returns QDOS/SMS error code.

WINDOW MANAGER FUNCTIONS (C68 compatible)
These are C equivalents to the standard Window Manager calls available to
assembler programmers. More details can be found in the QPTR manual.

int wm_chwin (WM_wwork_t *, short *dx, short *dy)
Change window position (automatic) or size (returns the dx,dy of the
pointer). Returns QDOS/SMS error code on failure, 0 or a positive event
number if successful.

int wm_clbdr (WM_wwork_t *)
If there is a current item, it is cleared: useful before re-drawing menus.
Returns QDOS/SMS error code.
N.B. This is a C68 extension to the standard Window Manager set of vectors.

int wm_cluns (WM_wwork_t *)
Close channel and unset window. (Actually a call to wm_unset then the
channel is closed. Use it to get rid of pull-down windows. Returns QDOS/SMS
error code.
N.B. This is a C68 extension to the standard Window Manager set of vectors.

int wm_drbdr (WM_wwork_t *)
Draws a border using the current item definition in WM_wstat. Returns
QDOS/SMS error code.

int wm_ename (chanid_t, QD_text_t * name)
Edit name (QDOS string): writes out current name, puts cursor at end.
Returns QDOS/SMS error code.
C.f. wm_rname.

int wm_erstr (long error_code, QD_text_t * reply_string)
Converts the error code to a QDOS string. Returns the QDOS/SMS error code.

void * wm_findv (chanid_t channel)
Check that the Window Manager has been loaded, and if so get the Window
Manager Vector: Returns the vector or NULL if not found. It is not necesary
to use this call if you have already used the iop_pinf() call to check for
the presence of the Window Manager. This routine also stores the value of
the Window Manager vector internally for use by the other wm_xxxx calls so
that the user need not store the value.
N.B. This is a C68 extension to the standard Windows Manager set of
vectors.

short wm_fsize (short *xsize, short *ysize, WM_wdef_t *)
Given a target size and a window definition, this routine returns the
appropriate layout number and sets the size to the actual size. Returns
layout size (or QDOS/SMS error code if Window Manager Vector not known).
C.f wm_setup.

C.f wm_setup.

int wm_idraw (WM_wwork_t *, long bits)
Re-draws any of information windows 0-31. For each window required to be
drawn, the corresponding bit in bits should be set. Returns QDOS/SMS error
code.

int wm_index (WM_wwork_t *, WM_swdef_t *)
Draws the index (not implemented), pan and scroll bars for an
application sub-window.
--
int wm_ldraw (WM_wwork_t *, char select)
Loose menu Item Drawing. Returns QDOS/SMS error codes.

int wm_mdraw (WM_wwork_t *, WM_swdef_t *, int select)
Draws all menu items (select =0) or those items with change bit set in
status area (select<>0).

int wm_mhit (WM_wwork_t *, WM_appw_t *, short x, short y,
 short key, short event)
C68 compatible wrapper for wm.mhit. Can be called from application sub-
window hit routine.
C.f. wm__mhit.

short wm_msect (WM_wwork_t *, WM_appw_t *, short xpos,
 short ypos, short key, short event, WM_mctrl_t *)
Called from an application sub-window hit routine, wm_msect determines the
section of a menu and whether a pan or scroll event has occurred. The
general information is returned in the structure WM_mctrl. If there has
been an pan/scroll event, this is returned (+ve) otherwise wm_msect returns
0 or a QDOS/SMS error code.

int wm_pansc (WM_wwork_t *, WM_appw_t *, WM_mctrl_t *)
If wm_msect returns a pan or scroll event: this routine can handle it.

int wm_prpos (WM_wwork_t *, short xpos, short ypos)
Position Primary Window. Returns QDOS/SMS error code.

int wm_pulld (WM_wwork_t *, short xpos, short ypos)
Pull down a secondary window. Retruns QDOS/SMS error code.

int wm_rname (chanid_t, QD_text_t *)
Read name (QDOS string): writes out current name, puts cursor at start.
Typing any printable character erases name. Returns QDOS/SMS error code.
C.f. wm_ename.

int wm_rptr (WM_wwork_t *)
Returns QDOS/SMS error code.

int wm_setup (chanid_t, short xsize, short ysize, WM_wdef_t *,
 WM_wstat_t *, WM_wwork_t **, long alloc)
If the alloc size is non-zero, then a new Working Defintion area of this
size will be allocated on the common heap. If it is zero, then it is
assumed that the area is already allocated.
Returns QDOS/SMS error code (if Window Manager Vector cannot be located).

int wm_smenu (short xscale, short yscale, WM_wstat_t *,
 WM_wdef_t **, WM_wwork_t **)
Setup standard sub-window menu. Returns QDOS/SMS error code if unable to
find Window Manager.

int wm_stiob (WM_wwork_t *, void *object,
 short window nr, short object number)
Set information object. Returns QDOS/SMS error code.

int wm_stlob (WM_wwork_t *, void *; short item number)

int wm_stlob (WM_wwork_t *, void *; short item number)
Set loose object. Returns QDOS/SMS error code.

chanid_t wm_swapp (WM_wwork_t *, short window nr, long ink)
Set window to application window. Returns channel ID or QDOS/SMS error
code.

chanid_t wm_swdef (WM_wwork_t *, WM_appw_t *, chanid_t channel)
Set channel to application sub-window. Does not set colours. Returns
Channel ID or QDOS/SMS error code.

chanid_t wm_swinf (WM_wwork_t *, short window nr, long ink)
Set window to information window. Returns channel ID or QDOS/SMS error
code.

chanid_t wm_swlit (WM_wwork_t *, short window nr, long status)
Set window to loose item. Returns channel ID or QDOS/SMS error code.

chanid_t wm_swsec (WM_wwork_t *, WM_appw_t *, short xsection,
 short ysection, long ink)
Set window to application sub-window section. Returns channel ID or
QDOS/SMS error code.

int wm_unset (WM_wwork_t *)
Unset window: obligatory before scrumpling the working definition. Also
used to remove pull-down windows. Returns QDOS/SMS error code.
C.f. wm_cluns.

int wm_upbar (WM_wwork_t *, WM_swdef_t *, short xsection,
 short ysection)
Update a section of the pan/scroll bar.

int wm_wdraw (WM_wwork_t *)
Draw window: after wm_prpos or wm_pulld. Returns QDOS/SMS error code.

int wm_wrset (WM_wwork_t *)
Reset window definition. Returns QDOS/SMS error code.

Window Manager Routines Referenced From Working Definition

int wm_smenu (...)
referenced from wda_setr (assembly language)

int wm__mhit (...)
referenced from WM_appw.hit

int wm__pnsc (...)
referenced from WM_appw.ctrl

Window Manager Action (etc) Routine Wrappers
These wrappers allow C68 functions to be called from the Window Manager via
the WM_action structure.

wm_actli(...)
referenced from WM_litm.pact

wm_actme(...)
referenced from WM_mobj.pact

wm_drwaw(...)
referenced from WM_appw.draw

wm_hitaw(...)
referenced from WM_appw.hit

wm_ctlaw(...)
referenced from WM_appw.ctrl

STANDARD SPRITES
The following pre-defined sprites that are commonly used in Pointer
Environment programs are included in this library.
Any further contributions that could be added to this standard sprite list
would be welcomed.

struct WM_sprite wm_sprite_arrow
Arrow symbol

struct WM_sprite wm_sprite_cf1
CTRL-F1 key symbol

struct WM_sprite wm_sprite_cf2
CTRL-F2 key symbol

struct WM_sprite wm_sprite_cf3
CTRL-F3 key symbol

struct WM_sprite wm_sprite_cf4
CTRL-F4 key symbol

struct WM_sprite wm_sprite_f1
F1 key symbol

struct WM_sprite wm_sprite_f2
F2 key symbol

struct WM_sprite wm_sprite_f3
F3 key symbol

struct WM_sprite wm_sprite_f4
F4 key symbol

struct WM_sprite wm_sprite_f5
F5 key symbol

struct WM_sprite wm_sprite_f6
F6 key symbol

struct WM_sprite wm_sprite_f7
F7 key symbol

struct WM_sprite wm_sprite_f8
F8 key symbol

struct WM_sprite wm_sprite_f9
F9 key symbol

struct WM_sprite wm_sprite_f10
F10 key symbol

struct WM_sprite wm_sprite_hand
Hand symbol

struct WM_sprite wm_sprite_insg

struct WM_sprite wm_sprite_insl

struct WM_sprite wm_sprite_left

struct WM_sprite wm_sprite_left

struct WM_sprite wm_sprite_move
Move symbol. Used to indicate item used a window.

struct WM_sprite wm_sprite_null

struct WM_sprite wm_sprite_size
Size symbol. Used to indicate menu item that is used to re-size a window.

struct WM_sprite wm_sprite_sleep
Sleep symbol. Used to indicate menu item for putting a program to sleep.

struct WM_sprite wm_sprite_wake
Wake symbol. Used to indicate a menu item for waking a program.

struct WM_sprite wm_sprite_zero
This is really just a blank background. It is used as the pattern mask for
many of the sprites.

CHANGE HISTORY
The following is a brief summary of the significant changes made to this
document. It is intended to help those who are upgrading from previous
releases to determine what (if anything) has changed in this document.
 30 Oct 93 DJW - Extensive changes as part of making the QPTR libraryusable with C68 Release 4.
 02 Nov 93 DJW - Added list of sprites that are included in this library.
 13 Aug 94 DJW - Changed the definition of the iop_rspw() routine to makethe last parameter only 'void *' (it was 'void **').

 03 Apr 95
 DJW - Changed all function definitions reflect fact that all
structures are now 'typedef'ed. Also 'char *' parameters
changed to more generic 'void *' format.

SMS/SMSQ/SMSQ-E System Interface
This section of the C68 library documentation covers those routines in the
C68 standard library that provide access to the SMS operating system
interfaces.
All of the calls in this part of the library map directly onto the SMS
System Calls available to Assembler (machine code) programmers. It is
therefore useful to have access to documentation covering the Assembler
level interface to SMS if you want more details on how many of these calls
work.
You do not ever need to tell the linker explicitly that you want to include
routines defined in this document. These routines are imbedded in the
LIBC_A library which is included automatically the LD linker. You must
always, however have the statement
 #include <sms.h>
in any program or module that makes use of the routines in this library. If
any additional header is required as well, this will be mentioned in the
description of the routine.
It is worth noting that most of the calls defined here also work on the
QDOS family of operating systems. However in that case they traditionally
have alternative names. If you wish to find the functions listed and
described under their QDOS names, then refer to the LIBQDOS_DOC file. If
any call does not work in both environments this is mentioned in the
description of the function.
REFERENCE MATERIAL
The reference books listed below were used in preparing material for
inclusion in this library:
 QDOS/SMS Reference Manual
as published by Jochen Merz

int c_extop (chanid_t channel, timeout_t timeout,
 int (*func), int number_of_params, ...)
Allow a routine to be called to do an extended operation on a QDOS channel.
The parameters are passed in a way that is compatible with this routine
being written in C (c.f. sd_extop()/iow_xtop() for assembler only
routines).
The C routine will be called in supervisor mode, with the parameters

The C routine will be called in supervisor mode, with the parameters
specified by ... above passed to it on the stack. Each parameter is assumed
to be no larger than 4 bytes in size (i.e. no structures are to be passed
on the stack). Note also that due to a bug in QDOS, it seems to hang if the
routine does not return zero in D0. Therefore, if it is desired to pass an
error code back to the application program it must be done indirectly via
one of the parameters.

void cv_fpdec (char * target, char * value)
Convert a SMS floating point value into a decimal character ASCII string.

void cv_ibbin (char * target, char * value)
Convert a byte into a 8 character ASCII string of binary.

void cv_ibhex (char * target, char * value)
Convert a byte into a 2 character ASCII hex string.

char *cv_ildat(char *asciidate, time_t qldate)
Converts a date from internal SMS format into an ASCII string in the format
"YYYY mmm dd hh:mm:ss". The asciidate parameter must point to a buffer of
at least 25 characters in length to hold the return data. The buffer
returned is in SMS string format - which is a 2 byte length field, followed
by the data (NULL terminated for convenience to C programmers). The return
value is the address of the start of the text.

char *void cv_ilday(char *asciiday, time_t qldate)
Returns the 3 character day of the week given a date in SMS internal
format. The asciidate parameter must point to a buffer of at least 7
characters in length to hold the return data. The buffer returned is in SMS
string format - which is a 2 byte length field, followed by the data (NULL
terminated for convenience to C programmers). The return value is the
address of the start of the text.

void cv_ilbin (char * target, long * value)
Convert a long integer into a 32 character ASCII string of binary.

void cv_ilhex (char * target, long * value)
Convert a long integer into a 8 character ASCII hex string.

void cv_iwbin (char * target, short * value)
Convert a short integer (word) into a 16 character ASCII string of binary.

void cv_iwdec (char * target, short * value)
Convert a short integer into a decimal ASCII string.

void cv_iwhex (char * target, short * value)
Convert a short integer (word) into a 4 character ASCII hex string.

int ioa_cnam (chanid_t channel, char * buffer,
 short buffer_length)
Get name of a channel. The buffer will be filled in with the channel name.
It must be large enough to contain the channel name, a terminating NULL
byte and one additional byte.
NOTE. Only available on SMSQ and SMSQ/E based systems

int ioa_sown (chanid_t channel, jobid_t new_owner)
Set owner of a channel.
NOTE. Only available on SMSQ and SMSQ/E based systems

int iob_elin (chanid_t channel, timeout_t timeout,
 char **cptr, short bufsize,
 short current_offset, short *current_linelen);
Edited line read call. Returns SMS error code.

int iob_fbyt(chanid_t channel, timeout_t timeout,
 char *char_pointer)
Read 1 byte. Returns SMS error code.

int iob_flin(chanid_t channel, timeout_t timeout,
 void *buf, short length)
Read a linefeed terminated string of bytes. Returns length read on success,
SMS error code (which is negative) on failure.

int iob_fmul(chanid_t channel, timeout_t timeout,
 void *buf, short length)
Fetch a string of bytes. Returns length read on success, or SMS error code
(which is negative) on failure. The amount read can be less than the amount
requested. This would normally caused by an end-of-file or timeout
condition occuring during the read.

int iob_sbyt(chanid_t channel, timeout_t timeout,
 unsigned char ch)
Output char 'ch' to channel. Returns SMS error code.

int iob_smul(chanid_t chid, timeout_t, void *buf, short len)
Write a string of bytes. Returns length written on success, and a SMS error
code (which is negative) on failure. The amount written can be less than
the amount requested. This would normally be caused by a timeout condition
occuring during the write.

int iob_suml (chanid_t chid, timeout_t, void *buf, short len)
Write a string of untranslated bytes. This is very similar to the
iob_smul() call except that the settings of translation calls is ignored as
well as any character translation implied in the device open call (e.g.
SERd, SERt, PARd, PARt). This is a safe way of sending graphics data or
control codes to the device as they will never be translated to any other
characters. Values returned are the same as for the iob_smul() call.
This call is only supported on SMSQ and SMSQ/E based systems. Other systems
will return an error code for an unimplemented trap call.

int iob_test(chanid_t chan, timeout_t timeout)
Test for any pending input on a channel, returns 0 if data is to be read,
else -1 (not complete).

int iof_date(chanid_t chan, timeout_t timeout, int type,
 long * sr_date)
type = 0 Access update date of file,
 = 2 Access backup date.
*sr_date = -1 Read requested date (returned from call in *sr_date)
 = 0 Set requested date to current date.
else Set requested date to date given in *sr_date.
Read/Set update or backup dates. Available on Miracle Systems hard disk,
ST/QL sytems and SMS systems. The date set/read is returned in *sr_date.
Returns SMS error code.

int iof_flsh(chanid_t channel, timeout_t timeout)
Flush all buffers on a file. Returns SMS error codes.

long iof_load(chanid_t channel, char * buf,
 unsigned long len)
Load a complete file. Returns length loaded on sucess, SMS error code
(which is negative) on error.

int iof_minf(chanid_t chan, timeout_t timeout,char * medname,
 short * unused_secs, short * goodsecs)
Get media information. Returns 10 character name of media (N.B. not NULL
terminated), number of unused_sectors, and number of good sectors. Returns
SMS error code.

int iof_mkdr(chanid_t channel)
Make the file specified by the SMS channel into a directory. Requires
support for Level 2 filing system (e.g. Miracle hard Disk, ST/QL or SMS
systems). Returns SMS error code.

long iof_pos(chanid_t chan, long pos, int mode)

long iof_pos(chanid_t chan, long pos, int mode)
SMS equivalent to C seek() routine to seek to a point in a file (no timeout
as it's always -1). mode can have the following values:
 0 absolute
 1 relative to current position
 2 relative to EOF.
Returns new position on sucess, and SMS error code (which is negative) on
failure.

long iof_posa(chanid_t chan, timeout_t timeout,
 unsigned long * pos)
Seek to an absolute point in a file. The new file position is returned via
the 'pos' poarameter. Returns SMS error code.

long iof_posr(chanid_t chan, timeout_t timeout, long * pos)
Seek to a point in a file relative to the current position. The new file
position is returned via the 'pos' poarameter. Returns SMS error code.

int iof_rhdr(chanid_t chan, timeout_t timeout,
 void * buf, short buflen)
Read a file header. Returns length read on success, SMS error code (which
is negative) on failure.

int iof_rnam(char * old, char * new)
Rename a file. Uses C strings. Very basic QL systems (without Toolkit 2)
may not support this call, but any other type of system can be expected to
support it. Returns SMS error code.

int iof_save(chanid_t channel, char * buf,
 unsigned long len)
Save a complete file to a channel. Returns length saved on success, SMS
error code (which is negative) on failure.

int iof_shdr(chanid_t chan, timeout_t timeout,
 void * buf, short buflen)
Set a file header. Returns length read on success, SMS error code (which is
negative) on failure.

int iof_trunc(chanid_t channel, timeout_t timeout)
Truncate a file at the current byte position. This call may not be
available on very basic QL systems (unless Toolkit 2 present) but all other
types of system can be expected to support it. Returns SMS error code.

int iof_vers(chanid_t channel, timeout_t timeout, long *key)
Set/Read a file version number. Only available on systems that support
version 2 (or better) filing systems (such as Miracle hard disk, ST/QL and
SMS systems). The action is defined as follows:
*key = -1 Return version number in *key.
 = 0 Keep old version number when file closed (return it on *key)
 = +ve and < 65536 Set version number to given number.
Returns SMS error code.

int iof_xinf(chanid_t channel, timeout_t timeout,
 struct ext_mdinf * fsinf)
Get extended file system info. Only available on systems that support
version2 filing system (such as Miracle hard disk, ST/QL and SMS systems).
Requested data is returned in struct ext_mdinf (defined in qdos.h) on
success. Returns SMS error code.

int iog_arc(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end, double angle)
Draw an arc using graphics coordinates. sd_arc uses C double precision
floating point coordinates (cf. sd_iarc). Returns SMS error code.

int iog_arc_i(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end, double angle)

 double x_end, double y_end, double angle)
Draw an arc using graphics coordinates. iog_arc_i takes integer coordinates
(c.f. iog_arc) Returns SMS error code.

int iog_dot(chanid_t channel, timeout_t timeout,
 double x, double y)
Plot a point using graphics coordinates. iog_dot takes C double precision
floating point coordinates (cf. iog_dot). Returns SMS error code.

int iog_dot_i(chanid_t channel, timeout_t timeout,
 int x, int y)
Plot a point using graphics coordinates. iog_dot_i takes integer
coordinates (cf. iog_dot). Returns SMS error code.

int iog_elip (chanid_t channel, timeout_t timeout,
 double x_centre, double y_centre,
 double eccentricity, double radius,
 double angle_of_rotation)
Draw a circle or ellipse using graphics coordinates. iog_elip uses C double
precision floating point coordinates (cf. iog_elip_i). Returns SMS error
code.

int iog_elip_i(chanid_t channel, timeout_t timeout,
 int x_centre, int y_centre, int eccentricity, int radius, int
angle_of_rotation)
Draw a circle or ellipse using graphics coordinates. iog_elip_i uses
integer coordinates (cf. iog_elip). Returns SMS error code.

int iog_fill(chanid_t channel, timeout_t timeout, int onoff)
Set flood fill mode on or off. Returns SMS error code.

int iog_line(chanid_t channel, timeout_t timeout,
 double x_start, double y_start,
 double x_end, double y_end)
Draw a line with graphics coordinates. iog_line uses C double precision
floating point coordinates (cf. iog_line_i). Returns SMS error code.

int iog_line_i(chanid_t channel, timeout_t timeout,
 int x_start,int y_start, int x_end, int y_end)
Draw a line with graphics coordinates. iog_line_i takes integer coordinates
(cf. iog_line). Returns SMS error code.

int iog_scal (chanid_t channel, timeout_t timeout,
 double scale,double x_origin, double y_origin)
Change a windows graphics origin and scale. iog_scal uses C double
precision floating point coordinates (cf. iog_scal_i). Returns SMS error
code.

int iog_scal_i chanid_t channel, timeout_t timeout,
 int scale, int x_origin, int y_origin)
Change a windows graphics origin and scale. iog_scal_i uses integer
coordinates (cf. iog_scal). Returns SMS error code.

int iog_sgcr(chanid_t channel, timeout_t timeout,
 double vert_offset, double horiz_offset,
 double x_pos, double y_pos)
Set the graphics text cursor. iog_sgcr uses C double precision floating
point coordinates (cf. iog_sgcr_i). Returns SMS error code.

int iog_sgcr_i(chanid_t channel, timeout_t timeout,
 int vert_offset, int horiz_offset,
 int x_pos, int y_pos)
Set the graphics text cursor. iog_sgcr_i uses integer coordinates (cf.
iog_sgcr). Returns SMS error code.

int iop_outl (chanid_t channel, timeout_t timeout,
 short, short, short, void *)
This is the call that sets the outline window for a Pointer Environment. It

This is the call that sets the outline window for a Pointer Environment. It
is included in this library as it is the one call that need to be issued to
make a program that is not otherwise aware of the pointer environment
function correctly in that environment.
For more details refer to the LIBQPTR_DOC file provided as part of the QPTR
library.
Note that the default console initialisation routines supplied with C68
will automatically issue a call to set the window outline to the size as
defined in the '_condetails' global variable (see LIBC68_DOC for more
details).

int ioq_gbyt (char * queue_pointer, char * next_byte)
Remove a byte from a queue. Returns the SMS error code (if any).

int ioq_pbyt (char * queue_pointer, int byte_to_insert)
Insert a byte in a queue. Returns the SMS error code (if any).

int ioq_seof(char * queue_pointer)
Insert an EOF (end-of-file) marker into a queue. Returns SMS error code (if
any).

void ioq_setq(char * queue_pointer, long queue_length)
Set up a queue.

int ioq_test(char * queue_pointer, char * next_byte,
 long * free_space)
Test the status of a queue. The variables whose addresses are passed as
parameters are updated to the free space in the queue, and (if there is
data in the queue) the value of the next byte is returned (although the
byte is not removed from the queue). The SMS error code is returned.

int iou_ssio(chanid_t channel_id, timeout_t timeout,
 int routine_number, long * D1, long * D2,
 char ** A1, char * routine_array[4])
General serial IO handling routine. This routine is used when the iou_ssq()
routine is not sufficient. The values passed as the parameters 'D1', 'D2'
and 'A1' are pointers to the values to be put into the registers D1, D2 and
A1 respectively. These values may be changed by this routine. The
'routine_array' is an array of at least 4 elements, the first three of
which contain the addresses of the routines for testing pending input,
fetching a byte and sending a byte. The fourth element will be used as
workspace, and thus corrupted by this call.

int iou_ssq (chanid_t channel_id, timetout_t timeout,
 int routine_number, long * D1, long * D2,
 char ** A1)
Serial IO Direct Queue handling routine. The values passed as the
parameters 'D1', 'D2' and 'A1' are pointers to the values to be put into
the registers D1, D2 and A1 respectively. These values may be changed by
this routine.

int iow_blokl(chanid_t channel, timeout_t timeout,
 colour_t colour, QLRECT_t * rect)
Plot a rectangular block of a certain colour. Can be used to draw very fast
horizontal and vertical lines. Returns SMS error code.

int iow_chrq(chanid_t channel, timeout_t, QLRECT_t * rect)
Read a window size in characters. On success 'rect' is set to details of
answer. Returns SMS error code.

int iow_clra(chanid_t channel, timeout_t timeout)
Clear entire window.
Returns SMS error code

int iow_clrb(chanid_t channel, timeout_t timeout)
Clear area of window below cursor line.
Returns SMS error code.

int iow_clrl chanid_t channel, timeout_t timeout)

int iow_clrl chanid_t channel, timeout_t timeout)
Clear all of cursor line. Returns SMS error code.

int iow_clrr(chanid_t channel, timeout_t timeout)
Clear cursor line, to right of cursor position (including cursor). Returns
SMS error code.

int iow_clrt(chanid_t channel, timeout_t timeout)
Clear area of window above cursor line. Returns SMS error code.

int iow_dcur(long chan, timeout_t timeout)
Disable cursor on screen channel. Returns SMS error code.

int iow_defb (chanid_t channel, timeout_t timeout,
 unsigned char colour, short width)
Redifine a window border with new colour and width. Returns SMS error
codes.

int iow_defw(chanid_t channel, timeout_t timeout,
 colour_t b_colour, short b_width,QLRECT_t *rect)
Redefine a window size and border, given new border colour and size and new
window size as a QLRECT_t structure. Returns SMS error code.

int iow_donl(chanid_t channel, timeout_t timeout)
Flush any pending newlines on a window channel. Returns SMS error code.

int iow_ecur(chanid_t channel, timeout_t timeout)
Enables cursor on screen channel. Returns SMS error code.

int iow_font(chanid_t channel, timeout_t timeout,
 void *font1, void * font2)
Set normal and alternative character font in a window. Passed pointers to
two font definitions (format as described in SMS manuals). Returns SMS
error code.

int iow_font_def(chanid_t channel, timeout_t timeout,
 void * font1, void * font2)
Set or reset the default system font. Passed pointers to two font
definitions (format as described in SMS manuals). Each of the 'font1' and
'font2' parameters can also take the values of -1 to keep its current
setting, or 0 to select the default font built into the system. Returns SMS
error code.
NOTE. Only available on SMSQ or SMSQ/E based systems.

int iow_ncol(chanid_t channel, timeout_t timeout)
Move cursor right one column. Returns SMS error code.

int iow_newl(chanid_t channel, timeout_t timeout)
Move cursor to start of next line. Returns SMS error code.

int iow_nrow(chanid_t channel, timeout_t timeout)
Move cursor down one row. Returns SMS error code.

int iow_pana(chanid_t channel,timeout_t timeout, int ampix)
Pan window left or right. ampix < 0 means pan left, ampix > 0 means pan
right. Returns SMS error code.

int iow_panl(chanid_t channel,timeout_t timeout, int ampix)
Pan cursor line left or right. ampix < 0 means pan left, ampix > 0 means
pan right. Returns SMS error code.

int iow_panr(chanid_t channel,timeout_t timeout, int ampix)
Pan right of cursor line left or right (includes character at cursor
position). ampix < 0 means pan left, ampix > 0 means pan right. Returns SMS
errors code.

int iow_pcol(chanid_t channel, timeout_t timeout)
Move cursor left one column. Returns SMS error code.

int iow_pixq(chanid_t channel, timeout_t, QLRECT_t * rect)
Read a window size in pixels. Returns size in a QLRECT_t structure (defined
in sys/qlib.h). Returns SMS error code.

int iow_prow(chanid_t channel, timeout_t timeout)
Move cursor up one row. Returns SMS error code.

int iow_rclr(chanid_t channel, timeout_t timeout,
 char *collist)
Recolour a window. Done in software and very slow. colist points to eight
characters containing new colours for eight possible colours. Returns SMS
error code.

int iow_scol(chanid_t channel, timeout_t timeout, int pos)
Move to a column position (pos) on a line. Returns SMS error code.

int iow_scra(chanid_t channel,timeout_t timeout, int ampix)
Scroll entire window up or down. ampix < 0 means scroll down, ampix > 0
means scroll up. Returns SMS error code.

int iow_scrb(chanid_t channel,timeout_t timeout, int ampix)
Scroll window below cursor line up or down. ampix < 0 means scroll down,
ampix > 0 means scroll up. Returns SMS error code.

int iow_scrt(chanid_t channel,timeout_t timeout, int ampix)
Scroll window above cursor line up or down.
ampix < 0 means scroll down, ampix > 0 means scroll up. Returns SMS error
code.

int iow_scur(chanid_t channel, timeout_t timeout,
 short x_pos, short y_pos)
Reposition the cursor to an x, y character position in a window. Returns
SMS error code.

int iow_sflal(long chan, timeout_t timeout, int onoff)
Set flash mode on or off (only works in 8 colour mode). Returns SMS error
code.

int iow_sink(long chan, timeout_t timeout, int colour)
Set ink colour. Colour value (0-7) dependent on mode. Returns SMS error
code.

int iow_sova(chanid_t channel, timeout_t timeout, int mode)
Set type of drawing mode (DM_XOR, DM_OVER, DM_OR). Returns SMS error code.

int iow_spap(chanid_t channel,timeout_t timeout,int colour)
Set paper colour. Colour value (0-7) dependent on mode. Returns QDOS errors
code. Colours defined in qdos.h

int iow_spix(chanid_t channel, timeout_t timeout,
 short x_pos, short y_pos)
Reposition the cursor to an x, y pixel position in a window. Returns SMS
error code.

int iow_ssiz(chanid_t channel, timeout_t timeout,
 short c_width, short c_height)
Set character width and height in a window. Possible widths:
 0 = 6 pixels wide,
 1 = 8 pixels wide,
 2 = 12 pixels wide,
 3 = 16 pixels wide
Possible height are:
 0 = 10 pixels high,

 0 = 10 pixels high,
 1 = 20 pixels high.
Returns SMS error code.

int iow_sstr(chanid_t chan, timeout_t timeout, int colour)
Set strip colour. Colour value (0-7) dependent on mode. Returns SMS error
code.

int iow_sula(chanid_t chan, timeout_t timeout, int onoff)
Set underline mode for characters on or off.
Returns SMS error code.

int iow_xtop(chanid_t channel,timeout_t timeout,int (*rtn)(),
 long paramd1, long paramd2, void *parama1)
Do extended operation on screen channel. Passed address of routine to call
and parameters for d1, d2 and a1. Returns SMS error code. See also
c_extop() .
NOTE. Due to a bug in QDOS, it appears that D0 must always be sero on
exiting the rtn() function. Any error code therefore needs to be passed
back indirectly via one of the other parameters.

char * mem_achp(long size, long *sizegot)
Allocate memory from common heap. It is passed the requested size and
returns address of area allocated (or a SMS error code on failure). The
area will always be allocated with the current job as the owner. If you are
not interested in the true size obtained, then set 'sizegot' to NULL.
Otherwise set it to the address of a variable that will be set to contain
the actual size obtained (Note that even if the call succeeds this may not
be the same as the size requested, as the amount requested is often rounded
up by SMS. It is recommended that you use sms_achp() in preference to
mem_achp() unless you are sure you know what you are doing.
WARNING
The size requested must allow for the SMS heap header, and the address
returned is the start of the area allocated - not the useable area. This is
in contrast to the sms_achp() call for which the user does not have to
worry about the SMS heap header.

void mem_llst(char *area, char **ptr, long len)
Link an area back into a user heap area. Given area to link in, pointer to
pointer to free space, and length to link in. This call is also used to set
up a user heap.

void mem_rchp(char *area)
Free an area of common heap previously allocated via mem_achp() . Returns
no errors. It always succeeds unless the parameter points to an invalid
address, in which case the machine nearly always crashes!

char *mem_rlst (char **ptr, long *len)
Allocate a user area from an allocated area of common heap. 'ptr' is a
pointer to a pointer to free space, len is the length requested to put in
the user heap, and returns as the length actually allocated. Returns the
address of the area allocated on success, and the SMS error code on
failure.

chanid_t opw_con(WINDOWDEF_t *wdef)
Open a console window. The WINDOWDEF_t structure is defined in sys_qlib.h.
Returns SMS channel id on success; SMS error code (which is negative) on
failure.

chanid_t opw_scr (WINDOWDEF_t * windef)
Open a screen window. The WINDOWDEF_t structure is defined in sys_qlib.h.
Returns channel on success, SMS errror code (which is negative) on failure.

chanid_t opw_wind (char *name, char *details)
Open a window. the 'name' parameter is a C type string that specifies the
type and dimensions. The details parameter specifies the border width and
colour and the paper/ink colours. Returns the SMS channel id on success and
a SMS error code (which is negative) on failure.

void * sms_achp(long size, long *sizegot, long jobid)

void * sms_achp(long size, long *sizegot, long jobid)
Allocate memory from common heap. Is passed requested size, plus job id
which is to own the heap. Returns address of area allocated, or a QDOS
error code on failure.
Note that even if the call succeeds this will not be the same as the size
requested, as the amount requested is rounded up to the nearest 16 bytes
and then the length of the common heap header is added on to it. If you are
not interested in the true size obtained, then set 'sizegot' to NULL.
Otherwise set it to the address of a variable that will be set to contain
the actual size obtained.

void * sms_achp_acsi(long size, long *sizegot, long jobid)
Special variant of the sms_achp() call that is only relevant to Atari TT
(or similar systems that support fast RAM). This call is guaranteed to use
ST compatible RAM and NOT allocate the memory in fast RAM. This is
important if the memory is to be used for ACSI/DMA purposes.
On all other systems this call is functionally identical to the standard
sms_achp() call.

int sms_acjb(long jobid, unsigned char priority,
 timeout_t timeout)
Start a activate a job with a given priority. There are two valid values
for the timeout, 0 and -1. Execution of the current job will continue if
the timeout is set to zero, and the SMS error code for this call returned.
If the timeout is -1 then the current job is suspended until the activated
Job has finished. This call will then return the error code from that Job.

void * sms_alhp (void **ptr, long *len)
Allocate a user area from an allocated area of common heap. 'ptr' is a
pointer to a pointer to free space, len is the length requested to put in
the user heap, and returns as the length actually allocated. Returns the
address of the area allocated on sucess, and the SMS error code on failure.

void * sms_arpa(long size)
Allocate memory from resident procedure area. Returns address of area
allocated, or a QDOS error code on failure. On QDOS systems, will always
fail if called while any program except SuperBasic is executing.

void sms_artc(long sms_time)
Adjust the clock by sms_time seconds.

void sms_cach (long flag)
Change cache state. If 'flag' is 0, then cache is turned off and if it is 1
then the cache is turned on. Future releases of SMSQ and SMSQ/E may support
alternative values for the 'flag' parameter for different cache control
strategies.
NOTE. This call only works on SMSQ and SMSQ/E based systems.

void sms_comm (int rate)
Set the baud rate for both serial ports.

jobid_t sms_crjb(long codespace, long dataspace,
 void *start_address, jobid_t owner,
 void **job_address)
Create another job in the transient program area, given size of new jobs
code, data the start address of the new job, and its owner. Returns either
positive job id of new job, or SMS error code. Also returns address of
newly created job in last parameter.

void sms_dmod(short * s_mode, short * d_type)
Set/read display mode.
*s_mode = 4 for mode 4,
 = 8 for mode 8,
 = -1 for read
*d_type = 0 for monitor mode,
 = 1 for TV mode,
 = -1 for read
Notes:
1) Other values are available for use in these parameters on Minerva

1) Other values are available for use in these parameters on Minerva
ssytems - refer to the Minerva documentation for details
2) There is a bug in QL roms that corrupts the return d_type when it is
read.

int sms_exv (QLVECTABLE_t * table, long jobid)
Change the exception vector table for a particular job. The QLVECTABLE_t
structure is defined in sys_qlib.h Returns SMS error code.

void sms_fprm(long * lang_code, char ** car_reg,
 long * group_mod)
Find preferred module of the type and group requested. The 'lang_code' or
'car_reg' parameters can be zero.
NOTE. Only available on SMSQ and SMSQ/E based systems.

int sms_frjb(jobid_t jobid, int error_code)
Force remove a job, giving an error code for it to return. Returns SMS
error code. If applied to the current job, then it will never return.

long sms_frtp ()
Find largest contiguous are available for loading a program. This is
normally also a good indicator of the total free memory in the machine.

#include <things.h>
int sms_fthg (char * thing_name, jobid_t jobid, long * d2,
 long d3, void * a1, void **a2)
Free the named 'thing'. Available as standard wiht SMS, and on QDOS
compatible systems with THING support code loaded. Returns the SMS/QDOS
error code. The parameters d2, d3, a1 and a2 are used to pass extra
parameters as defined in the definition of the 'thing' that is being freed.
Note also that the d2 and a2 parameters are pointers to these values as new
values can be passed back from the 'thing' being freed. The d3 and a1
parameters are not changed, so pointers are not used for these parameters.

int sms_hdop(void * param_list)
Send a command to the 8049 second processor. Uses INTEL byte format (low
byte first). Returns value returned by 8049.

jobid_t sms_info(void ** system_variables,
 long * version_code)
Get the address of the system variables and the current operating system
version code (in the form xx.xx - non zero terminated string). Returns job
id of current job.

int sms_injb(jobid_t * jobid, jobid_t * topjob,
 long * job_priority, void ** job_address)
Get information on a job within a job tree. Passed the jobid you want
information on and the current top of the job tree you are looking at (with
the first call set *topjob = *jobid). It is designed to be called
repeatedly without changing jobid and topjob until *jobid == 0. Returns:
0 OK and 'job_address' contains address of job, 'jobp' contains job
priority in least significant byte, and if the job is suspended the most
significant byte is negative. 'jobid' and 'topjob' are changed to those of
the next job in the tree.
-ve SMS error code.

void sms_iopr (short priority)
Set I/O priority.
NOTE. This call only works on SMSQ and SMSQ/E based systems.

void sms_lenq (long * lang_code, char car_registration[4])
Language enquiry. If both 'lang_code' and 'car_registration' parameters
contain zeroes then the current settings for these values are returned.
Alternatively if you specify either the 'lang_code' or the
'car_registration' parameter as non-zero then the corresponding value for
the other parameter will be returned. Note that the 'car registration'
parameter is unusual in that it is a fixed length character field of length
4 that is always space filled.
The current language code is not changed.
NOTE. This call only works on SMSQ and SMSQ/E based systems.

NOTE. This call only works on SMSQ and SMSQ/E based systems.

void sms_lexi(QL_LINK_t * lnk)
Link in external interrupt handler
void sms_lfsd(QLDDEV_LINK_t * lnk)
Link in directory I/O device handler
void sms_liod(QLD_LINK_t * lnk)
Link in simple I/O device handler
void sms_lpol(QL_LINK_t * lnk)
Link in polled task handler
void smslshd(QL_LINK_t * lnk)
Link in scheduler list handler
The QL_LINK_t, QLD_LINK_t and QLDDEV_LINK_t structures are defined in
sys_qlib.h

void sms_lldm (void * land_module)
Link in Language Dependent Module.
NOTE. Only available on SMSQ and SMSQ/E based systems.

void sms_lset (long * lang_code, char car_registration[4])
Language set. If both 'lang_code' and 'car_registration' parameters contain
zeroes then the current settings for these values are returned.
Alternatively if you specify either the 'lang_code' or the
'car_registration' parameter as non-zero then the corresponding value for
the other parameter will be returned. Note that the 'car registration'
parameter is unusual in that it is character field with a fixed length of 4
that is always space filled.
The current language code is changed to the value that is returned in the
'lang_code' parameter. If no corresponding language code can be found, then
the default language (the first language preference linbked in via
sms_lldm) is set.
NOTE. This call only works on SMSQ and SMSQ/E based systems.

int sms_lthg (THING_LINKAGE * thing_linkage)
Link in a new Thing. Available as standard with SMS, and on QDOS compatible
systems with THING support code loaded. The structure THING_LINKAGE is
defined if you include the qdos.h or sms.h header files.

void * sms_mptr (long message_code)
Find message pointer. The message code value can be:
a) An address with the MSB set
b) The message group + message number (negated)
It returns a pointer to the message (or to the "unknown error" message).
NOTE. Only works on SMSQ and SMSQ/E based systems. On other systems a
negative value is returned which is the QDOS/SMS error code.

#include <things.h>
int sms_nthg (char * thing_name, THING_LINKAGE **next_thing)
Find next Thing. Available as standard with SMS, and on QDOS compatible
systems with THING support code loaded. The 'thing_name' parameter is a C
style NULL terminated string. The 'next_thing' parameter is used to return
the Thing Linkage block for the next Thing, or 0 if no further Thing
exists. The THING_LINKAGE structure is defined in the sms.h header file.
Returns SMS error code.

#include <things.h>
int sms_nthu (char *name, THING_LINKAGE ** thing_linkage,
 jobid_t * owner_job)
Get the owner of a job, and the next linkage block. If the pointer pointed
to by thing_linkage is 0, then this the value returned in 'owner_job' is
undefined, and this routine functions like the sms_nthg() routine.

void sms_rchp(void *area)
Free an area of common heap previously allocated. Returns no errors. It
either succeesds or crashes if given an invalid area address.

void sms_rehp(void * area, void ** ptr, long len)
Link an area back into a user heap area. Given area to link in, pointer to

Link an area back into a user heap area. Given area to link in, pointer to
pointer to free space, and length to link in. This call is also used to set
up a user heap.

void sms_rexi(QL_LINK_t * lnk)
Unlink external interrupt handler
void sms_rfsd(QLDDEV_LINK_t * lnk)
Unlink directory I/O device handler
void sms_riod(QLD_LINK_t * lnk)
Unlink simple I/O device handler
void sms_rpol(QL_LINK_t * lnk)
Unlink polled task handler
void sms_rshd(QL_LINK_t * lnk)
Unlink scheduler list handler
The QL_LINK_t, QLD_LINK_t and QLDDEV_LINK_t structures are defined in
sys_qlib.h

int sms_rmjb(jobid_t jobid, int error_code)
Remove a suspended job, giving an error code for it to return. Returns SMS
error code.

long sms_rrtc (void)
Read clock. Returns time in seconds from Jan 1 1961.

int sms_spjb (long jobid, int new_priority)
Set the priority of a job. Sets current jobs priority if jobid = -1.
Returns old priority of this job or a SMS error code.

int sms_rrpa (void * area)
Release an area of the resident procedure area previously allocated.
Returns QDOS/SMS error code.
On QDOS systems, will always fail as only allowed when SuperBasic is the
only program running. Other systems such as Minerva and SMSQ have released
this restirction.

void * sms_schp (long size_wanted, long * new_size,
 void * old_base_address)
Shrink an allocation in the common heap. Returns SMS error code. The value
returned will actually be the same as 'old_base_address' as the base
address of the area will remain the same.
The new size will normally be larger than the size requested due to
rounding effects within the operating system. If you want to know the exact
value of the new size, then set the 'newsize' parameter to point to a
variable that should be set to hold the new size. If you are not
interested, then this parameter can be NULL.
NOTE. Only available on SMSQ and SMSQ/E based systems.

void sms_srtc(long sms_time)
Set the clock.

int sms_rthg (char * thing_name)
Remove a Thing if it is not in use. The 'thing_name' parameter is a C style
(NULL terminated) string.

int sms_sevt (jobid_t jobid, event_t eventlist)
Send the events in 'eventlist' to the destination job. If the job is
waiting on any of these events then the job is released, otherwise the
events are discarded.
This call is only supported on SMSQ/E v2.71 or later. On other systems it
will not be recognised, and an error reporting an unsupported trap value
will be returned.

int sms_ssjb(jobid_t jobid, int number, char * zero)
Suspend a job for a number of 50Hz (or 60Hz if an American system) clock
ticks. The 'zero' parameter is an address of a byte to set to zero on
release of the job. If this is not required pass NULL as the value of the
'zero' parameter. If the 'number' parameter is -1 then the job is suspended
indefinitely. Returns a SMS error code.

indefinitely. Returns a SMS error code.

int sms_trns (const void * trans_table,
 const void * msg_table)
Set the translate table and message table. This routine will not work on QL
systems with ROMS that are of version JS or earlier. Returns SMS error
code.
On SMSQ and SMSQ/E systems, if 'msg_table' parameter is not NULL, and the
language code is $4afb, then this address is used for message group 0.

JOBHEADER_t * sms_usjb (jobId_t jobid)
Release a suspended job, sets _oserr, returns address of job header (the
JOBHEADER_t structure is defined in sys_qlib.h) or QDOS error code.

#include <things.h>
char * sms_uthg (char * thing_name, jobid_t job_id,
 timeout_t timeout, long *d2, void *a2,
 long *version, THING_LINKAGE **linkage)
Use a Thing. The name is passed in C (NULL terminated) format. The version
is returned in the 'version' parameter. The additional values
passed/returned in the 'd2' and passed in the 'a2' parameters are dependent
upon the definition of the THING being used. The 'linkage' parameter is
used to get back the Thing linkage address on a successful call. If an
error occurs, then the error code (which is negative) is returned. If
successful, the address of the Thing is returned, and a pointer to its
linkage in the 'linkage' parameter. The THING_LINKAGE structure is defined
in the sms.h header file.

int sms_wevt (event_t *eventlist, timeout_t timeout)
Wait for one or more of the events in 'eventlist'. When the job is
released, then 'eventlist' is updated to show which event(s) caused it to
be released. If no events are indicated then the job was released because
timeout occurred.
This call is only supported on SMSQ/E v2.71 or later. On other systems it
will not be recognised, and an error reporting an unsupported trap value
will be returned.

int sms_xtop()
NOT YET IMPLEMENTED.
This is reserved for a potential future implementation of the sms_xtop()
routine used to extend the TRAP#1 series of calls.
NOTE. Only available on SMSQ and SMSQ/E based systems

#include <things.h>
int sms_zthg (char * thing_name)
Zap a thing. The name is supplied in C (NULL terminated) format. Returns
SMS Error code.

void ut_werms(int qdoserror, chanid_t channel)
Write the error message corresponding to the given SMS error code to the
specified channel.

void ut_wersy (int qdoserror)
Write the error message corresponding to the given SMS error code to
channel 0.

int ut_wint(chanid_t channel, int value)
Convert a value to ASCII and send it to the specified channel. Returns SMS
error code (if any).

int ut_wtext(chanid_t, QLSTR * message)
Send a message to a specified channel. Returns SMS error code (if any).

MANIFEST CONSTANTS
There follwoing maifest constants are defined in QODS.H for the error codes
returned by QDOS.
 Constant Meaning
 ERR_OK NO error occured
 ERR_BFFL B u F fer F u L l

 ERR_BFFL B u F fer F u L l
 ERR_DRFL DR ive F u L l
 ERR_EOF E nd O f F ile
 ERR_FDIU F ile or D evice I n U se
 ERR_FDNF F ile or D evice N ot F ound
 ERR_FEX F ile already EX ists
 ERR_FMTF F or M a T F ailed
 ERR_ICHN I nvalid CH a N nel id
 ERR_IEXP I nvalid EXP ression
 ERR_INAM I nvalid file, device or thing NAM e
 ERR_IJOB I nvalid JOB id
 ERR_IMEM I nsufficient MEM ory
 ERR_IPAR I nvalid PAR ameter
 ERR_ISYN I nvalid SYN tax
 ERR_MCHK file system M edium CH ecK failed
 ERR_NC operation N ot C omplete
 ERR_NIMP N ot IMP lemented
 ERR_ORNG O utside permitted R a NG e
 ERR_OVFL arithmetic OV er FL ow
 ERR_PRTY P a R i TY error
 ERR_RDO R ea D O nly
 ERR_RWF R ead or W rite F ailed/
 ERR_TRNE TR a N smission E rror
CHANGE HISTORY

 30 Jul 93
 Added SMS entry points into library. These just refer you to
the QDOS name for the more detailed description unless the call
is only available SMS and not under QDOS.

 08 Sep 93 Added c_extop() call (based on a contribution by PROGS ofBelgium).
 31 Dec 93 Documented the iop_outl() call.

 24 Jan 94

 The LIBSMS_DOC file created to hold the details of the SMS
Operating System Interfaces of C68. All call definitions
expanded to avoid the need to cross-reference the same calls
under their QDOS names. Details of names of manifest constants
used for SMS error codes added.

 08 Apr 95
 Added the new calls that are only available on SMSQ and SMSQ/E
based systems. Changed some of the existing definitions to use
the more generic 'void *' for address parameters instead of the
previous 'char *'.

 04 Jan 96
 Added descriptions of the various system vector calls
available that were not previously documented. These have
always been available in the library, but were previously only
documented under their QDOS names.

 03 May 96 Added new event handling trap calls introduced with SMSQ/Ev2.71.
 19 Jul 98 Added the ioa_cnam() routine definition.

Standard C library: UNIX routines
This section of the C68 library documentation covers those routines in the
C68 Standard C library that are marked as providing UNIX compatibility
(except for any routines that use the math.h header file as these are
documented in LIBM_DOC file).
Please note, however, that it cannot be guaranteed that all versions of
Unix support the routines listed in this category. Except where specified
otherwise Unix SVR4 is taken as the base line. Also fo historical reasons
many non-Unix systems support many of the routines listed under this
category.

void _exit (int status)
Exit the program with the specified status. Does NOT first do a tidy close
on open files.
Defined in unistd.h

int access(char *name)
Defined in fcntl.h

int alarm (unsigned int seconds)
Unix and Posix compatible routine to send the calling process a SIGALARM
signal after the specified number of seconds. Returns 0 if there was not
already an alarm outstanding, or the amount of time left on the previous
alarm if there was one. If seconds is specified as 0, then any pending
alarm is cancelled.
Note that normally this routine is defined as returning an "unsigned int"
value as no error can occur. In the QDOS/SMS implementation of signals it
IS possible for an error return to happen (which will be negative).
Defined in unistd.h

int allmem(void)
Defined in stdlib.h

char *argopt(int argc, char *argv[], char *opts,
 int *argn, char *optc)
Gets next argument from list.
Defined in stdlib.h

char * basename (char * pathname)
Treats the string supplied as a pathname, and returns a pointer to the
filename part following any directory part.
Note that as QDOS level 1 systems do not support true directories a simple
heuristic is used that may occasionally give excentric results. In
particular it assumes that the extension part of a filename cannot be
longer than 4 characters. It will however, provide results consistent with
the dirname() function.
Needs linking with -lgen to include this function
Define in libgen.h

int bcmp (char * string1, char * string2, len)
Compares two strings. Replaced under ANSI by memcmp().
Defined in memory_h

char *bcpy (char *source, char *target, int length)
Copies an area of memory. Replaced under ANSI by memcpy(). Note that
operands in reverse order to memcpy().
Defined in memory_h

char * bgets (char * buffer, size_t *count, FILE * fp
 const char * breakstring)
Unix compatible routine to read a file up to the next delimiter. The file
is read until either count is exhausted or one of the break characters
specified in 'breakstring' is encountered. The data is then terminated with
a NULL byte, and a pointer to this byte returned.
Needs linking with -lgen to include this function
Defined in libgen.h

int bldmem(int n)
Defined in stdlib.h

size_t bufsplit (char * buf, size_t n, char **a)
Unix compatible routine to take a buffer containing fields separated by
field seperators and setting up the 'a' array of pointers to point to each
field.
The default set of field termiators are assumed to be tab and newline, but
alternative separators can be specified by giving a list in the 'buf'
parameter with the 'n' and 'a' parameters both set to 0.
The return value is then number of fields found and thus unique addresses
set in the 'a' array. All other values of the 'a' array are set to point to
the NULL byte at the end of the buffer.
Needs linking with -lgen to include this function
Defined in libgen.h

void bzero (char *target, int length)
Sets an area of memory to zero. Under ANSI the memset() function is used
instead.

Defined in memory_h

int chdir(char *str)
Changes current data directory (as set by TK2 DATA_USE command in
SuperBasic). If passed NULL or strings of the form "../" or ".._", then
tries to go up a level. If passed a string starting with a device name then
replaces the current directory, else appends to current directory (adding _
at end if needed). Maximum length is 31 characters. Returns 0 if ok, !0 if
failed.
(See also libqdos documentation for chddir() and chpdir())
Defined in stdlib.h

int chmod (char * filename, int access_modes)
Unix compatible routine for setting the file access permission bits. In the
QDOS implementation, the Read and Write options are ignored as QDOS does
not have the concept of "Read Only" or "Write only" access. The Execute bit
is used to,determine whether the file should be marked as EXEC'able for
normal files, and ignored for directories.
Defined in sys/stat.h

int chown (const char * path, uid_t owner, gid_t group)
Unix/Posix compatible call to change the owner and group of a file. Since
QODS and SMS do not support the concepts of owners and groups for files,
this call will always return as though it had completed successfully.
Defined in unistd.h

int close(int fd)
Closes a file. -1 if error, 0 if ok.
Defined in fcntl.h

int closedir (DIR *)
Close a directory.
Defined in dirent.h

void clrerr(FILE *fp)
Lattice version of the ANSI clearerr() routine
Macro defined in stdio.h

char * copylist (const char * filename, size_t * sizeptr)
Unix compatible routine to read a file into memory. The memory required is
allocated using malloc(). All newlines in the file are changed to NULL
bytes. If any error occurs, then NULL is returned. If successful, the size
of the file is stored at the location pointed to by 'sizeptr' and the
address of the memory allocated is returned.
Needs linking with -lgen to include this function
Define in libgen.h

int creat(char *name)
Routine to create a file. If the file exists it is truncated, if it does
not it is created. Returns new fd or -1 if error.
Defined in fcntl.h

char * dirname (char * pathname)
Treats the string supplied as a pathname, and returns a pointer to the path
part with any filename part removed.
Note that as QDOS level 1 systems do not support true directories a simple
heuristic is used that may occasionally give excentric results. In
particular it assumes that the extension part of a filename cannot be
longer than 4 characters. It will however, provide results consistent with
the baseame() function.
Needs linking with -lgen to include this function
Define in libgen.h

int dup(int fd)
Routine to duplicate at level 1 the number of file descriptors accessing
the same file. Returns -1 on error, new file descriptor on success.
Defined in fcntl.h

int dup2(int fd, int nfd)
int fd - File descriptor to duplicate
int nfd - File descriptor to re-allocate
Routine to duplicate at level 1 the number of file descriptors accessing
the same file, given the second descriptor to use explicitly (Closes it if
already open). Returns -1 on error, 0 on success.
Defined in fcntl.h

void dqsort(double *da, int n)
Lattice compatible routine for sorting an arry of doubles into order.
Defined in stdlib.h

void endpwent (void)
Unix compatible routine to close the password file. As QDOS and SMS do not
support the password file this merely simulates this action.
Defined in pwd.h

int envunpk (char * env)
Lattice compatible routine to take an array of environment strings and
create an array of pointers to the strings. The address of the array is
stored in the global variable 'environ' and the count of strings returned.
The memory for the array is allocated dynamically, and that for any
previous array automatically released. If an error occurs allocating
memory, then -1 is returned.
Defined ins sdlib.h

int exec(....)
Routines to start off another process with a priority found in external
variable _def_priority . Waits for this newprocess to finish and returns
its QDOS error code. _oserr == 0 if error code is from new process, else
process didn't start if _oserr != 0. Sets errno and _oserr.
Note that this differs from the traditional Unix style exec() family of
calls in that it passes an additional parameter (as the second parameter)
to define the channels to be passed. The ' file_desc ' parameter points to
an array of file descriptors to pass to the new process. file_desc[0] is
the number of file descriptors to follow, followed by the level 1 file
descriptors in file_desc[1], file_desc[2],..... file_desc[chan[0] - 1].
If the 'file_desc' parameter is -1L, then the current programs file
descriptors 0, 1, and 2 (stdin, stdout, stderr) will be passed.
The strings passed in either the argv array or the list of args must begin
with a string containing the name of the program (this is UNIX convention).
eg. to exec a program test with arguments "this is a test" and keeping the
same channels, Use :-
 execl("test", -1L, "test", "this is a test", NULL);
The string "this is a test" will be parsed correctly into separate strings
for argv[1] etc. by the receiving program.
The variants of exec available with C68 are:
 int execv(char * name, int * file_desc, char * argv[])
 int execvp(char * name, int * file_desc, char * argv[])
 int execl(char * name, int * file_desc, char * argvs, ...)
 int execlp(char * name, int * file_desc, char * argvs, ...)
The directory search sequence in each case is:
execv program directory only
execvp program directory, then data directory
execl program directory only
execlp program directory amd then data directory
The execl and execlp variants must have their parameter lists termianted by
a NULL parameter.
Defined in unistd.h

void _exit (int exit_code)
Routine to close a program immediately without attempting to flush any open
files. If an exit routine has been logged via onexit(), then this is called
before quitting. The value of the 'exit_code' parameter is returned to the
initiator of this program.
Defined in unistd.h

int fcntl(int fd, int action, int flags)
Routine to get and set various file parameters such as file flags, type of
I/O device etc. returns -1 on error, various other things depending on the
options used. These are defined in fcntl.h and are
F_GETFD - gets device type
F_SETFD - set device type
F_GETFL - returns device flags (as O_APPEND,O_RAW etc,
instead of internal values)
F_SETFL - sets device flags given O_APPEND etc.
Defined in fcntl.h

char *fcvt(double v, int dec, int *decx, int *sign)
Defined in fcntl.h

FILE *fdopen(int fd, char *mode)
Defined in stdio.h

int fdmode(int fd, int mode)
Routine to change raw or cooked mode using level 1 file. Returns -1 on
error (with more info in errno) and 0 on success. If mode != 0 sets O_RAW
on fd. if mode == 0 removes O_RAW on fd (no effect if not already set).
Defined in fcntl.h

int fgetchar(void)
Defined in stdio.h

long fgetchid(FILE *fp)
Returns QDOS channel id of FILE pointer. Returns -1L on error
Defined in stdio.h

int fileno(FILE *fp)
Macro.
Defined in stdio.h

int fflushall(void)
Defined in stdio.h

FILE *fopene(char *name, char *mode, int paths)
paths == 3 - search program directory, then data directory
paths == 2 - just search program directory
paths == 1 - search data directory first, then program
directory
paths == 0 - just search data directory (as open())
Defined in stdio.h

int fork(...)
Starts another process concurrently that is owned by this process. The new
process is started with a default priority found in external variable
_def_priority . Returns process id of new process or error code. Sets errno
(and if relevant _oserr). The arguments have the same meaning as in the
exec() family of calls.
Note that the semantics of the fork() family of calls in QDOS are different
to that of Unix systems. This is an unavoidable consequence of the fact
that QDOS/SMS systems have no memory management hardware. Therefore, such
calls in any source code being ported will always need examining carefully
to work out how to achieve the desired effect.
Note also that there is also the qfork() family of calls (defined in
LIBC68_DOC) that is functionally similar to these calls except that a
specified job can be made into the owner. The qfork() versions hsould be
used when you do not want the daughter job to die if the parent job
terminates.
pid_t forkv(char * name, int * file_desc, char * argv[])
pid_t forkvp(char * name, int * file_desc, char * argv[])
pid_t forkl(char * name, int * file_desc, char * argvs, ...)
pid_t forklp(char * name,int * file_desc, char * argvs, ...)
The directories searched in each case are as follow:

The directories searched in each case are as follow:
forkv program directory only
forkvp program directory and then data directory
forkl program directory only
forklp program directory and then data directory
The forkl() and forklp() routines must have a NULL parameter to terminate
their parameter lists.
Defined in stdlib.h

long fpathconf (int filedes, int name)
Posix compatible routine to get configuration information on a file or
directory. This is currently a dummy routine, and will always return an
error code.
Defined in unistd.h

int fputchar(int c)
Defined in stdio.h

void fqsort(float *fa, int n)
Lattice compatible routine for sorting an array of floats into order.
Defined in stdlib.h

int fstat (int fd, struct stat *buf)
Unix compatible routine to get file status information for a level 1 file.
One difference between Unix and the QDOS C68 implementation is that only
directory devices are supported. Any attempt to use fstat() on a non-
directory device will result in a ENOTBLK error being generated.
Returns:
0 successful
-1 error occured - errno set to indicate type.
Defined in sys/stat.h

int fsync(int fd)
Routine to flush a level 1 file. Returns -1 on error, 0 on success.
Defined in fcntl.h

int ftruncate (int file_descriptor, off_t length)
Unix compatible routine to truncate an open file to a specified length.
Defined in unistd.h

int getch(void)
Lattice compatible routine to get a character from the console without
echo. If a console channel is currently open it will be used, but if not a
new one will be opened. Note that no attempt is made to activate a cursor.
Defined in stdio.h

int getche(void)
Lattice compatible routine to get a character from the console with echo.
If a console channel is currently open it will be used, but if not a new
one will be opened. Note that no attempt is made to activate a cursor.
Defined in stdio.h

char *getcwd(char *str, int size)
Gets current data directory path (as set by TK2 DATA_USE command) into
buffer str. If str == NULL then allocates a buffer of length size using
malloc and returns address of it. Returns NULL on error, else address where
name is stored. See also getcdd() and getcpd() in QDOS specific section.
Defined in unistd.h

gid_t getegid (void)
Unix compatible routine to get effective group id. Actually a dummy that
always returns a value equivalent to the Unix user root .
Defined in stdlib.h

uid_t geteuid (void)
Unix compatible routine to get effective user id. Actually a dummy that

always returns a value equivalent to the Unix user root .
Defined in stdlib.h

gid_t getgid (void)
Unix compatible routine to get group id. Actually a dummy that always
returns a value equivalent to the Unix user root .
Defined in stdlib.h

char *getmem(int size)
Defined in stdlib.h

char *getml(long size)
Defined in stdlib.h

int getopt(int argc, char * argv[], char *option_string)
Unix compatible option to help with parsing a command line that conforms to
Unix syntax. It gets the next option from argv array that matches a letter
in option_string. The option_string contains the letters that are valid
parameter options to a C program. If the letter is followed by a colon,
then this indicates that the option takes an argument (typically a
filename). A number of external variables are used/set by the getopt()
routine as follows:
char *optarg /* pointer to option argument */
int optind /* argv index of next argument */
int opterr /* set 0 stops message if parse fails */
int optopt /* character that caused the error */
The value returned by getopt() is the value of the option character, or '?'
if an error occurred.
Defined in stdlib.h

char * getpass(char * prompt)
Unix/Posix compatible routine to read a password from a controlling
terminal.
This routine will try and use the channel associated with stderr as long as
it is a console channel (Unix/Posix would use /dev/tty). Characters will be
read until either EOF or a newline occurs. A pointer to the NULL terminated
string read will be returned, or NULL if an error occurred. If the string
entered is longer than PASS_MAX (defined in limits.h) then it will be
truncated to that length. Note that an internal buffer is used that is
overwritten each time this routine is called.
Defined in stdlib_h

long getpid()
Routine to get the QDOS job id of the current job. Sets _oserr and returs
either job id or QDOS error code.
Defined in stdlib.h

struct passwd *getpwent (void)
Returns a pointer to a an object of type 'struct passwd'. Because QDOS/SMS
do not support the concept of a password file, this call simluates the
existence of password file containing a single entry belonging to the
"root" user (this is the Unix super-uer).
Defined in pwd.h

uid_t getuid (void)
Unix compatible routine to get user id. Actually a dummy that always
returns a value equivalent to the Unix user root .
Defined in stdlib.h

int iabs(int i)
Lattice compatible routine to compute the absolute value of an integer.
Macro defined in stdlib.h

char *index (char *string, int c)
Search string for occurrence of a character. This is now an obsolete
routine that under ANSI has been superseded by the strchr() function.
Defined in string.h

int iomode(fd, mode)
int fd, mode;
Routine to change the i/o mode of a level 1 file. Exclusive OR's the
current flags in the ufb structure with the passed flags. Returns the
previous value of the flags, or -1 if error, so if 0 is passed in the mode
field then no change is made to the flags field, it is just returned
unchanged.
ufb structure and flags defined in fcntl.h
Defined in fcntl.h

int isascii(int c)
Macro in ctype.h (or function if ctype.h not included)
Defined in ctype.h

int isatty(int fd)
Unix compatible routine to find out if a file descriptor corresponds to a
tty (con or scr under QDOS) device. Returns 0 if not, 1 if it is
Defined in stdlib.h

int iscsym(int c)
int iscsymf(int c)
Macros in ctype.h (or function if ctype.h not included)
Defined in ctype.h
--
char * itoa (int number, char * target)
Converts a number into an ASCII string and returns address of the string.
It is the user's responsibility to ensure that the target string is large
enough to hold the result.
Defined in stdlib.h
NOTE. Many systems do not support this routine (It is not part of ANSI,
POSIX or Unix SVR4 definitions). For maximum compatibility you should use
the sprintf() function instead (or write your own itoa() function).

int kbhit()
Lattice compatible routine to detect any pending keypresses on the console.
Returns 0 if none, or no current console channel, 1 if there is input
waiting.
Defined in stdio.h

int kill (pid_t program_id, int signal_numer)
int killu (pid_t program_id, int signal_numer, int uval)
The kill() routine is a Unix and Posix compatible routine to send a signal
to a job.
The killu() variant is oen that is sometimes encountered that allows an
additional parameter to be passed.
On success returns 0. On failure returns -1 and sets errno.
Defined in signal.h

struct lconv *localeconv (void)
Posix comaptible routine to get the current settings of the locale
dependent information as contained in the 'lconv' structure.
Defined in locale.h

int link (const char *path1, const char * path2)
Unix compatible routine to link a file (i.e. give it an alternative name).
QDOS and SMS do not support the concept of links, so this call will always
fail with an error indicating that the maximum number of links have been
exceeded for the file in question.
Defined in unsitd.h

void lqsort(long *la, int n)
Lattice compatible routine for sorting an array of long integers into
ascending order.
Defined in stdlib.h

char *lsbrk(long size)

char *lsbrk(long size)
Defined in stdlib.h

long lseek(int fd, long offset, int mode)
long tell(int fd)
ftell is a macro in fcntl, equal to lseek(fd, 0L, 1)
Seeks to correct position within file fd. offset specifies position, mode
is either SEEK_START - absolute, SEEK_REL - relative, SEEK_END - relative
to eof (position must be -ve or zero). Returns new position or -1 on error.
Defined in fcntl.h

char *memccpy(char *to, char *from, int c, size_t n)
Defined in string.h

int mkdir(char * name)
Unix compatible routine to make a directory. Returns 0 on success, -1 on
error (and sets errno). This will only succeed on systems that support
Version 2 (or later) filing systems.
Defined in sys/stat.h

int mkfifo (const char * name, mode_t mode)
Posix compatible routine to create a FIFO. This is currently a dummy and
will always return an error.
Defined in sys/stat.h

int mknod (const char * path, mode_t mode, dev_t dev)
Unix compatible routine to make a directory, a standard file or a special
file. Because QDOS and SMS do not support special file types (in the Unix
sense) any attempt to create a file of this type will result in an error
return.
Defined in sys/stat.h

char *mktemp (char * template)
Unix compatible routine to generate a unique filename. The template is a
string of the form "filenameXXXXXX". The 'X's will be overwritten with
characters that generate a unique filename. Returns a pointer to this
string.
Defined in stdlib.h

void movmem(char *from, char *to, unsigned int n)
Move memory. ANSI form is memmove().
Macro defined in string.h

int onexit(int (*function)())
Defined in stdlib.h

int open(char *name, int mode)
General UNIX compatible routine to open a file.
Defined in fcntl.h

DIR *opendir(char * directoryname)
Unix compatible routine to open a directory.
Defined in dirent.h

int opene(char *name, int mode, int paths)
Routine to search more than just the default
directory, if name does not start with a device. If it does then that is
opened, else if :-
paths == 3 - search program directory, then data directory
paths == 2 - just search program directory
paths == 1 - search data directory first, then program directory
paths == 0 - just search data directory (as open())
return -1 on error, valid fd if ok.
Defined in fcntl.h

long pathconf (char * path, int name)
Posix compatible routine to get configuration information on a file or
directory. This is currently a dummy routine, and will always return an
error code.
Defined in unistd.h

int pause(void)
Posix compatible routine to suspend a process until a signal received.
There is no successful return, so it always returns -1 and sets errno to
indicate why it returned.
Defined in unistd.h

int pclose (FILE *fp)
Close a pipe opened by popen() after waiting for the associated process to
finish. Returns exit status of process, or -1 if their is no associated
process.
Defined in stdio.h

int pipe(fdp)
int fdp[2]; /* Two file descriptors, fdp[0] = I/P pipe, fdp[1] = O/P pipe
*/
Routine to allow input and output pipes to be constructed, connected to
each other. Both owned by the present job Returns -1 on error, 0 on
success. Default size of o/p pipe is defined in external variable long
_pipesize.
Defined in unistd.h

FILE * popen (char *command, char *type)
Create a pipe between the calling program and the command to be executed.
Command is a C string giving the command (and any associated parameters) to
be executed. 'type' is either "r" for reading or "w" for writing. The value
returned by popen is a file pointer such that one can write to the standard
input of the command if the type is "w", and read from its standard output
if type was "r". Returns NULL if the file or associated process cannot be
created.
Defined in stdio.h

int putch (int c)
Lattice compatible routine to output a character to the console. If there
is no console channel open, then using this routine will cause one to be
opened.
Defined in stdio.h

int raise (int signal_number)
int raiseu (int signal_numer, int uval)
The raise() routine is a Unix compatible routine to allow a process to send
a signal to itself.
The raiseu() function is a variant that is occasionally encountered that
allows an additional parameter to be passed.
The fraise() function is a C68 version that tries to raise the signal
disregarding any blocking condition. It is intended for use from mt_trapv
type routines. Does not work when called in SV mode.
On success returns 0. On failure returns -1 and sets errno to indicate
reason.
Defined in signal.h

void rbrk(void)
Defined in stdlib.h

long read(int fd, char *buf, long size)
Reads size bytes into array at buf from file fd. size may be greater than
32K. Returns number of bytes read or -1 if error.
Defined in fcntl.h

struct dirent *readdir(DIR *direptr)
Unix compatible routine to read a directory.
Defined in dirent.h

int unlink(char *name);
Both delete a file. 0 if ok, -1 if error.
Defined in fcntl.h

void repmem(char *to, char *vt, int nv, int nt)
Defined in string.h

void rewinddir(DIR *dirptr)
Unix compatible routine to reset to directory start.
Macro defined in dirent.h

char * rindex (char * string, int c)
Search string for last occurence of a character. This is now an obsolete
variant that under ANSI has been superseded by the strrchr() function.
Defined in string.h

int rlsmem(char *p, short n)
Lattice C compatible routine for releasing a memory allocation.
Defind in stdlib.h

int rlsml(char *p, long n)
Lattice C compatible routine for releasing a memory allocation.
Defined in stdlib.h

int rmdir (const char * directory_name)
Unix compatible call to remove a directory. The directory must be empty or
the call will fail. This call will only work on QDOS or SMS systems that
have support for hard directories.
Defined in unistd.h

void rstmem(void)
Lattice C compatible routine for resetting the memory allocation system.
Defined in stdlib.h

char *sbrk(unsigned int n)
Unix compatible memory allocation routine
Defined in stdlib.h

void seekdir(DIR *dirptr, long location)
Unix compatible routine to return the current position in a directory.
Defined in dirent.h

int seteuid (uid_t uid)
Unix compatible routine to set effective user id. Actually a dummy under
QDOS that has no affect.
Defined in stdlib.h

int setuid (uid_t uid)
Unix compatible routine to set user id. Actually a dummy under QDOS that
has no affect.
Defined in stdlib.h

void setmem(char *to, unsigned n, char c)
Defined in string.h

int setpgrp (void)
Unix compatible routine to set program group. Actually a dummy under QDOS
that has no affect.
Defined in stdlib.h

void setpwent(void)
Unix compatible routine to reset to start of password file. As QDOS and SMS
do not support the concept of a password file this merely simulates this
action.

action.
Defined in pwd.h

int setnbf(FILE *fp)
Set a stream to be unbuffered
Defined in stdio.h

int setuid (uid_t uid)
Unix compatible routine to set user id. Actually a dummy under QDOS that
has no affect.
Defined in stdlib.h

int sigaction (int signal_number,
 struct sigaction * new_action,
 struct sigaction * old_action)
Posix compatible routine for examining and changing signal actions. If
'new_action' is not NULL, it points to a structure defining the action to
be associated with the specified signal. If the 'old_action' field is not
NULL, then it must point to a structure where the previous action can be
stored. The structure 'sigaction' is defined in teh signal.h file. On
success returns 0. On failure returns -1 and sets errno.
Note that this routine is intended by Posix to supersede the signal()
routine commonly used on Unix systems.
Defined in signal.h

int sigaddset (sigset_t * signal_set, int signal_number)
Posix compatible routine to add a signal to a signal set. Returns 0 on
success, -1 on failure (and sets errno).
Defined in signal.h

int sigdelset (sigset_t * signal_set, int signal_number)
Posix compatible routine to Delete a signal from a signal set. Returns 0 on
success, -1 on failure (and sets errno).
Defined in signal.h

int sigemptyset (sigset_t * signal_set)
Posix compatible routine to initialise and empty a signal set. Returns 0 on
success, -1 on failure (and sets errno).
Defined in signal.h

int sigfillset (sigset_t * signal_set)
Posix compatible routine to initialise and fill a signal set. Returns 0 on
success, -1 on failure (and sets errno).
Defined in signal.h

int sighold (int signal_number)
Unix compatible routine to set a signal to be blocked. On success returns
0, on failure returns -1.
Defined in signal.h

int sigignore (int signal_number)
Unix compatible routine to set a signal to be ignored. On success returns
0, on failure returns -1
Defined in signal.h

int sigismember (sigset_t * signal_set, int signal_number)
Posix compatible routine to test for a signal in a signal set. Returns 0 on
success, -1 on failure (and sets errno).
Defined in signal.h

int siglongjmp (sigjmp_buf, int val)
Posix compatible routine. Version of longjmp() that preserves signal status
as well.
Defined in setjmp.h

void (*signal(int signal_number, void (*sig_func)(int)))(int)
Unix compatible routine to set a signal handler (one of the nastier

Unix compatible routine to set a signal handler (one of the nastier
constructs in C!). Now superseded by the Posix defined routine sigaction(),
but still commonly found in Unix originated programs.
Defined in signal.h

int sigpause (int signal_number)
Unix compatible routine to remove a signal and suspend. On success returns
0, on failure returns -1.
Defined in signal.h

int sigpending (sigset_t * signal_set)
Posix compatible routine to examine pending signals. Store the current list
of pending signals into 'signal_set' Returns 0 on success, -1 on failure
(and sets errno).
Defined in signal.h

int sigprocmask (int action, sigset_t * new_signal_set,
 sigset_t * old_signal_set)
Posix compatible routine to examine/change blocked signals. The action is
one of SIG_SETMASK,SIG_BLOCK,SIG_UNBLOCK. If 'old_signal_set' is not a NULL
pointer, the previous mask is stored in the location to which it points. If
'new_signal_set' is not a NULL pointer then the signal mask to which it
points is used to change the currently blocked set. If it is a NULL
pointer, then the value of the 'action' parameter is irrelevant, and the
mask is unchanged.
Returns 0 on success, -1 on failure (and sets errno).
Defined in signal.h

int sigrelse (int signal_number)
Unix compatible routine to remove a signal from the processes signal mask.
On success returns 0, on failure returns -1.
Defined in signal.h

void (*sigset(int signum, void (*disp)(int)))(int)
Unix compatible routine for setting signals. Similar to signal() in most
cases. You will need to examine Unix documentation for the differences.
Defined in signal.h

int sigsetjmp (sigjmp_buf, int savemask)
Posix compatible routine. Version of setjmp() that preserves signal status
as well as long as savemask is non-zero. If savemask is zero, functions
just like a normal setjmp().
Defined in setjmp.h

int sigsuspend (sigset_t * signal_mask)
Posix compatible routine to wait for a signal. Returns 0 on success, -1 on
failure (and sets errno).
Defined in signal.h

long sizmem(void)
Lattice C compatible for determining available size of memory allocation
pool.
Defined in stdlib.h

unsigned int sleep (unsigned int period)
Unix compatible routine to wait for a specified number of seconds.
Defined in unistd.h

void sqsort(short *sa, int n)
Defined in stdlib.h

int stat (char *filename, struct stat *buffer)
Unix compatible routine for getting file status.
Returns:
0 Success
-1 Error occured - errno set to indicate the type.
Defined in sys/stat.h

Defined in sys/stat.h

int stcarg(char *s, char *b)
Defined in string.h

char *stccpy(char *to, char *from)
Defined in string.h

int stcd_i(char *in, int *ival)
Defined in string.h

int stcd_l(char *in, long *lval)
Defined in string.h

int stch_i(char *in, int *ival)
Defined in string.h

int stch_l(char *in, long *lval)
Defined in string.h

int stcis(char *s, char *b)
Defined in string.h

int stcisn(char *s, char *b)
Defined in string.h

int stci_d(char *out, int ival)
Defined in string.h

int stci_h(char *out, int ival)
Defined in string.h

int stcl_d(char *out, long lval)
Defined in string.h

int stcl_h(char *out, long lval)
Defined in string.h

int stcl_o(char *out, int ival)
Defined in string.h

int stclen(char *s)
Lattice compatible routine to get length of a string. Functionally
equivalent to strlen() routine.
Defined in string.h

int stco_i(char *in, int *ival)
Defined in string.h

int stco_l(char *in, long *lval)
Defined in string.h

int stcpm(char *s, char *patt, char **match)
Defined in string.h

int stcmpa(char *string, char *pat)
Defined in string.h

int stcu_d(char *out, unsigned int uval)
Defined in string.h

int stcul_d(char *out, unsigned long lval)
Defined in string.h

Defined in string.h

int stime (const time_t *tp)
Unix compatible routine for setting the system time.
Defined in unistd.h

char *stpblk(char *s)
Lattice compatible routine to skip blanks (white space). Returns pointer to
first non-whitespace character, or to NULL byte at end of string.
Defined in string.h

char *stpbrk(char *s, char *b)
Obsolete Lattice variant of ANSI strpbrk() function.
Macro defined in string.h

char *stpchr(char *s, char c)
Obsolete Lattice variant of ANSI strchr() function.
Macro defined in string.h

char *stpchrn(char *s, char c)
Obsolete Lattice variant of ANSI strrchr() function.
Macro defined in string.h

char *stpcpy(char *to, char *from)
Defined in string.h

char *stpdate(char *p, int mode, char *date)
Defined in string.h

char *stpsym(char *s, char *sym, int symlen)
Defined in string.h

char *stptime(char *p, int mode, char *time)
Defined in string.h

char *stptok(char *s, char *tok, int token, char *brk)
Defined in string.h

int strbpl(char *s[], int max_array_size, char *string_list)
Lattice compatible routine to build an array of pointers to strings given a
list of NULL byte terminated strings, with the list itself also terminated
by a NULL byte. Returns the cound of strings, or -1 if not enough space in
pointer array.
Defined in string.h

char *strcadd (char *target, const char * source)
Unix compatible routine for copying a string compressing any embedded C
language escape sequences to the equivalent character. Returns a pointer to
the NULL byte that terminates the string. If this routine is used, then a -
lgen parameter must be used at link time.
Defined in libgen.h

char *strccpy (char *target, const char * source)
Unix compatible routine for copying a string compressing any embedded C
language escape sequences to the equivalent character. Returns a pointer to
the start of the target string. If this routine is used, then a -lgen
parameter must be used at link time.
Defined in libgen.h

char *strdup(char *s)
Defined in string.h

char *streadd (char *target, const char * source,
 const char * exceptions)
Unix compatible routine for copying a string expanding any non-grpahics
characters into embedded C language escape sequences. Returns a pointer to

characters into embedded C language escape sequences. Returns a pointer to
the NULL byte that terminates the string. The target area must be large
enough to hold the resultant string. In a worst case scenario, 4 times the
size of the source area is guaranteed to be large enough. The exceptions
parameter is used to specify any chanracters that must be passed through
unchanged. A NULL can be used if there are no exceptions. If this routine
is used, then a -lgen parameter must be used at link time.
Defined in libgen.h

char *strecpy (char *target, const char * source,
 const char *exceptions)
Unix compatible routine for copying a string expanding any non-graphic
characters into embedded C language escape sequences. Returns a pointer to
the start of the target string. The target area must be large enough to
hold the resultant string. In a worst case scenario, 4 times the size of
the source area is guaranteed to be large enough. The exceptions parameter
is used to specify any chanracters that must be passed through unchanged. A
NULL can be used if there are no exceptions. If this routine is used, then
a -lgen parameter must be used at link time.
Defined in libgen.h

int strfind(char *tosearch, char *tofind)
Find the position of string 'tofind' in string 'tosearch'. Returns -1 if
not found, position in string if found. If this routine is used, then a -
lgen parameter must be used at link time.
Note. If you want a version that does case independent matching, then use
strfnd() instead (defined in LIBC68_DOC).
Defined in libgen.h

int stricmp (const char * string1, const char * string2)
Do a case independent compare of two strings. Return 0 if they match.
Defined in string.h

void strins(char *to, char *from)
Lattice compatible routine to insert one string in front of another to
produce a larger string.
Defined in string.h

char *strlwr(char *s)
Lattice compatible routine to convert a string to lower case.
Defined in string.h

int strnicmp(char *a, char *b, int n)
Do a length limited case independent compare of two strings. Return 0 if
they match.
Defined in string.h

char *strnset(char *s, int c, int n)
Do a length limited initialisation of a string to a specified character
value. Return the address of teh string.
Defined in string.h

int strpos (char * string, int c)
Returns position of first occurrence of character c in the string, and -1
otherwise.
Defined in string.h

int strrpos (char *string, int c)
Returns the position of the last occurence of character c in the string,
and -1 otherwise.
Defined in string.h

char *strrev(char *s)
Lattice compatible routine to reverse a string.
Defined in string.h

char *strset(char *s, int c)
Set all characters of a string to a specified value.

Set all characters of a string to a specified value.
Defined in string.h

char * strrspn (const char string, const char * trimchars)
Return a pointer to the first character in 'string' to be trimmed (i.e. all
characters from that point to the end of 'string' are in 'trimchars').
Defined in libgen.h

char *strrstr (const char * string1, const char * string2)
Return a pointer to the last occurrence of string2 within string1, or NULL
if there is no occurrence. This is similar to tha ANSI compatible strstr()
routine except that the search is done backwards from the end rather than
forwards from the start.
Defined in string.h

char *strsrt(char *s, int c)
Lattice compatible routine for sorting an array of text pointers. However,
tqsort() is more commonly used.
Defined in string.h

char * strtrns (const char * str, const char *old,
 const char * new, char * result)
Transform 'str' and copy it into 'result'. Any character that appears in
'old' is replaced with the character in the same position in 'new'. A
pointer to 'result' is returned.
Defined in libgen.h

char *strupr(char *s)
Convert a string to upper case.
Defined in string.h

void swmem(char *a, char *b, int n)
Defined in string.h

void sync (void)
Unix compatible routine to flush all memory buffers, and write the filing
system Super Block. There is no direct equivalent in QDOS, so this is
effectively a null call.
Defined in unistd.h

long tell(int fd)
Report position in a Level 1 file.
Macro defined in fcntl.h

long telldir(DIR *dirptr)
Unix compatible routine to report current position in a directory.
Defined in dirent.h

int toascii(int c)
Macro
Defined in ctype.h

int truncate (char * filename, off_t length)
Unix compatible routine to truncate a named file to a specified length.
Defined in unistd.h

void tqsort(char *ta[], int n)
Defined in stdlib.h

char * ttyname (int file_descriptor)
Get the name for the given file. On the QDOS implementation this will only
work if the file was opened in this program using open() or fopen(). It
will give an "<unknown>" reply for open files inherited from other
programs. Returns NULL on error.
Defined in stdlib.h

void tzset(void)
Set the timezone dependent fields according to the setting of the TZ
environment variable.
Defined in time.h

mode_t umask (mode_t)
Emulate the Unix/Posix system call for setting and reading the fie creation
mask. In practise as QDOS and/or SMS do not support the concept of file
permissions in the Unix/Posix sense this call is only a dummy and has no
real affect.
Defined in sys/stat.h

int ungetch (char c)
Lattice compatible routine to 'unget' a character that has been obtained
via getch() or getche(). Only a single level of pushback is supported.
Returns value of character.
Defined in stdio.h

int unlink(char *name)
Defined in fcntl.h

int utime(char *filename, struct utimbuf *times)
Routine to emulate the UNIX utime() call. Sets a file modification time. If
the second parameter is NULL, then the time is taken from the QL's real-
time clock. If not it is taken from the structure 'utimbuf'. As QDOS only
has a single time field, the larger of these two values is used.
Returns:
0 success
-1 failure (and sets errno)
Defined in utime.h

int wait(int *ret_code)
Routine to emulate the UNIX wait() call. Process stops until one of its
child processes exits, or returns -1 if there are no active child
processes. Suspended child processes are ignored. If a job has more than
255 children this call can fail badly. Returns process id of child that
exited, plus exit code of terminated job if address is passed for it in
ret_code (pass NULL if not wanted).
Defined in stdlib.h

long write(int fd, char *buf, long size)
Writes size bytes from array starting at buf to file fd. Size may be
greater than 32K. Returns number of bytes written or -1 if error.
Defined in unistd.h

GLOBAL VARIABLES

extern char * environ[]
Holds an array of pointers to the environment strings for this program.
Terminated by a NULL entry. It is automatically updated by the putenv()
system call.
Defined in stdlib.h

extern char *sys_errlist[]
An array of pointers to the text corresponding to each (positive) error
code.
Defined in errno.h

extern int sys_nerr
The number of error messages defined (i.e. the highest error code
recognised).
Defined in errno.h

char * tempnam(const char * dir, const char * pfx)
Unix compatible routine to create a name for a temporary file. The 'dir'
parameter specifies the directory to be used. If 'dir' is NULL or not a

parameter specifies the directory to be used. If 'dir' is NULL or not a
suitable directory name then the TMPDIR environment variable will be
checked. If that fails the P_tmpdir entry in the stdio.h header file is
used.
Defined in stdio.h

extern long timezone
Defined in time.h

extern char tzdtn[4]
Defined in time.h

extern char tzstn[4]
Defined in time.h

extern char *tzname[2]
Defined in time.h

AMENDMENT HISTORY
 25 Aug 93 The itoa() description changed to come in line with acceptedusage (parameters reversed).

 25 Jan 94

 Added all the signal handling routines to the documentation.
Some of these such as kill(), raise() and signal() had existed
in embryonic form for some time, but the rest are new. Reworked
the descriptions of the exec() and fork() calls to clear up
some ambiguities.

 20 Aug 94 Added description for chown(), link(), mknod(), rmdir() andumask() calls.
 10 Oct 94 The documentation reworked to put the UNIX and POSIXcompatible routines in their own file.
 20 Oct 95 The documentation updated to reflect the implementation ofRichard Zidlicky's signal handling extension.
 07 Dec 96 Added descriptions for basename(), bgets(), copylist(),dirname(), strfind(), strrspn() and strtrns() routines.
 12 Mar 98 Added description for strrstr() routine.

SCRPAR
NAME
 scrpar_o V1.02 24/01/98
DESCRIPTION
"scrpar_o" is a C68 object code file which contains the following
functions:
 long scrb(long); /* returns base address of the screen */
 long scrl(void); /* returns line length - in bytes */
 long scrs(void); /* returns size of the screen - in bytes */
 long scrx(void); /* returns X size of the screen - in pixels */
 long scry(void); /* returns Y size of the screen - in pixels */
Please note that the above functions are likely to return the negative
error codes associated with the following calls:

ioa.open (IO_OPEN)
ioa.clos (IO_CLOSE)
iow.xtop (SD_EXTOP)

USE
These functions may be used in the same way as other "long" functions.
From V1.01 the function scrb() must be passed a QDOS channel ID as an
argument. In this case, the returned value is the base address of the
screen attached to the window corresponding to that channel ID. When the
argument -1 is passed, the base address of the default screen is returned
as usual.
COPYRIGHT
This software - i.e. "scrpar_s", "scrpar_o" and "scrparo_doc" - is
copyright (c) 1998 Bruno Coativy.
This software may be freely distributed and used, but MUST NOT be modified.
CHANGES

Release 1.00 (01/05/95)

Release 1.00 (01/05/95)
First release. Only supports MODE 4 and MODE 8.
Release 1.01 (03/09/95)
A QDOS channel ID must be passed to scrb() as an argument (thanks are
due to Christian van den Bosch without whom this release wouldn't have
come into existence). This feature is especially intended for MINERVA
users.
Release 1.02 (24/01/98)
This release has arisen from the need to maintain compatibility with
the AURORA graphics card, resulting in a partial rewrite of "scrpar_s".
The improvements over previous releases are:

scrs now returns the correct screen size under the AURORA card
The scrl function has been added
The code is more compact

Please note the following shortcoming:

scrx now returns the same size in MODE 4 and in MODE 8

Command Index
COMMAND INDEX
The following is a short index in alphabetical order of the commands
provided with the C68 system and the optional extra disks. In each case the
disk on which it can be found is indicated in the square brackets.

ARC [C68 RUNTIME 2 before release 4.00]
[ARCHIVERS 1 disk]
Utility for maintaining an number of files in compressed archive
format. The ZIP/UNZIP pair of programs are now more commonly used as
they achieve better compression and are also more widely available on
other operating systems.
AS68 [C68 RUNTIME 1]
The standard C68 assembler. Normally run via CC.
C68 [C68 RUNTIME 1]
The main C68 compile phase. Normally run via CC.
C68MENU [C68 RUNTME 2]
Front-end for running the C68 system completely from menus.
CAT [GNU TEXT UTILITIES]
Concatenate Text Files
CC [C68 RUNTIME 1]
The standard front-end for running the C68 compilation phases.
CfiX [CPORT SUPPORT LIBRARY]
A utility for taking the output from CPORT and completing the process
of preparing it to be compiled by C68.
CMP [GNU DIFF UTILITIES]
Compare two text files
COMM [GNU TEXT UTILITIES]
Compare two sorted text files on a line-by-line basis.
CP [C68 RUNTIME 2]
A copy program. Normally used in conjunction with MAKE. Supprts
recursive copying of directories.
CPP [C68 RUNTIME 2]
The C68 pre-processor phase. Normally run from CC.
CPROTO [C PROGRAMMING UTILITIES 1]
C prototype generator. Generates prototype definitions from C source
files.
CSPLIT [GNU TEXT UTILITIES]
Split a text files into sections determined by context lines.
CUT [GNU TEXT UTILITIES]
Remove sections from lines of text files.
DIFF [GNU DIFF UTILITIES]
Finds the difference between two text files.
EXPAND [GNU TEXT UTILITIES]
Convert tabs in a text file to spaces
FGREP [C68 RUNTIME 2]
Finds which files (and lines) contain a specified string.
FOLD [GNU TEXT UTILITIES]
Wrap each line of a text file to fit within a specified width.
HEAD [GNU TEXT UTILITIES]

HEAD [GNU TEXT UTILITIES]
Output the first part of text files
INDENT [C PROGRAMMING UTILITIES 1]
Formats C source files to a specified standard layout.
INFOCMP [CURSES LIBRARY]
Display details from 'terminfo' database for the current terminal type.
JOIN [GNU TEXT UTILITIES]
Join lines of two text files on a common field.
LD [C68 RUNTIME 1]
The C68 linker. Normally run via CC.
MAKE [C68 RUNTIME 1]
The C68 utility for automating the compiling of programs.
NL [GNU TEXT UTILITIES]
Number lines of text files.
PACKHDR [C68 RUNTIME 2]
The C68 utility for packing C header files to occupy less room.
PASTE [GNU TEXT UTILITIES]
Merge lines of files
PR [C68 RUNTIME 2]
[GNU TEXT UTILITIES]
Convert text files for printing with page headings, line numbers,
columns etc.
RM [C68 RUNTIME 2]
Remove files. Normally used in conjunction with MAKE.
SED [C68 RUNTIME 2]
A stream editor. Normally used in conjunction with MAKE.
SLB [C68 RUNTIME 2]
The SROFF librarian. Used for manipulating libraries and analysing
SROFF files.
SORT [GNU TEXT UTILITIES]
Sort the lines of a text file.
SPLIT [GNU TEXT UTILITIES]
Split a file into pieces
SUM [GNU TEXT UTILITIES]
Checksum a file.
TAC [GNU TEXT UTILITIES]
Concatenate and print files with line order reversed.
TAIL [GNU TEXT UTILITIES]
Output the last part of files
TIC [CURSES LIBRARY]
Create a binary 'terminfo' database from a text version.
TOUCH [C68 RUNTIME 1]
Set file modification times. Normally used in conjunction with MAKE.
TR [GNU TEXT UTILITIES]
Translate or delete characters in a file.
TSORT [C68 RUNTIME 2]
Topological sort. Used in conjunction with SLB for ordering libraries.
UNEXPAND [GNU TEXT UTILITIES]
Convert spaces to tabs in a text file.
UNIQ [GNU TEXT UTILITIES]
Remove duplicate lines from a sorted file.
UNPROTO [C PROGRAMMING TOOLS 1]
Pre-processor for converting ANSI style function declarations to K&R
ones. Normally run via CC.
UNZIP [C68 RUNTIME 2]
[ZIP ARCHIVING UTILITIES]
Utility for extracting files from ZIP archives.
UUD [C68 RUNTIME 2]
Restore a file encoded with UUE. Documentation in file UUENCODE_DOC.
UUE [C68 RUNTIME 2]
Encode a binary file in ASCII text format for transmission over an
electronic mail network. Documentation in UUENCODE_DOC.
WC [GNU TEXT UTILITIES]
Print the number of bytes, words and lines in a text file.
ZIP [ZIP ARCHIVING UTILITIES]
Utility for maintaining a number of files in a compressed archive
format. This format is commonly used within the C68 system for source
files.

Table of Contents
Overview
Getting Started
CC Front-End
Gnu C Pre-Processor
C68 Compiler
AS68 Assembler
Make
C68 Linker
C68 Menu System
C68 environment on QDOS and SMS
Environment Variables
QDOS/SMS Signal Handling Extension
QED Manual
SROFF File Format
Technical Reference
TOS Emulator for QDOS
Issue Notes for Release 4.22
CP: Copy Files
FGREP: Search Files
GREP: Search for Patterns
PR: Prepare for Printing
RM: Remove Files
SED: Stream Editor
SLB: SROFF librarian
TSORT: Topological Sort
TOUCH: Update File Dates
UUE/UUD Encode/Decode Binary to ASCII
C68 library: Indexes
Standard C library: ANSI routines
C68-specific Library Routines
C68 Curses library
Source Code Debugging Library
C68 Maths library
QDOS System Call Interface
Pointer Environment Library
SMS/SMSQ/SMSQ-E System Interface
Standard C library: UNIX routines
SCRPAR
Command Index

Table of contents
Overview
Getting Started
CC Front-End
Gnu C Pre-Processor
C68 Compiler
AS68 Assembler
Make
C68 Linker
C68 Menu System
C68 environment on QDOS and SMS
Environment Variables
QDOS/SMS Signal Handling
Extension
QED Manual
SROFF File Format
Technical Reference
TOS Emulator for QDOS
Issue Notes for Release 4.22
CP: Copy Files
FGREP: Search Files
GREP: Search for Patterns

GREP: Search for Patterns
PR: Prepare for Printing
RM: Remove Files
SED: Stream Editor
SLB: SROFF librarian
TSORT: Topological Sort
TOUCH: Update File Dates
UUE/UUD Encode/Decode Binary to
ASCII
C68 library: Indexes
Standard C library: ANSI routines
C68-specific Library Routines
C68 Curses library
Source Code Debugging Library
C68 Maths library
QDOS System Call Interface
Pointer Environment Library
SMS/SMSQ/SMSQ-E System
Interface
Standard C library: UNIX routines
SCRPAR
Command Index

previous page start

Collected documentation for the C68 C Compilation System for the Sinclair QL.

" />

C68 Documentation
Dave Walker

Table of contents

Overview
Getting Started
CC Front-End
Gnu C Pre-Processor
C68 Compiler
AS68 Assembler
Make
C68 Linker
C68 Menu System
C68 environment on QDOS and SMS
Environment Variables
QDOS/SMS Signal Handling Extension
QED Manual
SROFF File Format
Technical Reference
TOS Emulator for QDOS
Issue Notes for Release 4.22
CP: Copy Files
FGREP: Search Files
GREP: Search for Patterns
PR: Prepare for Printing
RM: Remove Files
SED: Stream Editor
SLB: SROFF librarian
TSORT: Topological Sort
TOUCH: Update File Dates
UUE/UUD Encode/Decode Binary to ASCII
C68 library: Indexes
Standard C library: ANSI routines
C68-specific Library Routines
C68 Curses library
Source Code Debugging Library
C68 Maths library
QDOS System Call Interface
Pointer Environment Library
SMS/SMSQ/SMSQ-E System Interface
Standard C library: UNIX routines
SCRPAR
Command Index

Command Index

next page

